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1. Introduction 

 
Structural health monitoring (SHM) has been widely 

adopted as one of the safety management methods for civil 
infrastructures such as cable-stayed bridges (Sohn et al. 
2003). It aims to detect the structural problems by 
measuring structural responses including vibration, 
displacement, and environmental information; thus, several 
studies have been conducted to develop reliable sensing and 
data analysis techniques (Li et al. 2016). Data acquisition of 
structural responses is a crucial step in SHM. Therefore, 
vibration-, strain-, or displacement-based sensing 
techniques have been developed frequently. For example, 
various types of sensors, including fiber optic sensors 
(Ansari 2007), piezoelectric wafer active sensors (Mei et al. 
2019), wireless data acquisition systems (Straser et al. 
1998), and computer vision-based systems (Lee et al. 2017) 
have been studied, and they are sometimes complementally 
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applied to infrastructures as they have advantages and 
disadvantages. 

Meanwhile, the identification of structural damages 
from the measured sensor data has become a significant 
issue as well. Sohn et al. (2001) suggested an auto-
regressive-based pattern recognition in a statistical view, 
and Manson (2002) developed a feature-based damage 
detection technique using a principal component analysis 
that can identify damages by filtering temperature effects 
out. Arangio and Bontempi (2015) suggested an SHM 
model for cable-stayed bridges using Bayesian neural 
networks. Lee et al. (2018) suggested a probabilistic 
method to detect the unusual vertical deflection of railway 
bridges. Xin et al. (2018) used a combinatory method of a 
Kalman filter, an autoregressive integrated moving average 
model, and a generalized autoregressive conditional 
heteroskedasticity process to the SHM problem. Lee et al. 
(2019) proposed a method to integrate a finite element 
model with sensor data for detecting the structural problems 
using Bayesian inference. Bao et al. (2019) suggested a 
deep learning-based SHM method using computer vision 
sensor data. Lee et al. (2022) suggested a computer-vision 
sensing based probabilistic monitoring of time-history 
deflections of railway bridges, and Son et al. (2022) 
proposed a combinational identification method of three 
efficient techniques, including statistical analysis, 
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clustering, and neural network models to detect the 
damaged cable in a cable-stayed bridge. These studies 
aimed to develop new methods to identify structural 
damage from the measured sensor data to enhance the 
accuracy of SHM. 

Despite the rapid development of sensing and data 
analysis techniques, SHM occasionally suffers difficulty in 
damage detection owing to the functional degradation of 
devices and harsh environmental loads, which may result in 
measurement errors, missing data, or outliers (Posenato et 
al. 2010). This data quality problem may result in 
inaccurate assessments; thus, data filtering is important for 
a successful SHM. To overcome this issue, Kullaa (2011) 
suggested a framework to distinguish the effects of sensor 
faults, environmental loads, and structural damage. Yi et al. 
(2016) proposed a data transformation method for reducing 
the risk of false alarms and missed detections of a bridge 
deflection. Smarsly and Law (2014) studied a sensor fault 
detection problem for wireless SHM systems. Xu et al. 
(2019) suggested a methodology for diagnosing sensor 
faults based on the principle that the structural responses at 
symmetric locations should be similar. 

Substantial efforts have been made in research aimed at 
alleviating the effects of sensor faults. However, despite 
these developments, the effective integration of such 
advancements into practical SHM systems for civil 
structures poses challenges in the following aspects: (1) in 
large-scale civil structures, handling faults in multiple 
sensors becomes particularly challenging due to the 
extensive time and resources required to test every possible 
sensor combination with the conventional approach (Yi et 
al. 2017); (2) detection of multiple types of sensor 
anomalies verified through simulation and laboratory 
experiments may face difficulties in practical application 
due to differences with field monitoring (Kullaa 2013, 
Chang et al. 2017, Fu et al. 2019); and (3) the process of 
extracting features in deep learning-based anomaly 
detection framework that utilize raw time-series data from 
multi-channel sources can be computationally intensive 
(Bao et al. 2019, Oh et al. 2020, Ni et al. 2020). 

In this study, a deep learning-based classification 
method, to detect anomalies in data acquired from multiple 
sensors quickly and accurately, was proposed. The proposed 
method includes three distinct phases: (1) scaling of data 
acquired from multiple sensors; (2) time domain and 
frequency domain feature extraction and selection process; 
and (3) deep learning-based classification model training 

 
 

for multiple anomaly pattern detection. To evaluate the 
performance of the proposed method, we participated in the 
1st International Project Competition for Structural Health 
Monitoring (IPC-SHM; Bao et al. 2021) which gives the 
acceleration data from a real long-span highway bridge. In 
the competition, the proposed method achieved promising 
results in terms of quick and accurate anomaly detection, 
which highlights the potential of deep learning techniques 
in the field of anomaly detection. 

 
 

2. Proposed method for data anomaly detection 
 
This study aims to suggest a classification model that 

categorizes the sensor data according to the anomaly 
patterns, which may occur due to sensor faults or harsh 
environmental loads. The proposed method for constructing 
the classification model is depicted in Fig. 1. First, data 
scaling is conducted to adjust the scales of the raw data, 
which may have different magnitudes and ranges. The next 
step is the selection and extraction of informative variables 
(i.e., features) such as statistical properties to reduce the 
data complexity, and the extracted features are used as 
inputs for the classification model. In this study, the 
classification model is constructed as a deep neural network 
(DNN), which is capable of dealing with complex nonlinear 
problems. 

 
2.1 Data scaling 
 
To ensure a reliable data analysis, it is important to 

address the issue of different magnitudes, ranges, and units 
in data obtained from various sources, which can make 
model training difficult (Bakar et al. 2006). Therefore, data 
scaling is a crucial pre-processing step. In this study, 
standardization, which is one of the popular methods for 
data scaling, has been adopted. Standardization involves 
rescaling the data to have a zero mean and a unit variance, 
and is defined as 

 𝑑௜,௦௧௔௡ௗ௔௥ௗ௜௭௘ௗ = 𝑑௜ − 𝜇ௗ𝜎ௗ  (1)

 
where di and di,standardized are the ith data before and after 
standardization, respectively, and μd and σd are the mean 
and standard deviation of the given dataset, respectively. By 
using standardization as a data scaling method, we can 
 
 

 
Fig. 1 Overview of the proposed method
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ensure that the data is on the same scale, which facilitates 
the comparison of data across different sensors, and can 
improve the accuracy and reliability of the data analysis. 
This pre-processing step is crucial in our study to detect 
anomaly patterns in sensor data for structural health 
monitoring and could be beneficial in other fields where 
data from different sources need to be compared and 
analyzed. 

 
2.1 Feature selection and extraction for dimension 

reduction 
 
In the process of constructing a predictive model, let us 

consider the output variable (i.e., y) as a function of a set of 
input variables (i.e., t1, t2, t3), which can be expressed as 
follows 

 𝑦 = 2 ൈ 𝑡ଵ ൅ 𝑡ଶ − 0.4 ൈ 𝑡ଷ (2)
 
It is suggested that, although additional inputs t4 and t5 

are available, the accuracy of the model may be optimized 
by exclusively restricting the training data to t1, t2, and t3. 
This selective approach, known as feature selection (Khalid 
et al. 2014, Zebari et al. 2020), involves the strategically 
choosing variables that exhibit a direct and substantial 
correlation with the output variable. The rationale behind 
feature selection is its ability to reduce dataset complexity 
and decrease the dimensionality of the input space, thereby 
enhancing the predictive model’s effectiveness. In addition 
to feature selection, the introduction of a novel variable, 
denoted as tnew according to Eq. (3), contributes to a more 
precise characterization of the relationship between the 
input variables and the output. This process, referred to as 
feature extraction (Khalid et al. 2014, Zebari et al. 2020), 
involves constructing tnew such that the output y is twice the 
value of tnew. 

 𝑡௡௘௪ = 𝑡ଵ ൅ 0.5 ൈ 𝑡ଶ − 0.2 ൈ 𝑡ଷ (3)
 
The integration of both feature selection and extraction 

becomes essential in the data pre-processing phase. These 
techniques play a pivotal role in improving the predictive 
model’s accuracy. By carefully selecting the most relevant 
input variables and deriving new features that more 
accurately represent their relationship with the output, it is 
possible to significantly reduce data redundancy and ensure 
that only the most pertinent variables are included. This 
strategic application of feature selection and extraction is 
fundamental in developing an efficient predictive model 
that maintains a high degree of accuracy. 

In the field of civil infrastructure monitoring, such as a 
long-span cable-stayed bridge, the acceleration data 
collected may contain massive amounts of information. 
However, using raw data directly to train a model may 
increase computational costs without significantly 
improving the model accuracy. Even though many deep 
learning methods, such as a convolutional neural network, 
are known to cover the feature selection and extraction 
parts, those are crucial steps in identifying the latent 
variables that are most relevant to the output, especially 
when the given data is not sufficient. This study proposes 
selecting several features in both the time and frequency 

domains, which have been widely recognized as 
informative variables in previous research (Altın and Er 
2016). To calculate these features, equations listed in Tables 
1 and 2 are used on the ith raw sensor data xi. By conducting 
feature selection and extraction, the resulting model is more 
efficient, accurate, and enables effective detection of 
potential anomalies or problems in civil infrastructure. 

After conducting feature selection to identify the 
relevant variables for the output, the next crucial step is 
feature extraction. In many studies, a principal component 
analysis (PCA) has been adopted for this purpose (Abdi and 
Williams 2010). The PCA method uses a linear combination 
of the selected variables, such as tnew in Eq. (3), to generate 
principal components (PCs) that are designed to be 
orthogonal to one another (i.e., the inner product is zero). 
The informativeness of each PC is determined by the 
magnitude of the corresponding eigenvalue. By selecting 
the PCs with high eigenvalues, the dimensionality of the 
input data can be reduced, resulting in a more efficient and 
effective model. 

 
2.3 Construction of deep neural network for the 

classification problem 
 
Deep neural networks, which have been widely applied 

to various engineering problems owing to their capability to 
deal with complex nonlinear problems (Kung and 
Diamantaras 1990), have been adopted to solve the 
classification problem in this study. The DNN is a network 
with multiple hidden layers having multiple nodes, which 
are connected as depicted in Fig. 2. When N11, N12, and N13 
are the input nodes, the output node of the next layer (i.e., 
N21) can be calculated as N21 = fact(w0 + w1N11 + w2N12 + 
w3N13),  where fact is the activation function. The 
performance of the DNN depends on the proper design of 
the activation function, and the number of layers and nodes. 

Contrary to the regression problem where the final 
output values are continuous, the outputs for the 
classification problem are discrete. Therefore, the activation 
function, which connects the final hidden layer and the 
output layer, can be designed as the softmax function, 
σsoftmax 

 𝜎௦௢௙௧௠௔௫(𝑁௙௜ห𝑁௙ଵ, 𝑁௙ଶ, … , 𝑁௙(௞ିଵ), 𝑁௙௞) = 𝑒ே೑೔∑ 𝑒ே೑ೕ௞௝ୀଵ  (4)

 
 

Fig. 2 Calculation of the output node (i.e., N21) from the 
input nodes (i.e., N11, N12, N13) in DNN

 

95



 
Seungjun Lee, Jaebeom Lee, Minsun Kim, Sangmok Lee and Young-Joo Lee 

Table 1 Time domain features 

Feature: Equation: 

Mean 𝑇௠௘௔௡ = ቆ∑ 𝑥௜௡௜ୀଵ𝑛 ቇ 

Standard deviation 𝑇௦௧ௗ = ඨ∑ (𝑥௜ − 𝑇௠௘௔௡)௡௜ୀଵ ଶ𝑛 − 1  

Root mean square 𝑇௥௠௦ = ඨ∑ (𝑥௜)ଶ௡௜ୀଵ𝑛  

Square root of the amplitude 𝑇௦௥௔ = ൭∑ ඥ|𝑥௜|௡௜ୀଵ𝑛 ൱ଶ
 

Skewness 𝑇௦௞௘௪ = ∑ (𝑥௜ − 𝑇௠௘௔௡)ଷ௡௜ୀଵ(𝑛 − 1)𝑇௦௧ௗଷ  

Kurtosis 𝑇௞௨௥௧ = ∑ (𝑥௜ − 𝑇௠௘௔௡)ସ௡௜ୀଵ(𝑛 − 1)𝑇௦௧ௗସ  

Shape factor 𝑇௦௙ = 𝑇௥௠௦(ଵ௡) ∑ |𝑥௜|௡௜ୀଵ  

Crest factor 𝑇௖௙ = 𝑚𝑎𝑥|𝑥௜|𝑇௥௠௦  

Impulse factor 𝑇௜௙ = 𝑚𝑎𝑥( |𝑥௜|)ቀଵ௡ቁ ∑ |𝑥௜|௡௜ୀଵ  

Clearance factor 𝑇௖௟௙ = 𝑚𝑎𝑥|𝑥௜|𝑇௦௥௔  

Skewness factor 𝑇௦௞௙ = 𝑇௦௞𝑇௥௠௦ଷ  

Kurtosis factor 𝑇௞௨௙ = 𝑇௦௞𝑇௥௠௦ସ  
 

 
 

where Nfi is the ith node in the final hidden layer, which has 
k-number of nodes. The resultant value is between zero and 
one, which can be regarded as the likelihood, therefore, the 
output node with the highest likelihood can be selected as 
the classification result. 

 
 

3. Application example 
 
3.1 Problem description 
 
The acceleration data from the Su-Tong Yangtze River 

Highway Bridge (SYRHB) from January 1 to January 31, 
2012, were used for this example, provided by the 1st 
International Project Competition for Structural Health 
Monitoring (IPC-SHM; Bao et al. 2021). The bridge has 
two side spans of 300 m each, a main span of 1088 m, and 
two 306 m-high towers. The dataset contains one month of 
acceleration data obtained from 38 sensors attached to the 
long-span cable-stayed bridge in China, with a sampling 
frequency of 20 Hz, as shown in Fig. 3. The raw time series 
measurements are divided into 1-hour intervals, resulting in 
744 time series measurements for each sensor over one 
month, for a total of 744 × 38 datasets. The dataset has 
seven anomaly patterns, including Normal, Missing, Minor, 

Table 2 Frequency domain features 

Feature: Equation: 

Mean frequency 𝐹௠௙ = ∑ 𝑝௜௞௜ୀଵ𝑘  

Frequency center 𝐹௙௖ = ∑ 𝑓௜ ⋅ 𝑝௜௞௜ୀଵ∑ 𝑝௜௞௜ୀଵ  

Root mean square 
frequency 𝐹௥௠௦௙ = ඨ∑ 𝑓௜ଶ ⋅ 𝑝௜௞௜ୀଵ∑ 𝑝௜௞௜ୀଵ  

Power spectrum 
standard deviation 𝐹௦௧ௗ௙ = ඨ∑ (𝑓௜ − 𝐹௙௖)ଶ ⋅ 𝑝௜௞௜ୀଵ ∑ 𝑝௜௞௜ୀଵ  

Stabilization factor #1 
of wave shape 𝐹௦௙ଵ = ඨ∑ 𝑓௜ସ௞௜ୀଵ ⋅ 𝑝௜∑ 𝑓௜ଶ௞௜ୀଵ ⋅ 𝑝௜ 

Stabilization factor #2 
of wave shape 

𝐹௦௙ଶ = ∑ 𝑓௜ଶ௞௜ୀଵ ⋅ 𝑝௜ට∑ 𝑝௜௞௜ୀଵ ∑ 𝑓௜ସ௞௜ୀଵ ⋅ 𝑝௜ 
Frequency domain 

skewness 𝐹௦௞௙ = ∑ (𝑓௜ − 𝐹௙௖)ଷ ⋅ 𝑝௜௞௜ୀଵ 𝜎ଷ ⋅ 𝑘  

Frequency domain 
kurtosis 𝐹௞௨௙ = ∑ (𝑓௜ − 𝐹௙௖)ସ ⋅ 𝑝௜௞௜ୀଵ 𝜎ସ ⋅ 𝑘  

Frequency domain 
Coefficient of variation

𝐹௙௖௩ = 𝜎𝐹௙௖ 

Root mean square ratio 𝐹௥௠௦௥ = ∑ ඥ(𝑓௜ − 𝐹௙௖) ⋅ 𝑝௜௞௜ୀଵ √𝜎 ⋅ 𝑘  

* pi is the power spectrum density; k is the number of spectrum 
lines; fi is the frequency value of the ith spectrum line;  𝜎 =ට∑ (fi-Ffc)2⋅pi

k
i=1 k⁄  (Fleming and Egeseli 1980). 

 
 

Outlier, Square, Trend, and Drift, as listed in Table 3. Time 
domain and frequency domain examples of each data 
pattern are depicted in Fig. 4. As shown in Table 3, 48.02% 
of the dataset is classified as Normal patterns; however, 
more than half show signs of anomalies, with the Trend 
pattern being the most prominent at 20.44%. The Missing 
and Square anomalies are also notable, each accounting for 
approximately 10% of the dataset. In contrast, Outlier and 
Drift patterns are less frequent, at 1.9% and 2.4% 
respectively, indicating an imbalance in the distribution of 
labelled datasets. These anomaly patterns may result from 
environmental variations or sensor faults, which can hinder 
reliable warnings for structural damage or accidents. Thus, 
identifying and removing data with unexpected anomalies 
are crucial for structural condition monitoring. 

 
3.2 Classifier model construction 
 
To address this problem, the proposed method (Fig. 1) 

was applied to construct the classification model for the 
seven anomaly patterns in the given dataset of the target 
bridge. At first, 12 features in the time domain and 10 
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features in the frequency-domain (as listed in Tables 1 and 
2) were derived from the standardized sensor data. PCA was 
conducted for the time- and frequency-domains, 
respectively, to find the informative coordinates for each 
domain. In the time domain, the linear combinations of the 
features and corresponding eigenvalues were estimated as 
shown in Fig. 5(a). Because the percent variability of PCt1 
to PCt6 accounts for 96.06%, these six PCs were extracted, 
which resulted in the dimension reduction from 12- to 6-
dimensional spaces. In the frequency domain, the top three 
PCs (i.e., PCf1 to PCf3) were extracted as the new input 
features because they accounted for 93.44% of the percent 
variability, as depicted in Fig. 5(b). Therefore, a total of 

 
 

 
 

 
 
nine PCs were used as inputs for the classification model. 

Fig. 6 depicts the classification process for the given 
data. Among the seven anomaly patterns, the Missing type 
has NaN values or continuously repeated values in the 
sensor data where the time and frequency response are zero; 
thus, it can be priorly classified by finding a dataset that has 
several NaN values or repeated constant values. To classify 
the dataset with the remaining six anomaly patterns, a DNN 
structure for the classification problem was constructed, as 
depicted in Fig. 6. For nine inputs (i.e., PCt1–PCt6 and 
PCf1–PCf3) and six outputs (i.e., anomaly patterns), the 
DNN model was designed to have four hidden layers with 
64-128-128-64 number of hidden nodes. A hyperbolic 

 
Fig. 3 Location of the sensors attached to a target long-span cable-stayed bridge 

Table 3 Seven anomaly patterns 

Anomaly 
patterns: Description: Quantity in dataset

Normal The time response is a normal oscillation curve whereas the frequency 
response is peak-like. 13575 (48.02%) 

Missing Majority/all of the time response is missing, which makes the time and 
frequency response zero. 2942 (10.41%) 

Minor Relative to normal sensor data, the amplitude is very small in the time 
domain. 1775 (6.28%) 

Outlier One or more outliers appear in the time response. 527 (1.86%) 
Square The time response is like a square wave. 2996 (10.60%) 

Trend The data has an obvious trend in the time domain and has an obvious 
peak value in the frequency domain. 5778 (20.44%) 

Drift The vibration response is non-stationary, with random drift. 679 (2.40%) 
 

(a) Time domain (b) Frequency domain 

Fig. 4 Examples of each data anomaly pattern in the dataset

Normal Missing Minor Outlier

Square Trend Drift

Normal Missing Minor Outlier

Square Trend Drift
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tangent sigmoid transfer function was employed as an 
activation function in the hidden layer, and a softmax 
function was used in the output layer. To enhance the 
reliability of the DNN model, cross-validation was 
conducted (70%, 15%, and 15% of the data were used for 
model training, validation, and testing, respectively). 

As a result, the output vector consists of six elements 
between zero and one, which denotes the likelihood of 
classifying each anomaly pattern. Table 4 lists the examples 
of model outputs. For example, the classification model 
provides six by one vector for Data #1 with the highest 
value for Normal, which indicates that the given data is 
likely a Normal pattern. Indeed, Data #1 is a Normal 
pattern; thus, the classification result is correct. Similarly, in 
the case of Data #6, the model gives the highest value for 
the Drift pattern, which is also correct. 

 
 
 
 

 
 

 
 
3.3 Model performance for anomaly pattern 

detection 
 
Fig. 7 depicts a confusion matrix, which describes the 

performance of a classification model for training, 
validation, test, and overall dataset, respectively. From this 
matrix, the percentages for true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) can be 
found. For example, 8315 training data with true label of 
Normal were classified as Normal, which is the case of TP 
in terms of Normal pattern. Similarly, 6541 (i.e., 
903+305+2037+2915+381) number of training data with 
true label of other than Normal were classified as not 
Normal, which is the case of TN in terms of Normal pattern. 
That is, the two cases of TP and TN are correct. However, 
71 (i.e., 56+15) number of training data with true label of 
Normal were classified as Normal, which is called FP, and 
71 (i.e., 38+33) number of training data were categorized as 
Normal even though the true labels were not Normal, which 
is FN. In the confusion matrix, green text in the gray areas 

(a) (b) 

Fig. 5 Principal component analysis results for (a) time domain features; and (b) frequency domain features

 
Fig. 6 Diagram of the classification process
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indicates the percentage of correct classifications for each 
class, calculated as TP divided by (TP + FN) for the right 
area and TP divided by (TP + FP) for the bottom area. Red 
text in the gray areas denotes the percentage of 
misclassified instances, considering FP and FN in those 
calculations. 

From the given confusion matrix, the performance of the 
classification model can be assessed using four indices of 
Precision, Recall, Accuracy, and F1-score 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃(𝑇𝑃 ൅ 𝐹𝑃) (5)

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃(𝑇𝑃 ൅ 𝐹𝑁) (6)

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 ൅ 𝑇𝑁)(𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁) (7)

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ൈ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙)  (8)

 
High Precision means that the ratio of FP is low, and high 
Recall indicates that the FN case is few. Accuracy denotes 

 
 

the ratio of the correct model output, and F1-score is a 
popular index for performance assessment that considers 
Precision and Recall. The values for these indices are 
within zero to one; thus, closer to one indicates better 
performance for all indices. These four indices of 
performance assessment for six anomaly patterns, 
summarized in Tables 5 to 8. 

The proposed deep learning-based anomaly detection 
model achieves an accuracy of 98.00% across the entire 
dataset. This high level of accuracy is complemented by 
notable Precision and Recall rates for various patterns: 
Normal at 99.12% and 99.17%, Minor at 95.32% and 
92.64%, and Trend at 97.62% and 97.69%, respectively. 
The model demonstrates its exceptional capability in 
identifying Square patterns with perfect Precision and an 
impressive Recall of 99.97%. Furthermore, the F1-scores 
for most patterns are impressive, with Normal achieving 
99.14% and Square reaching an outstanding 99.98%. 
Despite these achievements, the classifier shows a relatively 
lower F1-score of 84.75% for the Drift pattern compared to 
other anomaly patterns. As indicated by the confusion 
matrix in Fig. 7, the classifier often incorrectly predicts 
between Trend and Drift patterns. This issue may stem from 
the similarity in features extracted from the time and 

Table 4 Examples of model outputs 
 Data #1: Data #2: Data #3: 

Data plot: 

   

True label: Normal Minor Outlier 

Model 
Output 

Normal 0.9993 0.2356 0.1408 
Minor 2.05×10-7 0.7500 8.20×10-7 
Outlier 9.09×10-5 0.0134 0.8583 
Square 0.0006 3.72×10-6 0.0007 
Trend 1.03×10-6 0.0003 9.68×10-6 
Drift 4.44×10-8 0.0006 7.97×10-5 

 Data #4: Data #5: Data #6: 

Data plot: 

 
True label: Square Trend Drift 

Model 
Output 

Normal 0.0001 3.15×10-8 4.21×10-5 
Minor 2.65×10-8 3.33×10-9 4.50×10-6 
Outlier 4.72×10-5 1.31×10-9 8.00×10-5 
Square 0.9997 3.48×10-7 6.05×10-9 
Trend 4.07×10-6 0.9999 0.0617 
Drift 6.30×10-5 3.57×10-7 0.9382 

 

99



 
Seungjun Lee, Jaebeom Lee, Minsun Kim, Sangmok Lee and Young-Joo Lee 

 
 

Table 5 Performance assessment results for training data 

Anomaly 
patterns: Precision: Recall: Accuracy: F1-score:

Normal 0.9915 0.9915 0.9905 0.9915 
Minor 0.9545 0.9290 0.9925 0.9416 
Outlier 0.8640 0.9385 0.9954 0.8997 
Square 1.0000 1.0000 1.0000 1.0000 
Trend 0.9769 0.9782 0.9911 0.9775 
Drift 0.8562 0.8448 0.9911 0.8504 

 

 
 

Table 6 Performance assessment results for training data 

Anomaly 
patterns: Precision: Recall: Accuracy: F1-score:

Normal 0.9900 0.9917 0.9897 0.9908 
Minor 0.9442 0.9312 0.9916 0.9376 
Outlier 0.9186 0.9294 0.9959 0.9240 
Square 1.0000 0.9976 0.9997 0.9988 
Trend 0.9824 0.9777 0.9922 0.9800 
Drift 0.8495 0.8778 0.9922 0.8634 

 

 
 

Table 7 Performance assessment results for training data 

Anomaly 
patterns: Precision: Recall: Accuracy: F1-score:

Normal 0.9906 0.9922 0.9903 0.9914 
Minor 0.9570 0.9082 0.9919 0.9319 
Outlier 0.8864 0.9630 0.9959 0.9231 
Square 1.0000 1.0000 1.0000 1.0000 
Trend 0.9670 0.9700 0.9875 0.9685 
Drift 0.8304 0.8158 0.9875 0.8230 
 
 

Table 8 Performance assessment results for training data 

Anomaly 
patterns: Precision: Recall: Accuracy: F1-score:

Normal 0.9912 0.9917 0.9904 0.9914 
Minor 0.9532 0.9264 0.9923 0.9396 
Outlier 0.8767 0.9409 0.9956 0.9077 
Square 1.0000 0.9997 1.0000 0.9998 
Trend 0.9762 0.9769 0.9907 0.9766 
Drift 0.8508 0.8443 0.9907 0.8475 
 

 

Fig. 7 Confusion matrices of the constructed classification model 
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frequency domains used in training. To enhance the 
classifier’s performance, augmenting the dataset with 
additional data for the Drift pattern may be crucial. 
Currently, the Drift pattern constitutes only about 2.40% of 
the dataset. By addressing this issue of data imbalance and 
scarcity, we expect an improvement in the classifier’s 
ability to accurately identify and categorize anomalies. 

 
 

4. Review of the IPC-SHM 
 
Totally thirty methods were submitted to the IPC-SHM 

(Bao et al. 2021), and ten methods were awarded as 
summarized in Table 9. Our model achieved fourth place 
out of thirty methods in terms of model accuracy, 
presentation, and report quality. In comparing our approach 
to those of other participants, we found that each method 
has its own strengths; thus, we summarize the findings from 
the competition. 

First, we observed that data scaling methods, such as 
standardization, were frequently used among the top 
performers. This suggests that the data scaling can be a 
crucial factor in achieving high model accuracy, particularly 
when working with data that has a wide range of values or 

 
 

varying distributions. Scaling the data can help to ensure 
that all data are treated equally and can prevent certain 
features from dominating the model’s predictions. 

Second, we found that feature engineering methods 
were also necessary for achieving good results, despite not 
being required in many deep learning algorithms, such as 
CNN. This may be due to the fact that the given data was 
not sufficient to train the features, emphasizing the 
importance of feature engineering. In the data analysis 
competition, many participants used techniques, such as 
time and frequency domain feature selection, PCA, or 
transformation, to help identify and highlight the most 
important features for analysis. The use of feature 
engineering techniques may have been particularly 
important where the data is complex and high-dimensional. 

Finally, while many participants utilized CNN, we found 
that simpler models, such as random forest and DNN, were 
also effective in achieving high model quality. These 
findings suggest that while CNN is a powerful algorithm, 
simpler models may be more appropriate, and that careful 
consideration of feature engineering and data scaling 
methods can be crucial. Moreover, simpler models may be 
easier to interpret and more efficient to train than complex 
models, making them a more practical choice. 

Table 9 Summary of the methods submitted to the IPC-SHM 

Rank: Title: Data Scaling 
Methods: 

Feature 
Engineering Methods: 

Classification 
Algorithm: Reference: 

1 
Data anomaly detection for  

structural health monitoring of bridges 
using shapelet transform 

Shapelet 
Transform 

Shapelet 
Transform 

Random 
Forest 

Arul and 
Kareem (2022)

2 
SHM data anomaly classification 
using machine learning strategies: 

A comparative study 
Standardization Feature 

Selection 
CNN-based  

ensemble method 
Chou et al. 

(2022) 

3 
Data anomaly detection for structural 

health monitoring using a combination 
network of GANomaly and CNN 

Gramian Angular 
Field Encoding & 

GANomaly 
- CNN Liu et al. (2022)

4 “THIS PAPER” Standardization Time and Frequency Domain 
Feature Selection & PCA DNN - 

5 
Convolutional neural network-based 
data anomaly detection considering 
class imbalance with limited data 

Gray Scaling - CNN Du et al. (2022)

6 
A semi-supervised interpretable 

machine learning framework 
for sensor fault detection 

Standardization Time and Frequency  
Domain Feature Selection XGBoost & SHAP Martakis et al. 

(2022) 

7 
Detection of multi-type data anomaly 
for structural health monitoring using 

pattern recognition neural network 
- Time Domain 

Feature Selection 
Pattern Recognition 

Neural Network Gao et al. (2022)

8 
CNN based data anomaly detection 

using multi-channel imagery  
for structural health monitoring 

- 
Time, Spectrogram Channel,

and Probability Density  
Function based Feature Selection

CNN Shajihan et al. 
(2022) 

9 
Data abnormal detection using  

bidirectional long-short neural network 
combined with artificial experience 

- Time and Frequency  
Domain Feature Selection RNN Yang et al. 

(2022) 

10 
Data anomaly detection using  
ensemble deep convolutional  

neural networks 
- - - - 

 

101



 
Seungjun Lee, Jaebeom Lee, Minsun Kim, Sangmok Lee and Young-Joo Lee 

5. Conclusions 
 
This study proposes a classification method to detect 

anomaly patterns in the acceleration data of long-span 
cable-stayed bridges. The proposed method involves several 
steps, including the scaling of raw acceleration data, the 
estimation of informative features in the time and frequency 
domains, and the extraction of principal components as the 
linear combinations of these features. The deep neural 
network model was employed for classification, and the 
results showed that the proposed method accurately 
detected the data anomalies. The practical applicability of 
the proposed method was demonstrated using actual data 
from a long-span cable-stayed bridge in China, and the 
results showed its effectiveness in real-world SHM systems 
of civil infrastructures. Although this approach achieves 
high accuracy, it encounters challenges in distinguishing 
between Trend and Drift patterns. This issue highlights the 
need for further data augmentation, especially for 
underrepresented patterns such as Drift, which currently 
comprises only 2.40% of the dataset. Addressing this data 
imbalance and scarcity is anticipated to enhance the 
classifier’s ability to accurately identify and categorize 
anomalies. 

Additionally, this paper provides a comprehensive 
summary of the key findings and insights from the IPC-
SHM competition. The analysis identified several critical 
factors that contribute to the success of high-performing 
models. Data scaling, such as standardization, emerged as a 
crucial element, especially when dealing with datasets that 
exhibit a wide range of values or varying distributions. This 
process ensures the reasonable treatment of all data and 
mitigates the dominance of specific features in model 
predictions. Furthermore, feature engineering, which is 
often overlooked in deep learning frameworks such as 
CNN, could be vital for model success. This highlights the 
importance of techniques such as time and frequency 
domain feature selection, PCA, or transformation in 
enhancing feature representation. Interestingly, not only 
advanced algorithms such CNN, RNN but also simpler 
models such as random forest and DNN were effective in 
achieving high model quality. This indicates that the choice 
of model should be tailored to the specific dataset and 
scenario, with careful consideration given to feature 
engineering, data scaling, and model complexity. These 
insights collectively offer a nuanced understanding of the 
various approaches in model optimization, proving 
invaluable for future research and application in the field. 
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