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Abstract. Frame structures with viscoelastic (VE) dampers mounted on them are considered in this
paper. It is the aim of this paper to compare the dynamic characteristics of frame structures with VE
dampers when the dampers are modelled by means of different models. The classical rheological models,
the model with the fractional order derivative, and the complex modulus model are used. A relatively
large structure with VE dampers is considered in order to make the results of comparison more
representative. The formulae for dissipation energy are derived. The finite element method is used to
derive the equations of motion of the structure with dampers and such equations are written in terms of
both physical and state-space variables. The solution to motion equations in the frequency domain is
given and the dynamic properties of the structure with VE dampers are determined as a solution to the
appropriately defined eigenvalue problem. Several conclusions concerning the applicability of a family of
models of VE dampers are formulated on the basis of results of an extensive numerical analysis.
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1. Introduction

Viscoelastic (VE) dampers are energy dissipation devices of passive type, frequently used to

mitigate excessive vibration of structures due to winds or earthquakes. A number of applications of

VE dampers in civil engineering are listed in the book by Christopoulos and Filiatrault (2006). The

properties of VE dampers, such as the possibility of energy dissipation and stiffness, are frequency

and temperature dependent and are commonly defined in terms of experimentally obtained storage

and loss modules. Good understanding of the dynamic behaviour of dampers is required for the

analysis of structures supplemented with VE dampers. The frequency dependence of the properties

of VE dampers can be described by means of rheological models or using the complex modulus

model.

In the past, several rheological models were proposed to describe the dynamic behaviour of VE

dampers. Both the classical and the so-called fractional-derivative models of VE dampers are

available. These models are presented by Chang and Singh (2009) and by Lewandowski and

Chor yczewski (2010). Very frequently the classical Maxwell or Kelvin models are used. aç zí
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Each group of models have their own advantages and disadvantages. The generalized rheological

models, like the generalized Kelvin model or the generalized Maxwell model, contain more

parameters than the fractional ones but lead to the traditional differential equations of motion instead

of to the fractional differential equations when the fractional-derivative model of VE dampers is used, as

shown by Chang and Singh (2002). In general, the fractional differential equations are more difficult

to solve than the ordinary differential equations. The dynamic characteristic of structures with VE

dampers, like the frequencies and modes of vibration and the non-dimensional damping ratios, are

obtained as the solution to the linear or quadratic eigenvalue problem when the classical rheological

models of VE dampers are used. The fractional-derivative models of dampers require a solution to

the nonlinear eigenvalue problem, as proposed by Lewandowski and Pawlak (2010), or to the

extremely large linear eigenvalue problem derived, for example, by Chang and Singh (2002) or by

Sorrentino and Fassana (2007). The modal strain method is also used to determine the non-

dimensional damping ratios in the papers by Xu (2007) and by Shen et al. (1995).

The dynamic analysis of frame or building structures with dampers are presented in many papers

(Chang and Singh 2002, 2009, Lewandowski and Pawlak 2010, Hatada et al. 2000, Singh and

Moreschi 2002, Matsager and Jangid 2005, Singh et al. 2003, Zhang and Xu 2000, Shukla and

Datta 1999, Park et al. 2004, Lee et al. 2004, Tsai and Chang 2002, Okada et al. 2006, Mazza and

Vulcano (2007)). The simple Maxwell model was chosen by Hatada et al. (2000), Singh and

Moreschi (2002) and by Singh et al. (2003). Moreover, in the papers by Singh and Moreschi

(2002), Matsager and Jangid (2005) and by Lee et al. (2004) the simple Kelvin model is used to

describe the dynamic behaviour of dampers. These simple models are used by Singh and Moreschi

(2002), Park et al. (2004) and by Lee et al. (2004), to solve the problem of optimal design of

structures with VE dampers. In the papers by Chang and Singh (2002), Lewandowski and Pawlak

(2010), and by Tsai and Chang (2002), the three-parameter fractional-derivative rheological model is

used to model the dampers behaviour. Moreover, in the paper by Okada et al. (2006), rational

polynomial approximation modelling is used for the analysis of structures with VE dampers. 

Up to now, the dynamic analysis of structures with VE dampers modelled by means of the

generalized rheological models is rarely considered or discussed in the literature. The in-time

analysis of structures with dampers modelled by means of the models mentioned above can only be

found in the papers by Singh and Chang (2009) and Mazza and Vulcano (2007). 

Despite their popularity, the complex modulus model is not used in the context of dynamic

analysis of structures with VE dampers. 

Design of structures with VE dampers together with optimization of damper locations and

parameters are important problems from a practical point of view. Often the concept of performance-based

design is adopted in the process of designing of such structures. A detailed review of all the papers

is beyond the scope of this paper. Among other ones, we would like to mention the books by

Takewaki (2009) and by Christopoulos and Filiatrault (2006) and recent papers by Fujita et al.

(2010) and by Mazza and Vulcano (2007). Moreover, the concept of motion-based design is

introduced by Connor and Klink (1996).

2. Motivation, aims and scope of the paper

The review of existing literature suggests that there are many possible rheological models which

are or could be chosen to describe the properties of VE dampers. These models are usually chosen
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intuitively and the choice of the best model is not an obvious one. There is no comparison between

the results obtained for different models of dampers. In particular, the effect of VE dampers model

on the behaviour of a structure with dampers as a whole is not known. The dynamic characteristics

of structure (i.e., natural frequencies, non-dimensional damping ratios, modes of vibration, and

frequency response functions) depend on the properties of structure and dampers only while they do

not depend on earthquake. These quantities are general and appropriate for the analysis of influence

of VE damper models on the overall behaviour of structure. In particular, the non-dimensional

damping ratios measure the possibility of dissipation of energy introduced to structures by excitation

forces. However, this approach can be used only when structures is elastic. 

Of course it is also possible to compare the responses of structures with dampers given in time

domain. In this case, we can compare the responses of structures which behave in a nonlinear

manner but conclusions which can be drawn from such an analysis are restricted to the earthquakes

which are taken into account. The comparison of transient response of simple dynamic systems with

different damping models is presented in the paper by Barkanov et al. (2003). 

The aim of this paper is to compare the dynamic characteristics of structures with VE dampers

when the dampers are modelled by means of different models. A comparison in time domain is

beyond the scope of the present paper. A relatively large structure with VE dampers is considered in

order to make the results of comparison more representative. Planar frame structures, treated as

linear elastic systems, with the VE dampers mounted on the structures are considered. The simple

and generalized Kelvin and Maxwell models, the fractional-derivative Kelvin model, and the

complex modulus model are used as models of VE dampers. 

The outline of the paper is as follows. A description of the rheological models of VE dampers is

presented in Section 2. Moreover, formulae for dissipation energy are derived. In Section 3 the

equations of motion of the whole system (the structure with dampers) are derived using the finite

element method and they are written in terms of both physical and state-space variables. A solution

to the motion equations of a whole system in the frequency domain is derived and the dynamic

properties of the structure with VE dampers are determined. The frequencies of vibration, the non-

dimensional damping ratios together with the corresponding eigenvectors are determined as a

solution to the appropriately defined eigenvalue problem. The frequency response functions are also

determined. In Section 4 a comparison of the effect of damper models on the dynamic properties of

structures with VE dampers is made on the basis of results of numerical calculation obtained for a

representative frame with VE dampers. Section 5 contains concluding remarks concerning the

influence of the damper model on the dynamic characteristics of the structure with VE dampers and

suggestions concerning the number of elements of generalized rheological models. Some useful

formulae are given in appendices.

3. Description of models of dampers

3.1 Equation of motion of the generalized rheological models

The frequency dependence of the properties of VE dampers can be captured using generalized

rheological models. First of all, the generalized Kelvin model and the generalized Maxwell model

are considered. The generalized Kelvin model is built from the spring and a set of the Kelvin

elements connected in series (see Fig. 1). The serially connected spring and dashpot will be referred
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to as the Kelvin element. The generalized Maxwell model is built from the spring and a set of the

Maxwell elements connected in parallel (see Fig. 2). The Maxwell element is the classical Maxwell

rheological model, i.e., the spring and dashpot connected in series. The number of the Kelvin and

the Maxwell elements is denoted by m.

Using the concept of internal variables, the dynamic behaviour of the Kelvin damper can be

described by means of the following equations

(1)

(2)

(3)

where  is the force in the i-th element of the model ( ), ki and ci are the spring

stiffness and the damping factor of the dashpot of the i-th element of model, respectively, and

symbols  and  denote the external nodes displacements given in the local coordinate

system (compare Fig. 1). Moreover, the dot denotes differentiation with respect to time t and the

symbol  denotes the internal variable ( ). 

After introducing the vector of external reactions  (see

Fig. 1) and utilizing the equilibrium conditions of the external nodes: , ,

 and  we can write the following matrix equation

u0 t( ) k0 q̃w 1, t( ) q̃1 t( )–( )=

ui t( ) ki q̃w i 1+, t( ) q̃w i, t( )–( ) ci q̃
·
w i 1+, t( ) q̃

·
w m, t( )–( )+=

um t( ) km q̃3 t( ) q̃w m,–( ) cm q̃
·
3 t( ) q̃

·
w m,–( )+=

ui t( ) i 0 1 … m, , ,=

q̃1 t( ) q̃3 t( )

q̃w i, t( ) i 1 … m, ,=

R̃z t( ) col R̃1 t( )  R̃2 t( )  R̃3 t( )  R̃4 t( ), , ,( )=

R̃1 t( ) u0 t( )–= R̃2 t( ) 0=

R̃1 t( ) um t( )= R̃4 t( ) 0=

Fig. 1 Scheme of the generalized Kelvin model

Fig. 2 Scheme of the generalized Maxwell model
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(4)

where , .

Moreover, the equilibrium conditions of the internal nodes i.e.,  for 

lead to the following matrix equation

(6)

where , . 

The VE damper Kelvin model equation written in the local coordinate system can be finally

presented in the form

(7)

where 

(8)

In this paper, the unusual transformation of nodal parameters to the global coordinate system is

used. The displacements of the damper external nodes are transformed as usually but the internal

variables of damper are still defined in the local coordinate system. It means that the transformation

matrix is

(9)

where 

(10)

, , α is the angle between the global and local coordinate system and I is the

 identity matrix. 

The generalized Kelvin model, which is a set of elements connected together by hinges, is a

geometrically movable system. The stiffness matrix of such a model system written in the global

coordinate system and using the usual transformation matrix is singular and the global stiffness

matrix of a structure with dampers is also singular. The above-mentioned unusual transformation

guarantees that the global matrix of the system is not singular.

After transformation of Eq. (7) to the global coordinate system we obtain

(11)

where , 

, , are the vector of nodal reactions

and the vector of nodal parameters, respectively in the global coordinate system. The explicit forms

of matrices  and  are given in Appendix A.

The dynamic behaviour of the Maxwell damper could be described in a similar way. In terms of

R̃z t( ) K̃zzq̃z t( ) K̃zwq̃w t( ) C̃zzq̃
·
z t( ) C̃zwq̃

·
w t( )+ + +=

q̃z t( ) col q̃1 t( )  q̃2 t( )  q̃3 t( )  q̃4 t( ),,,( )= q̃w t( ) col q̃w 1, t( ) … q̃w m, t( ), ,( )=

ui 1– t( ) u1 t( )– 0= i 1 … m, ,=

K̃wzq̃z t( ) K̃wwq̃w t( ) C̃wzq̃
·
z t( ) C̃wwq̃

·
w t( )+ + + 0=

K̃wz K̃zw
T

= C̃wz C̃zw
T

=

R̃d t( ) K̃dq̃d t( ) C̃dq̃
·
d t( )+=

R̃d t( ) col R̃z t( ) 0,( )  q̃d t( ), col q̃z t( ) q̃w t( ),( )= =

K̃d
K̃zz K̃zw

K̃wz K̃ww

  C̃d, C̃zz C̃zw

C̃wz C̃ww

= =

Td
T̃d 0

0 I

=

T̃d
T̃ 0

0 T̃

 T̃, c s

s– c
= =

c cosα= s sinα=

m m×( )

Rd t( ) Kdqd t( ) Cdq
·
d t( )+=

Rd t( ) col Rz t( ) 0,( ) Td

T
R̃dTd  Rz t( ), col R1 t( )  R2 t( )  R3 t( )  R4 t( ), , ,( )= = = qd t( ) col qz t( )  ,(=

qw t( ) q̃w t( )) Td

T
q̃Td= = qz t( ) col q1 t( )  q2 t( )  q3 t( )  q4 t( ), , ,( )=

Kd Cd
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nodal displacements and internal variables, as defined in Fig. 2, the following equations could be

written

(12)

for the spring element and for the i-th Maxwell element ( ). The symbols , 

and  denote the force in the spring element, the force in the spring of the i-th Maxwell

element, and the force in the dashpot of the i-th Maxwell element, respectively.

The nodal reactions in the local coordinate system are 

(13)

After introducing relationships (12) into Eq. (13) we obtain again the matrix Eq. (4). In the global

coordinate system, Eq. (11) is also valid with the matrices  and  given in Appendix B.

Many particular rheological models existing in the literature can be obtained by varying the

number of elements in the generalized models mentioned above. 

3.2 Equation of motion of the simple rheological models, the fractional-derivative Kelvin

model, and the complex modulus model

The simple Kelvin and Maxwell models, which contain only one Kelvin or Maxwell element,

respectively, are not particular instances of the discussed generalized models because the spring

element with stiffness k0 is not present. The simple Kelvin model and the simple Maxwell model

are shown in Fig. 3. 

The matrix Eqs. (7) and (11) are equations of simple models treated as the finite elements. The

matrices  and  are given in Appendix C.

The fractional-derivative Kelvin model is shown in Fig. 4. The equation of motion of the model

can be written in the following form

(14)

where the symbol  denotes the Riemann-Liouville fractional-derivative of the order α

( ) with respect to time, t. For additional information concerning the Riemann-Liouville

fractional-derivative, Podlubny (1999) may be consulted.

The matrix equation of the fractional-derivative Kelvin damper written in the local coordinate

system could be written in the form

(15)

u0 t( ) k0 q̃3 t( ) q̃1 t( )–( )  uis t( ), ki q̃w i, t( ) q̃1 t( )–( ), uid t( ) ci q̃
·
3 t( ) q̃

·
w i, t( )–( )= = =

i 1 … m, ,= u0 t( ) uis t( )
uid t( )

R̃1 t( ) u0 t( )– uis t( )  R̃2 t( ),
i 1=

m

∑– 0  R̃3 t( ), u0 t( ) uid t( ), R̃4 t( )
i 1=

m

∑+ 0= = = =

Kd Cd

Kd Cd

u t( ) k1 q̃3 t( ) q̃1 t( )–( ) c1Dt

α

q̃3 t( ) q̃1 t( )–( )+=

Dt

α •( )
0 α 1≤<

R̃d t( ) K̃dq̃d t( ) C̃dDt

α

q̃d t( )+=

Fig. 3 Scheme of (a) the simple Kelvin model and (b) the simple Maxwell
model 

Fig. 4 Scheme of the fractional
derivative Kelvin model
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In the global coordinate system we can write the following equation

(16)

where, again, matrices  and  are given in Appendix C.

The equation of motion of dampers modelled using the complex modulus model is

(17)

where K is now the damper dynamic stiffness.

For the damper executing the harmonic motion, i.e., when , ,

 the following equation could be written

(18)

in the frequency domain. Above  is the imaginary unit,  and  are the storage

modulus and the loss modulus, respectively.

The finite element equations of this model written in the frequency domain and in the local and

global coordinate systems are

(19)

respectively, where matrices   are given in Appendix C. In Eq. (19) the symbols

, , 

 and  denote the vector of

complex amplitudes of reaction and nodal displacements in the local and global coordinate systems,

respectively.

The above-mentioned storage and loss modulus are important characteristics of VE dampers. For

all of the considered models of dampers the appropriate formulae are collected in Appendix D. 

3.3 Energy dissipated in the harmonically excited damper

The energy dissipated by the damper is an important characteristic of the VE damper. Usually the

energy dissipated by a damper making harmonic motions is used as a measure of this property. To

determine such energy, for the generalized Kelvin damper, it is assumed that the left external node

of damper is fixed while the right node is harmonically excited, i.e.

(20)

where λ is the excitation frequency, symbols a3 and b3 denote the known amplitudes of harmonic

excitation. In this subsection, the equation of motion in the local coordinate system is used but

waves over the symbols are omitted to simplify the notation.

In the considered case, the dynamic behaviour of damper is described by

(21)

where .

The damper steady state motion is harmonic, i.e.

(22)

where  and  are the unknown vectors which could be

Rd t( ) Kdqd t( ) CdDt

α

qd t( )+=

Kd Cd

u t( ) K q̃3 t( ) q̃1 t( )–( )=

u t( ) u0 exp iλt( )= q̃1 t( ) q̃10exp iλt( )=

q̃3 t( ) q̃30 exp iλt( )=

u0 K′ λ( ) iK″ λ( )+( ) q̃30 q̃10–( )=

i 1–= K′ λ( ) K″ λ( )

R̃d0 K̃′d λ( ) K̃ ″d λ( )+( )q̃d0  Rd0, K′d λ( ) K ″d λ( )+( )qd0= =

K′d λ( ) K″d t( )
R̃d0 t( ) col R̃10 t( )  R̃20 t( )  R̃30 t( )  R̃40 t( ), , ,( )( )= Rd0 t( ) col R10 t( )  R20 t( )  R30 t( )  R40 t( ), , ,( )= q̃d0 t( ) =

col q̃10 t( )  q̃20 t( )  q̃30 t( )  q̃40 t( ),,,( ) qd0 t( ) col q10 t( )  q20 t( )  q30 t( ) q40 t( ), , ,( )=

q1 t( ) q2 t( ) q4 t( ) 0  q3 t( ), a3 sin λt b3 cos λt+= = = =

Kwwqw t( ) Cwwq· w t( )+ fd t( )=

fd t( ) col k0q1 t( ) 0 … 0 kmq3, , t( ) cmq· 3 t( )+, ,( )=

qw t( ) a sin λt b cos+ λt=

a col aw 1, … aw m,, ,( )= b col bw 1, … bw m,, ,( )=
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determined from the following set of algebraic equations

(23)

where  and .

The energy dissipated by the damper can be calculated from the following formula

(24)

where  is the period of excitation,  is the vector of

forces in the Kelvin elements and  is the vector of

relative velocities of the Kelvin elements.

Taking into account relationships (1) - (3) and (22) and making the necessary integration the following

formula

(25)

is finally obtained, where , , 

The energy dissipated by the Maxwell damper can be obtained in a similar way. As previously, it

is assumed that the motion of the left and the right external nodes is described by relationship (20).

In this case, the motion of internal variables can be determined irrespective of each other. The

motion of the i-th Maxwell element is described by the equation

(26)

The damper steady state vibrations are also described by Eq. (22). After introducing Eq. (22) into

Eq. (26) the following result is obtained ( ) 

(27)

The dissipation energy is also calculated from relationship (24) from which the final formula (25)

is obtained but the definitions of vectors ∆a and ∆b are slightly different, i.e.

(28)

The energy dissipated by the simple Kelvin damper and by the simple Maxwell damper can be

calculated in a similar way. The final formulae are given in Appendix C.

Some explanation is needed for the fractional-derivative Kelvin model. In this case, ,

the relationships (20) are also valid and after introducing (20) into (14) and taking into account that

(compare Podlubny (1999))

(29)

From (24) it is obtained the following final result 

(30)

The energy dissipated by the damper, modeled using the complex modulus model is

(31)

Kwwa λCwwb– fs  λCwwa Kwwb+, fc= =

fs col 0 0 … 0 kma3 λcmb3–, , , ,( )= fs col 0 0 … 0 kmb3 λcma3+, , , ,( )=

Ed u
T

t( )x· t( ) td

0

T

∫=

T 2π λ⁄= u t( ) col u1 t( )  u2 t( ) … um t( ), ,,( )=

x· t( ) col q·w 2, t( ) q·w 1, t( ) … q· 3 t( ) q·w m, t( )–, ,–( )=

Ed πλ
2

a
T
Cd a∆∆ b

T
Cd b∆∆+( )=

Cd diag c1 … cm, ,( )= a∆ col aw 2, aw 1, … a3, aw m,–,–( )= b∆ c= ol

bw 2, bw 1, … b3 bw m,–, ,–( )

qw i, t( ) τiqw i, t( )+ q1 t( ) τiq
·
3 t( )+=

i 1 … m, ,=

aw i,

τiλ( )2a3 τiλb3–

1 τiλ( )2+
-------------------------------------  bw i,,

τiλ( )2b3 τiλa3+

1 τiλ( )2+
-------------------------------------= =

a∆ col a3 aw 1, … a3 aw m,–, ,–( )  b∆, col b3 bw 1, … b3 bw m,–, ,–( )= =

x t( ) q3 t( ) q1 t( )–=

Dt

α
 sin λt λ

α

 sin λt απ 2⁄+( )  Dt

α

 cos λt, λ
α

cos λt απ 2⁄+( )= =

Ed πλc ab

2
b3

2
+( )sin απ 2⁄( )=

Ed πK″ λ( )q
30

2=
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4. Determination of dynamic characteristic of structures with VE dampers

The considered frame structures with VE dampers are modeled using the finite element method.

The structure is treated as the linear system. The typical two node bar element with the sixth nodal

parameters is used to describe the structure. The mass and stiffness matrices together with the

vector of nodal forces of the element can be found in many books. The equation of motion of the

structure with VE dampers modeled using the generalized rheological models can be written in the

form

(32)

(33)

where symbols Mss, Css, , Cdd, Kss,  and Kdd denote the mass, damping and

stiffness matrices of the structure with dampers, respectively, written in the global coordinate

system. The dimension of matrices Mss,  and   is (n × n). Matrices

Mss,  and  describe the inertia, damping and elastic properties of the structure without

dampers, while the matrices ,  and the (n × r) matrices ,  represent

the effect of the coupling of dampers with the structure. The (r × r) matrices Cdd and Kdd describe

the damping and stiffness properties of dampers with braces, respectively. Moreover, qs(t), qd(t)  and

Ps(t) are the global vectors of nodal generalized displacements, internal variables and nodal excitation

forces, respectively. The concept of proportional damping is used to model the damping properties

of the structure, i.e.:  where α and κ are proportionality factors.

The equation of motion written in terms of state variables will also be useful. After introducing

the following state vector  and adding the equation

(34)

to a system of Eqs. (32) and (33) the following state equation could be written

(35)

where

(36)

Please note that the matrices A and B are symmetric and the matrix B is non-singular. 

The solution to the homogenous state equation, i.e., when , is assumed in the form

(37)

The linear eigenvalue problem

(38)

must be solved to determine the (2n + r) eigenvalues si and eigenvectors ai. In the case of an

undercritically damped structure the 2n eigenvalues (eigenvectors) are the complex and conjugate

numbers (vectors) while the remaining r eigenvalues (eigenvectors) are the real numbers (vectors).

The dynamic behavior of a frame with VE dampers is characterized by the natural frequencies ωi

Mssq
··
s t( ) Cssq

·
s t( ) Csdq

·
d t( ) Kssqs t( ) Ksdqd t( )+ + + + ps t( )=

Cdsq t( )·
Cddq

·
d t( ) Kdsqs t( ) Kddqd t( )+ + + 0=

Csd Cds

T
= Ksd Kds

T
=

Css Css

s( )
Css

d( )
+= Kss Kss

s( )
Kss

d( )
+=

Css

s( )
Kss

s( )

Css

d( )
Kss

d( )
Csd Cds

T
= Ksd Kds

T
=

Css

s( )
αMss κKss

s( )
+=

x t( ) col qs t( ) q· s t( ) qd t( ),,( )=

Mssq
·
s t( ) Mssq

·
s t( )– 0=

Ax· t( ) Bx t( )+ s t( )=

A

Css Mss Csd

Mss 0 0

Cds 0 Cdd

 B,
Kss 0 Ksd

0 Mss– 0

Kds 0 Kdd

 s t( ),
p t( )

0

0⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

= = =

s t( ) 0=

x t( ) a exp st( )=

sA B+( )a 0=
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and the non-dimensional damping parameters γi. The above-mentioned quantities are defined as 

(39)

where , . The formulae (39) refer to complex eigenvalues only. 

The third dynamic characteristic of the considered system are the frequency response functions.

To determine these functions the steady state harmonic responses of the system are considered. If

the excitation forces vary harmonically in time, i.e., when 

(40)

then the steady state response of the structure and the vector of state variables can be expressed as

(41)

After substituting relationships (40) and (41) into Eqs. (32) and (33), which can be rewritten in

the form

(42)

where 

(43)

the following relationship describes the matrix of the frequency response functions

(44)

If the structure with dampers modeled by the simple Maxwell model is considered, then all of the

relationships presented above in this section are valid provided that the matrices given in Appendix

C are used to generate the global matrices appearing in Eqs. (32) and (33).

The vector of internal variables  and the equation of motion (33) are not present in the case

of the structure with dampers modeled by the simple Kelvin model, and the motion Eq. (32) takes

the form

(45)

The matrices Cdd and Kdd appearing in (45) are built from the matrices Cd and Kd, respectively,

given by formulae (C.2). 

The state equation has the form of Eq. (35) where now 

(46)

Moreover, the matrix of frequency response functions is defined as 

(47)

In the case of structure with dampers modeled using the fractional-derivative Kelvin model the

equation of motion has the form (see paper by Lewandowski and Pawlak 2010)

(48)
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where symbols  and  are used in order to be consistent with the

notation. Here, it is assumed that for all dampers the values of parameter α are identical.

The state equation is

(49)

where 

(50)

The eigenvalue problem which must be solved to determine the eigenvalue s and the eigenvector

a is the nonlinear one and is in the following form

(51)

The above nonlinear eigenvalue problem can be solved using the continuation method described

by Lewandowski and Pawlak (2010) and the relationships (39) are used to determine the natural

frequencies and non-dimensional damping ratios.

After applying the Laplace transformation on Eq. (48) and assuming zero initial conditions and

, we obtain the following eigenvalue problem, alternative to (51)

(52)

The matrix of frequency response functions is defined as

(53)

The equation of motion of structure with VE dampers modeled using the complex modulus model

can be written in the form

(54)

where  is the global, complex stiffness matrix of dampers. 

Assuming that  and  we obtain, from Eq. (54), the following nonlinear

eigenvalues problem

(55)

where the global matrices  and  are built from the matrices  and 

defined in Appendix C and ω is the natural frequency of vibration calculated using eigenvalue 

and Eq. (39.1). 

The iterative procedure was used to solve the eigenvalue problem (55). At the beginning of the

iteration process the matrices  and  are calculated for ω = 0 and the resulting

linear eigenvalue problem is solved. Next, for the chosen eigenvalues  and the corresponding ωi,

the matrices  and  are recalculated and the next linear eigenvalue problem is

solved. The iteration process is considered to have converged when

(56)

where  and  are the current and previous values of natural frequency and

damping ratio of interest, respectively, and ε is the convergence tolerance.
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In this case, the matrix of frequency response functions is defined by

(57)

One important remark can be made concerning the equivalency of the fractional-derivative Kelvin

model and the complex modulus model of damper. If Css = 0 and assuming that all dampers have

identical properties and the storage and loss modulus of the fractional-derivative Kelvin model and

the complex modulus model are also identical then, taking into account relationships (C.2), (C.9)

and (D.6), we can write

(58)

Since , we can conclude that Eqs. (52) and (55) will be identical if

. This, however, is not true which means that eigenvalue problems (52) and (55) have

different solutions and the considered models of dampers are not identical. 

5. Comparison of dynamic characteristics of structure with VE dampers modelled

using different rheological models

5.1 Description of a representative structure

An eight-storey RC frame with three bays and with insufficiently stiff beams is selected for

comparison of the influence of the different models of VE dampers on the dynamic characteristics

of a structure with dampers. The frame is designed according to the EC8 Part 1 for class B soils.

The height of the columns is 3.0 m, the span of the beams is 5.0 m and Young’s modulus for

concrete is 31.0 GPa. The dimensions of the cross-section of the structural elements are presented in

Table 1 while the unit masses of the frame elements are given in Table 2. The data of the structure

H λ( ) Kss K′dd λ( ) iK″dd λ( ) λ
2
Mss–+ +[ ]
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=

K′dd ω( ) Kss Cddω
α

 cos απ 2⁄( )   K″dd ω( ),+ Cddω
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i
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cos απ 2⁄( ) i sin απ 2⁄( )+=

s
α

ω
α

=

Table 1 Dimensions of the eight-storey frame elements

Storey level Lateral column
[cm]

Central column
[cm]

Beams
[cm]

7, 8 35×35 40×40 30×40

5, 6 40×40 45×45 30×45

3, 4 45×45 53×53 30×50

1, 2 50×50 60×60 30×50

Table 2 Unit mass of the eight-storey frame elements

Storey level Unit lateral column 
mass

[kg/m]

Unit central column 
mass

[kg/m]

Unit beam mass
[kg/m]

7, 8 306.2 400.0 15000.0

5, 6 400.0 506.2 15000.0

3, 4 506.2 702.2 15000.0

1, 2 625.0 900.0 15000.0
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(except the data concerning the mass per unit length of elements) are taken from the paper by

Ribakov and Agranovich (2010).

Table 3 shows the natural frequencies of vibration of the frame without dampers. The dynamic

properties of the structure are obtained by two-dimensional analysis of the frame; axial deformations

and internal damping of structure are neglected. 

5.2 Parameters of VE damper models

The dampers are attached on the sixth and seventh floors of the structure. Such location of the

dampers is chosen because, in this position, the maximal peak value of the bending moments in the

lowest columns is minimal when the structure is subjected to forces produced by the El Centro

earthquake. The dampers’ location is determined as follows: The equation of motion of structure

with one damper connected at the first floor is solved using the Newmark method and the maximal

peak value of the bending moments is determined. The calculation is repeated for all the possible

positions of the dampers. The position which corresponds to the minimal value of the above-

mentioned maximal peak value of the bending moments in the columns is chosen as the optimal

one. When the position of the first damper is fixed, the same procedure is used to determine the

position of the second damper. Of course, the optimal positions of the dampers obtained for one

earthquake are not necessarily optimal for other earthquakes. However, optimization of dampers’

positions is beyond the scope of our paper. On the other hand, the dampers’ positions chosen in this

paper are, in some degree, similar to those determined by Agranovich and Ribakov (2010) who

found that, on the considered frame, dampers must be connected at the 5th, 6th and 7th floors. 

The dampers are modeled using the following rheological models: i) the complex modulus model,

ii) the fractional-derivative Kelvin model; iii) the simple Kelvin model; iv) the simple Maxwell

model; v) the generalized Kelvin model with three, five, and seven parameters, and vi) the

generalized Maxwell model also with three, five, and seven parameters.

In this paper we do not adopt data from the real experiment. Instead, the storage and loss modulus

are calculated from the formulae (D6), which means that the fractional-derivative Kelvin model can

be considered as being exact. The chosen parameters of the fractional-derivative Kelvin model are:

,  and .

The parameters of the generalized Kelvin model and the generalized Maxwell model, both with

seven parameters, are given in Table 4. In Fig. 5 the loss modulus, and the dissipation energy of the

above-mentioned models are compared. The dissipation energy is calculated assuming that the

amplitude of vibration of damper is equal to 0.01 m in all of the considered cases. From these

figures it can be concluded that the loss modulus and the dissipation energy of the fractional-

derivative Kelvin model, the complex modulus model, and both generalized models are almost

identical in the considered range of excitation frequency, i.e., in the range 0-15.0 rad/sec. This range

of frequency covers the range of the first three natural frequencies of vibration of the considered

structure.

α 0.63= k 0.8 10
6× N m⁄= c 7.2 10

6× N sec
α

m⁄=

Table 3 Natural frequencies of frame without dampers

Natural frequencies [rad/sec]

3.1311 8.6582 15.4268 23.7804 31.2647 40.1148

42.1251 51.1550 52.3598 57.6067 65.6532 69.9862
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The values of three and five parameters of the generalized Kelvin and Maxwell models are also

given in Table 4. For three-parameter models the k0, k1 and c1 values are used while k0, k1, k2, c1
and c2 are the values of the five-parameter models. The comparison of energy dissipated in dampers

modeled by the above-mentioned three-parameters models and the fractional-derivative model are

shown in Fig. 6. We see that the accuracy of approximation of dissipated energy increases with the

Table 4 Parameters of generalized Kelvin and Maxwell models

Stiffness (×106) [Ν/m] Damping factor (×106) [Ν/m]

Kelvin model Maxwell model Kelvin model Maxwell model

k0 115.300 0.213  –  – 

k1 36.710 66.770 c1 5.458 2.957

k2 12.320 6.621 c2 12.380 3.463

k3 1.109 2.886 c3 17.350 16.610

Fig. 5 Comparison of loss modulus Fig. 6 Comparison of dissipation energy

Fig. 7 Comparison of dissipation energy for three-
parameter models

Fig. 8 Comparison of loss modulus for simple models
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number of parameters of generalized models.

The parameters of the simple Kelvin model are: , 

and the values of parameters of the simple Maxwell model are:  and

. These parameters are calculated by minimizing the mean square norm of

difference between the target modules and the analytical modules of the respective model. Comparison

between the obtained loss module and the target ones is shown in Fig. 7. Moreover, the dissipation

energy of simple models and the dissipation energy of the fractional-derivative model are compared in

Fig. 8. As expected, the differences are significant, especially for the simple Maxwell model.

Chevron-braces connect the dampers with the structure. The braces are made of HEB 200 stainless steel

profiles of which the parameters are:  and .

5.3 Comparison of dynamic characteristics of considered frame

Results of the solution to the eigenvalue problems are presented in Tables 5-10. The real and the

complex conjugate numbers are obtained as eigenvalues. In Tables 5 and 6 the values of the first

three complex conjugate eigenvalues are given for all of the considered models. Results concerning

the fractional-derivative Kelvin model and the complex modulus model are given in Table 5.

k 1.49275 10
7× N m⁄= c 0.268839 10

7
N m⁄×=

k 3.80783 10
7× N m⁄=

c 0.677338 10
7× N m⁄=

EA 1.60105 10
9
N×= EJ 1.1685 10

7× Nm
2

=

Fig. 9 Comparison of dissipation energy for simple models

Table 5First three complex conjugate eigenvalues for a frame with dampers modeled using the fractional
derivative Kelvin model and the complex modulus model

Fractional derivative Kelvin model of damper

1st eigenvalue 2nd eigenvalue 3rd eigenvalue

- 0.065729 ± i 3.20576 - 0.85650 ± i 9.46271 - 0.492826 ± i 15.6919

Complex modulus model of damper

1st eigenvalue 2nd eigenvalue 3rd eigenvalue

3.20630 ± i 0.064877 9.49174 ± i 0.808670 15.6958 ± i 0.482061
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Table 6 First three complex conjugate eigenvalues for frame with dampers

Kelvin model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

-0.06490 ± i 3.20697 -0.05740 ± i 3.23237 -0.02938 ± i 3.2751 -0.03789 ± i 3.22543

-0.86607 ± i 9.45473 -0.83770 ± i 9.67058 -0.66116 ± i 10.010 -0.89249 ± i 9.35764

-0.49557 ± i 15.7308 -0.45514 ± i 15.8313 -0.35155 ± i 15.964 -0.67370 ± i 15.6689

Maxwell model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

-0.06429 ± i 3.2066 -0.07035 ± i 3.192 -0.06537 ± i 3.1553 -0.08317 ± i 3.2176

-0.84920 ± i 9.5529 -0.89831 ± i 9.462 -0.97980 ± i 9.2092 -0.46152 ± i 9.7251

-.40766 ± i 15.774 -0.42859 ± i 15.74 -0.47366 ± i 15.660 -0.15489 ± i 15.701

Table 7 Real eigenvalues for frame with dampers 

Kelvin model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

- 0.366069 - - - 93.46470

- 0.378653 - - - 120.536

- 2.55708 - 2.12886 - - 30098.8

- 2.71947 - 2.27026 - - 30104.3

- 21.2562 - 18.7723 - 15.4856 - 

- 25.6171 - 22.7386 - 17.4200 - 

Maxwell model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

- 0.161840 - - - 3.09734

- 0.166646 - - - 3.67824

- 1.64402 - 1.62449 - - 

- 1.74088 - 1.73319 - - 

- 12.7486 - 12.5245 - 11.8525 - 

- 14.3179 - 14.1509 - 13.6682 - 

Table 8 The natural frequencies and non-dimensional damping ratios of frame with dampers – the fractional
derivative model and the and complex modulus model

Natural frequencies [rad/sec] Non-dimensional damping ratios

Fractional
Kelvin model

Complex modulus 
model of damper

Fractional
Kelvin model

Complex modulus 
model of damper

3.20644 3.20695 0.020499 0.020230 

9.50139 9.52612 0.0901444 0.0848897 

15.69960 15.70320 0.031391 0.0306982 
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Because the solution to the equation of motion (54) is taken in the form , the real

or imaginary parts of  must be compared with the imaginary or real part of eigenvalue s of the

eigenvalue problem (51), respectively. Results show small differences of which the source is

explained at the end of Section 3. The maximal differences reach 5.6% and 0.3% for the real and

imaginary parts of s, respectively.

In Table 6 the first three complex eigenvalues are presented when the classical rheological models

of dampers are used. The model with two parameters refers to the simple Kelvin or Maxwell model.

After comparing the results obtained for the Kelvin and Maxwell models with seven parameters

with the results obtained for the fractional derivative Kelvin model, they are observed to be in good

or satisfactory agreement. The maximal differences are 1.3% and 0.25% for the real and imaginary

part of the Kelvin model with seven parameters, respectively. For the Maxwell model with seven

parameters these differences are 17.3% and 0.95%, respectively. Similar differences are observed

when we compare results obtained for the Kelvin or Maxwell model with seven parameters and the

results obtained for the complex modulus model.

For the simple Kelvin model discussed, maximal differences are 42.0% and 1.1%, respectively.

qs t( ) a exp ist( )=

s

Table 9 The natural frequencies of frame with dampers

Natural
frequency

Kelvin model of damper with

7 parameters
[rad/sec]

5 parameters
[rad/sec]

3 parameters
[rad/sec]

2 parameters
[rad/sec]

ω1 3.20762 3.23288 3.27528 3.22565

ω2 9.49431 9.70680 10.0314 9.40010

ω3 15.7386 15.8378 15.9674 15.6834

Natural
frequency

Maxwell model of damper with

7 parameters
[rad/sec]

5 parameters
[rad/sec]

3 parameters
[rad/sec]

2 parameters
[rad/sec]

ω1 3.20729 3.19275 3.15601 3.21865

ω2 9.59056 9.50468 9.26113 9.73603

ω3 15.7789 15.7483 15.6673 15.7020

Table 10 Non-dimensional damping ratios of frame with dampers

Damping 
ratio

Kelvin model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

γ1 0.0202338 0.0177562 0.0089706 0.0117468

γ2 0.0912198 0.0863001 0.0659092 0.0949451

γ3 0.0314874 0.0287375 0.0220165 0.0429562

Damping 
ratio

Maxwell model of damper with

7 parameters 5 parameters 3 parameters 2 parameters

γ1 0.020046 0.022035 0.020712 0.025839

γ2 0.088543 0.094512 0.105796 0.047404

γ3 0.025836 0.027215 0.030232 0.009864
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Moreover, when dampers are modeled using the simple Maxwell model, the above mentioned

differences are 68.0% and 2.8% and they are greater than for the simple Kelvin model.

Real eigenvalues are also solutions to the eigenvalue problems when dampers are modeled by the

classical rheological models. In the case of the generalized Kelvin and Maxwell models the real

eigenvalues reflect the dynamics of internal variables and the number of real eigenvalues is equal to

the number of internal variables. Comparing the values of real eigenvalues obtained for both

discussed models we see that these values are of the same order but the differences between them

are significant. It can be observed that by increasing the number of parameters in the generalized

Kelvin or Maxwell model we obtain values which show some convergence trend. If the simple

Maxwell model is used to damper modeling then we also obtain the real eigenvalues of which the

number is equal to the number of internal variables and which also reflect the dynamics of internal

variables.

The real eigenvalues of the eigenvalue problem obtained for the frame with dampers modeled by

the simple Kelvin model, which has no internal variables, indicate that two modes of vibration are

overdamped. It is the qualitative difference in comparison with the results obtained for other models

of dampers. The existence of the discussed real eigenvalues depends on the values of the parameters

of the simple Kelvin model.

The first three obtained natural frequencies and non-dimensional damping ratios are presented in

Tables 8-10. In terms of these quantities, conclusions concerning differences between the obtained

results are similar. Natural frequencies and non-dimensional damping ratios obtained for the frame

with dampers modeled using the fractional-derivative Kelvin model and the complex modulus are

given in Table 8. Relative differences are not greater than 0.26% (natural frequencies) or 5.8%

(damping ratios) which means they are in good agreement. 

In Table 9 the natural frequencies are given for the frame when dampers are modeled using the

simple and generalized Kelvin and Maxwell models. In a similar way, in Table 10, the non-

dimensional damping ratios are presented. The most accurate results are for the seven-parameter

Kelvin and Maxwell models. Relative differences between results obtained for the discussed Kelvin

model and the fractional-derivative Kelvin model are not greater than 0.25% (natural frequencies)

and 1.2% (damping ratios). For the seven-parameter Maxwell model the discussed differences are

not greater than 1.0% (natural frequencies) and 16.8% (damping ratios). In conclusion we can say

that the first three natural frequencies and the non-dimensional damping ratios of the frame show

good or satisfactory agreement when VE dampers are modeled by the fractional-derivative model,

the complex modulus model or the seven-parameter Kelvin and Maxwell models. 

If the number of parameters of the generalized Kelvin model growth then the natural frequencies

slightly decrease and the non-dimensional damping ratios increase. Results for the generalized

Maxwell model show the opposite trends, i.e. natural frequencies slightly increase and the non-

dimensional damping ratios decrease with the number of model parameters.

The relative differences of natural frequencies are relatively small (not greater than 5.6%) for all

of the damper models compared. However, the relative differences of non-dimensional damping

ratios could be of the order of 42.0% and 68.0% for the simple Kelvin model and the simple

Maxwell model, respectively. Consequently, the simple rheological models do not accurately

describe the dissipation property of the frame with VE dampers. The three parameter Kelvin model

also cannot be recommended as the appropriate one because the discussed differences reach 56.0%.

If we accept the relative differences of the order 18.0% then the remaining classical rheological

model could be used to model VE dampers. The relatively large difference of γ3 (i.e. 17.7%) exists
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for the seven-parameter Maxwell model. 

Finally the frequency response functions for the structure with differently modeled VE dampers

are compared. Here the element  of the matrix frequency response function is interpreted as

the displacement of the i-th degree of freedom of the structure subjected to the unit harmonically

varying force at the j-th degree of freedom. The frequency response function  is

compared. The displacement number 36 is the horizontal displacement of the eight storeys. The

discussed frequency response function calculated for frame with dampers modeled by the fractional-

derivative model, the complex modulus model and the seven-parameter Kelvin model are almost

identical. The maximal peak differences in the resonances are of the order of 1.0% for all of the

considered resonance areas. These differences are of the order of 20.0% in the third resonance area

when results obtained for the seven-parameter Maxwell model are compared with those obtained for

the fractional-derivative Kelvin model. 

For the simple Maxwell and Kelvin models, the discussed differences are the greatest. In Fig. 10,

comparison of modulus of  obtained for the frame with dampers modeled using the

fractional-derivative Kelvin model (the thick line), the simple Kelvin model (the thin line with

crosses), and the simple Maxwell model (the thin line with rhombs) are shown. Important

differences between the compared frequency functions are visible.

6. Conlusions

Several models of dampers, used to describe the dynamic behaviour of frame structures with VE

dampers, are considered and compared in this paper. The fractional-derivative Kelvin model, the

complex modulus model and a family of rheological models, including the very often used simple

Kelvin and Maxwell models, are compared in full detail. The comparison is made in the frequency

domain for a carefully chosen frame structure with VE dampers. The formulae for the energy

dissipated in a damper modelled in different ways are derived. 

Several conclusions can be formulated on the basis of the results of numerical analysis presented

above. The most important ones are listed below.

1. Different models are able to correctly describe the dynamic behaviour of VE dampers. In

Hij λ( )

H36 36, λ( )

H36 36, λ( )

Fig. 10 Modulus of the frequency response function  for fractional derivative Kelvin model (thick
line), the simple Kelvin model (thin line with crosses), and for the simple Maxwell model (thin line
with rhombs)

H36 36, λ( )
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particular, the fractional-derivative Kelvin model, the complex modulus mode, and the seven-

parameter Kelvin model give us almost identical results. Results suggest that the generalized

Maxwell model could also be used if the number of model parameters is sufficient. This conclusion

is in agreement with the results presented by Singh and Chang (2009) where the generalized Kelvin

and Maxwell models are used as models of VE dampers.

2. The simple Kelvin and the simple Maxwell model are not able to correctly describe, in the

frequency domain, the dynamic behaviour of frames with VE dampers. In particular, relative

differences concerning the non-dimensional damping ratios are great. 

3. In the considered case, the differences between the results obtained for the generalized Maxwell

model are greater in comparison with the results obtained using the generalized Kelvin model if

both models have an identical number of parameters.

4. The needed number of parameters of the generalized Kelvin and Maxwell models and the

fractional-derivative model depends on the frequency range for which the storage and loss modulus

of VE dampers must be approximated. Smaller numbers of parameters are needed for the fractional-

derivative model.

5. The nonlinear eigenvalue problems must be solved when the complex modulus model or the

fractional-derivative model of VE dampers are chosen. The solution procedure for these problems is

more complicated than the solution procedure for the linear eigenvalue problems which are obtained

for the remaining models. 

6. There are some qualitative differences between the results obtained. For the frame with a fixed

number of VE dampers the total number of eigenvalues and eigenvectors depends on the chosen

model of dampers and the number of parameters of the models. Moreover, for the generalized

Kelvin and Maxwell models and the simple Maxwell model both the real and complex numbers are

eigenvalues while only the complex numbers are obtained (for sufficiently small damping) when the

remaining models are chosen.

7. The dissipative energy is a good measure of equivalence of different models of VE dampers.
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Appendix A. Finite element matrices of the generalized Kelvin model of VE damper

In this appendix the explicit form of the matrices used to describe the generalized Kelvin model

of the VE damper is given.

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

Kd
Kzz Kzw

Kwz Kww

 Cd, Czz Czw

Cwz Cww

= =

Kww

k0 k1+ k1……0– 0 0……0 0

k1– k1 k2…0+ 0 0……0 0

………… ………… ………… ………… …………
0 0…… ki 1–– ki 1– k1+ ki……0– 0

………… ………… ………… ………… …………
0 0………0 0 0… km 1–– km 1– km+

=

Cww

c1 c1……0– 0 0……0 0

c1– c1 c2…0+ 0 0……0 0

………… ………… ………… ………… …………
0 0… ci 1–– ci 1– ci+ ci…0– 0

………… ………… ………… ………… …………
0 0……0 0 0… cm 1–– cm 1– cm+

=

Kzz

c
2
k0 csk0 0 0

csk0 s
2
k0 0 0

0 0 c
2
km cskm

0 0 cskm s
2
km

 Czz,

0 0 0 0

0 0 0 0

0 0 c
2
cm cscm 

0 0 cscm cscm 

= =

Kzw Kwz

T

ck0– 0…0… 0

sk0– 0…0… 0

0 0…0… ckm–

0 0…0… skm–

 Czw, Cwz

T

0 0…0… 0

0 0…0… 0

0 0…0… ccm–

0 0…0… scm–

= = = =



Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models 135

Appendix B. Finite element matrices of the generalized Maxwell model of VE damper

In this appendix the explicit form of matrices used to describe the generalized Maxwell model of

the VE damper is given.

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

K
Kzz Kzw

Kwz Kww

 Cd, Czz Czw

Cwz Cww

= =

Kzw

k– 1 k2……– ki……– km–

0 0…… 0…… 0

0 0…… 0…… 0

0 0…… 0…… 0

Czw,

0 0…… 0…… 0

0 0…… 0…… 0

c1– c2…– ci…– cm–

0 0…… 0…… 0

= =

Kww diag k1 k2 …… km, , ,( )=     Cww, diag c1 c2 …… cm, , ,( )=

Kzz

c
2

k0 k1

i 1=

m

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

cs k0 ki

i 1=

m

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

c
2
k0– csk0–

cs k0 k1

i 1=

m

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

s
2

k0 ki

i 1=

m

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

csk0– s
2
k0–

c
2
k0– csk0– c

2
k0 csk0

csk0– s
2
k0– csk0 s

2
k0

=

Czz

0 0 0 0

0 0 0 0

0 0 c
2

ci

i 1=

m

∑ cs ci

i 1=

m

∑

0 0 cs ci

i 1=

m

∑ s
2

ci

i 1=

m

∑

 Czw, Czw

T

0 0…… 0…… 0

0 0…… 0…… 0

cc1– cc2…– cci…– ccm–

sc1– sc2…– sci…– scm–

= = =

Kzw Kzw
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ck1– ck2…– cki…– ckm–
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0 0…… 0…… 0

0 0…… 0…… 0
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Appendix C. Finite element matrices of the simple and fractional-derivative Kelvin

model, the simple Maxwell model and the complex modulus model of the VE damper

The explicit form of the vectors and matrices used to describe the simple and fractional-derivative

Kelvin model of VE damper is

(C.1)

(C.2)

The explicit form of the matrices used to describe the simple Maxwell model of VE damper is

(C.3)

(C.4)

(C.5)

(C.6)

The formulae for the energy dissipated in the damper modeled by the simple Kelvin model and

for the simple Maxwell models are

(C.7)

(C.8)

respectively.

The explicit form of matrices used to describe the complex modulus model of VE damper, in the

global coordinate systems is

qd t( ) qz t( ) col q1 t( )  q2 t( )  q3 t( )  q4 t( ),,,( )= =

Kd Kzz k1

c
2

cs c
2

– cs–

cs s
2

cs– s
2

–

c
2

– cs– c
2

cs

cs– s
2

– cs s
2

 Cd, Czz c1

c
2

cs c
2

– cs–

cs s
2

cs– s
2

–

c
2

– cs– c
2

cs

cs– s
2

– cs s
2

= = = =

qd t( ) col qz t( ) qw t( ),( ) qz t( ), col q1 t( ) q2 t( ) q3 t( ) q4 t( ),,,( ) qw t( ), col qw 1, t( )( )= = =

Kd
Kzz Kzw

Kwz Kww

Cd, Czz Czw

Cwz Cww

= =

Kzz k

c
2

cs 0 0

cs s
2

0 0

0 0 0 0

0 0 0 0

 Kzw, Kzw

T
k1

c–

s–

0

0

 Kww, k1[ ]= = = =

Czz c1

0 0 0 0

0 0 0 0

0 0 c
2

cs

0 0 cs s
2

 Czw, Czw

T
c1

0

0

c–

s–

 Cww, c1[ ]= = = =

Ed πλc1 a3

2
b3

2
+( )=

Ed

πc1λ

1 τ
2
λ
2

+
------------------ a3

2
b3

2
+( )=
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(C.9)

Appendix D. The formulae for the storage modulus and the loss modulus of differ-

ent models of VE damper 

The formulae for the storage modulus  and the loss modulus  of the considered

rheological models of VE damper are:

i) for the simple Kelvin model

(D.1)

ii) for the simple Maxwell model

(D.2)

iii) for the generalized Kelvin model

(D.3)

where

(D.4)

iv) for the generalized Maxwell model

(D.5)

v) and finally for the fractional-derivative Kelvin Model

(D.6)

K′d λ( ) K′ λ( )

c
2

cs c
2

– c– s

cs s
2

cs– s
2

–

c
2

– cs– c
2

cs

cs– s
2

– cs s
2

 K″
d λ( ), K″ λ( )

c
2

cs c
2

– cs–

cs s
2

cs– s
2

–

c
2

– cs– c
2

cs

cs– s
2

– cs s
2

= =

K′ λ( ) K″ λ( )

K′ λ( ) k  K″ λ( ), cλ= =

K′ λ( ) k
τ
2
λ
2

1 τ
2
λ
2

+
------------------  K″ λ( ), k

τλ

1 τ
2
λ
2

+
------------------= =

K′ λ( ) L′ λ( )

L′2 λ( ) L″2 λ( )+
-------------------------------------  K″ λ( ), L″ λ( )

L′2 λ( ) L″2 λ( )+
-------------------------------------= =

L′ λ( )
1

k0

---- 1

kr 1 τr
2
λ
2

+( )
---------------------------  L″ λ( ),

r 1=

m

∑+
τrλ

kr 1 τr
2
λ
2

+( )
---------------------------

r 1=

m

∑= =

K′ λ( ) k0 k1

τr
2
λ
2

1 τr
2
λ
2

+
------------------  K″ λ( ),

r 1=

m

∑+ kr

r 1=

m

∑
τrλ

1 τr
2
λ
2

+
------------------= =

K′ λ( ) k cλ
α

 cos απ 2⁄( )  K″ λ( ),+ cλ
α

 sin απ 2⁄( )= =
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