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Abstract.  Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty 
(temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are 
substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these 
uncertainties through complex numerical models running online, rendering the SHM approach to be compute-
intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise 
understanding of the structure often poses a problem for not so well understood complex systems. The present study 
employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response 
time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the 
response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural 
Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in 
place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal 
information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw 
signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature 
conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-
invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as 
sufficiently robust against measurement noise. 
 

Keywords:  Convolutional Neural Network (CNN); damage detection; Deep Learning (DL); Empirical 
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1. Introduction 

 
The primary objective of Structural Health Monitoring (SHM) is to determine the occurrence, 

location, and severity of damage (Sohn et al. 1996) promptly and precisely. In this regard, 
vibration based SHM has proved its merits as one of the reliable and efficient approach to ensure 
the safety of structures in operation. With such approaches, the damage is mostly demarcated as 
deterioration in material, geometrical, or boundary properties having adverse effects on the 
structural stiffness and dynamic properties. Eventually, the damage is expected to leave its 
signature on the vibrational response. Nevertheless, not only the damage but varying 

 
∗Corresponding author, Ph.D., E-mail: subhamoy@iitmandi.ac.in 
a Ph.D. Student, E-mail: d17007@students.iitmandi.ac.in 

379



 
 
 
 
 
 

Smriti Sharma and Subhamoy Sen 

environmental conditions, especially temperature, are observed to have a substantial impact on the 
vibrational response (Cornwell et al. 1999, Alampalli 2000). Isolating the damage-specific 
changes in response from the overall change is, however, a major challenge for real-life SHM 
(Kullaa 2009). 

However, contrastingly insignificant numbers of research considered incorporation of these 
environmental impacts within the SHM approach. As a consequence, false alarms (positive or 
negative) may be signaled since the environmental effects, if not accounted for, may mask the 
damage-induced changes in the response. Without adopting sufficient measures to achieve 
robustness against environmental uncertainty, no SHM techniques can be considered reliable. This 
can be one of the major reasons that the application of the existing SHM techniques is 
contrastingly poor compared to the staggering progress in their development. 

Among the several ambient uncertainties affecting SHM outcome, the present study 
concentrates on temperature effects only. Ambient variability in temperature has been identified as 
one of the major aspects that influences SHM decisions (Cornwell et al. 1999, Alampalli 2000) 
identifies that temperature-induced variations in vibrational properties may even surpass 
alterations caused by damage of medium severities. To counter this, most model based SHM 
approaches take a basis on a detailed numerical model that includes the temperature dependence of 
the material properties (majorly elasticity) (Glisic et al. 2011, Kromanis et al. 2016). The impact 
of thermal stresses on geometric stiffness also plays a major role in altering dynamic properties, 
discussed in very few studies (Alampalli 2000, Sharma and Sen 2021a). In reality, this geometric 
component of structural stiffness is very much case-specific and majorly depend on the structural 
configuration, boundary properties, temperature profile, etc. Further, thermal effects may cause 
supports to move altering the structural configuration itself (Kromanis et al. 2016). The inclusion 
of all such aspects in the predictor model may at times be complex and compute intensive. 

Traditionally, damage in a structure is identified by monitoring typical damage-sensitive 
features (e.g., acceleration, strain time histories, modal frequency or damping, etc.) with/without a 
supporting predictor model replicating its dynamics. However, for most cases, these features are 
not robust to the operational variability and/or varying temperature conditions. This motivated 
researchers to opt for either more “intelligent features”, or more “intelligent approaches” that are 
robust and can identify damage-induced changes undeterred by the ambient variability. 

With the introduction of cheap sensor technology and computational resources, Machine 
learning (ML)-based algorithms have come up as an efficient alternative to this cause (Sun et al. 
2020). With ML, several smart and robust features have been proposed to detect an anomaly in the 
structure in presence of environmental variabilities. ML-based SHM algorithms are also observed 
to manifest robustness against operational variability through the employment of an enriched 
training database. The existing approaches have majorly remained either supervised or 
unsupervised depending on the problem. While with an unsupervised algorithm, the damage 
occurrence can be detected at much ease by sensing alteration in a damage-sensitive feature in the 
response, localization and/or quantification may need supervised training using rich archives of 
response pertaining to all possible damage cases. Such rigorous training, in turn, expects access to 
responses pertaining to all possible damage cases specific to the structure, which is neither 
achievable nor pragmatic. While access to undamaged response data is not a problem, the 
damaged responses are typically simulated under different damage scenarios using a predictor 
model, and collectively they are employed to train a network to correlate structural response to 
corresponding damage cases (Zhou et al. 2011, Yarnold and Moon 2015, Jin et al. 2016, Weinstein 
et al. 2018). 
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Overall, ML-based SHM approaches attempt two main steps in consequence: extraction of a 
damage-sensitive feature and subsequently classifying them to corresponding damage cases. In 
this regard, ML-based SHM approaches traditionally relied on “hand-crafted” features (e.g., 
frequencies, mode shapes, frequency response functions (FRF), modal damping, etc.) manually 
chosen and extracted from the raw signal well in advance. Further, a classifier is employed to map 
these features to corresponding damage cases. Numerous combinations of features and classifiers 
have been studied in the literature in search of an optimal choice for ML-based SHM. As it 
happens, the success of such an approach depends on the sensitivity of the chosen feature as well 
as on the efficacy of the classifier. As a consequence, most often, it is experienced that an 
algorithm that seemed efficient for a particular structure is not necessarily a good option for the 
others. The variation in performance can be attributed to the manual selection process of the 
features, failing to ensure a proper selection always. 

Recent studies have demonstrated the relatively superior performance of Deep Learning (DL)- 
based techniques compared to the traditional ML-based SHM approaches. Unlike parametric 
methods, these approaches do not look for features of physical significance. Instead, the extracted 
features are mostly numerical and therefore abstract, yet sensitive to the damage classes. This 
alleviates the requirement to understand the structural behavior and select a robust feature through 
which damage can be classified. CNN is one such approach that automates the feature selection 
purging the manual feature selection process. 

Typically, CNN merges feature extraction and classification together in a single block, getting 
rid of human selection bias. CNN, in its one/two-dimensional version, has found much application 
in the recent SHM research and proved to be efficient and robust. Yet, CNN has never been tested 
for its capability to achieve robustness against environmental uncertainty. Developed with an aim 
to deal with image processing problems, CNN has been modified to handle 1D time-series array 
(Abdeljaber et al. 2018, Sharma and Sen 2020). Presenting multiple time series arrays recorded 
from multiple sensors under the guise of images, major potentials of CNN can be exploited. This 
article, therefore, attempts a 2D-CNN dealing with 2D response data to detect structural damage in 
the presence of temperature variations. 

Of course, the efficiency of the CNN-based SHM approach depends on the type and quality of 
the data being handled. The selection of a good data source can in fact, improve the detection 
ability. It is challenging to interpret structural health from the noisy ambient vibration recorded 
during operation. Yet, for real-life structures, the ambient response is most often the only 
measurable response. Such responses, measured under an uncontrolled environment, are often 
noise-contaminated, non-stationary, and/or non-linear. Direct employment of such data may lead to 
a sub-optimal solution with a CNN network conditioned on stationary and linear signals and 
therefore calls for a pre-processing. 

Further, recent studies observe strain as a better damage-sensitive response compared to 
acceleration (dos Santos et al. 2015, Xia et al. 2017). This motivates this study to replace typical 
acceleration with strain as the measured response for the CNN to classify. For pre-processing of 
the input data, Empirical Modal Decomposition (EMD) technique is proposed in this study that 
decomposes the raw signal into finite elementary orthogonal components, termed as Intrinsic 
Mode Functions (IMF), that contains all essential characteristics sensitive to damage while being 
free from noises to some extent. 

In the following, state of the art with ML-based SHM research has been discussed in Section 2 
followed by a brief description of the methods involved: i.e., EMD (Section 3.1) and CNN 
(Section 3.2) approaches in process of detailing the proposed approach in Section 3. The method 
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has been numerically validated in Section 4 on a single span numerical bridge model that includes 
temperature-induced effects like thermal expansion and bowing encompassing their impacts on 
geometric stiffness. The detailed discussion on thermal effects on structural stiffness is, however, 
excluded in the article and the readers are requested to follow (Sharma and Sen 2021a, b) where 
the same has been discussed elaborately. 

 
 

2. State of the art 
 
The generic approach for most ML-based SHM approaches is to follow two consequent steps: 
 
i) deciding on a feature that is robust yet sensitive to damage and subsequent extraction of the 

same from the measured signal, followed by, 
ii) classification of these features among a set of predefined damage scenarios. 
 
The literature in this aspect contains several parametric as well as non-parametric approaches 

that employ different strategies to use the information embedded in the measured data. The non-
parametric approaches attempt for a damage-sensitive feature that can indicate a presence of 
damage in the system. Examples of such methods include simple statistical methods, nonlinear 
auto-regressive with exogenous inputs (NARX) neural networks, principal component analysis, 
wavelet transform, auto-regressive modelling, self-organizing maps Tibaduiza et al. 2013 etc. For 
the classification, artificial neural networks (ANN), fuzzy neural networks, probabilistic neural 
network (PNNs), and support vector machines (de Oliveira et al. 2018, Sharma and Sen 2020) 
have proved their efficacy for complicated SHM problems. 

Eventually, the selection of the features and the classifiers dictate the accuracy and practicality 
of the employed ML-based SHM algorithm, and therefore should ideally be chosen with care. 
Handcrafted features may induce human bias in the employed SHM algorithm, which can 
sometimes be detrimental to overall accuracy. Further, not always a single feature can be sensitive 
for all possible damage cases. Yet, no thumb rule exists to help select the features or the classifiers, 
posing the major problem for ML-based SHM and rendering the approach to be case-specific. 
Further, the disjointed feature extraction and classification steps collectively make the ML-based 
SHM approaches compute-intensive and at times, not economical or slow. DL-based approaches 
like CNN have emerged as a possible breakthrough in this attempt. Rigorous comparison between 
classical neural network and deep learning techniques for SHM has been established DL to be a 
consistently superior approach in several articles (Sharma and Sen 2020, 2021b). 

Inspired by the structure and operational approach of the human visual cortex, CNN was 
introduced by LeCun et al. (1989). It is an efficient approach that combines extraction of abstract 
feature and subsequent classification in a single learning block (Avci et al. 2017, Abdeljaber et al. 
2018). Within CNN, two layers: convolution and pooling, are alternatively stacked in order to 
perform the following processes recursively: 

 
(1) The convolutional layer extracts a set of translation invariant local features (denoted as 

feature map) through convolution of a set of local filters with the raw signal, 
(2) The following pooling layer employs a sliding window on the convoluted signal to extract 

the features of higher strength. This also down-samples the feature maps through a patch 
wise summarizing. 
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Fig. 1 2D convolutional neural network

 
 
This recursive feature extraction and data compression process is repeated over several stacks 

of convolutional and pooling layers prior to a classification layer that classifies the compressed 
feature map among different damage scenarios/classes. Cross entropy and softmax are typical 
choices for loss and classifier functions, respectively. It should be noted that CNN does not depend 
on user-supplied features, rather extracts its own abstract features. A schematic representation of a 
2D CNN with multi-layer image input has been presented in Fig. 1. 

CNN was originally introduced to handle image or video processing and pattern recognition in 
two or three-dimensional vision data. Because of the unique network architecture and feature-free 
classification approach, CNN has seen applications in various vision-based problems (Krizhevsky 
et al. 2012, LeCun et al. 1989). This approach can isolate unique features deeply embedded even 
within complex and uncorrelated signals, which otherwise might remain imperceptible with 
shallow networks or expert human investigators. Although not developed targeting classification 
of time series and sequential data, the astounding similarity in problem types motivated the 
researchers to employ CNN for problems like speech recognition (Abdel-Hamid et al. 2012), fault 
detection in engine (Ince et al. 2016), natural language processing (Duque et al. 2019), 
electrocardiogram classification (ECG) beats (Kiranyaz et al. 2016), and finally structural damage 
detection (Abdeljaber et al. 2018) etc. Such studies employed a 1D version of CNN achieving 
higher detection accuracy even with minimal training data (Abdeljaber et al. 2017, Avci et al. 
2017). 

The application of CNN in SHM research is, however, a relatively less-explored topic. The 
pertinent literature has been reviewed in the works of Zhao et al. (2019) detailing the application 
of CNN for fault detection problems in civil infrastructures, electrical and mechanical machines, 
etc. The image processing aspect of 2D-CNN has been exploited by Cha et al. (2017) to detect 
cracks on the concrete surface and by Gulgec et al. (2019), to detect damage in steel gusset plate. 
Clearly, because of the photographic nature, these approaches are limited only to visible surface 
cracks and also conditioned on the visibility of the damage within the resolution of the captured 
image. (Abdeljaber et al. 2017) employed a 1D version of CNN to detect damage in a grandstand 
simulator's joints. This investigation processed the acceleration data collected from the vicinity of 
joints with CNN to classify them as either healthy or damaged. Abdeljaber et al. (2018) employed 
the 2D-CNN approach for damage detection in a benchmark structure introduced by the IASC-
ASCE SHM task group. Their approach simultaneously records measurements from several 
sensors placed all over the structure with an aim to precisely localize the damage. (Sharma and Sen 
2020b) validated numerically as well as experimentally the capability of the 1D-CNN approach in 
detection and localization of joint damage using measured member strain. Yet, in order to localize, 
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the application (also in Abdeljaber et al. (2017)) involved dedicated networks for each possible 
damage location, demanding exhaustive computation. Overall, through these studies, CNN has 
been identified as an efficient alternative to traditional model-based or shallow network-based 
SHM approaches while being sufficiently robust against uncertainties involved. 

Prior to the damage classification with the CNN approach, this study decomposes the raw 
signal with the EMD technique. Pioneered by Huang et al. (1998), EMD has emerged as an 
efficient technique to decompose a raw signal into its component fundamental signals or IMFs. 
The term “intrinsic mode functions” signifies the hidden oscillations embedded within the time 
series (Dätig and Schlurmann 2004). The application of this approach for analysis of linear, non-
linear, stationary and non-stationary signals is well appreciated in different research areas like 
process control (Srinivasan et al. 2007) medicine (Charleston-Villalobos et al. 2007), surface 
engineering (Zhang et al. 2008), system identification (Yang and Chang 2009) and speech 
recognition (Sharma et al. 2017) etc. Nevertheless, the application of EMD in SHM is relatively 
less explored. 

Xu and Chen (2004) employed EMD to detect a sudden change of structural stiffness in a three-
storey shear building. EMD was observed to be robust to external excitation in determining the 
instant and location of damage, even for the weaker and multiple damage cases. Yang and Chang 
(2009) proposed an indirect approach using EMD with Fast Fourier Transform for extracting 
bridge frequencies numerically as well as experimentally. Li et al. (2007) combined EMD with 
wavelet analysis to detect damage-induced anomalies in structural response. Yang and Chang 
(2009) proposed two methods using EMD and EMD-Hilbert transform for detection of damage 
instant, location and also pre-and post-damage modal parameters. (Rezaei and Taheri 2011) 
validated the efficacy of the EMD approach for damage estimation in a cantilever beam 
numerically and experimentally. Overall, the literature concludes EMD as a signal-based and 
model-free method for damage identification 216 requiring no prior knowledge of the structure. 

 
 

3. Proposed EMD-2D-CNN 
 
Two major expectations of SHM have been addressed in this article: temperature robustness 

and detection promptness. While for the detection promptness (and computational ease), the CNN 
environment can be an easy choice, to achieve the temperature robustness, a spatial-temporal 
correlation between responses at different sensor location can be exploited. This is due to the fact 
that while temperature affects the structure globally affecting all sensor responses equally, damage 
typically affects only a particular location. The spatial correlation between different sensor 
responses can therefore be exploited in order to detect damage locations more efficiently. An 
analogy of mode shape can be brought in this context which demonstrates the correlation between 
different sensor responses and less-likely to get affected by the ambient temperature variations. 
However, a damage can surely alter the undamaged mode shape. This aspect is equally true with 
the signals decomposed in to “simpler and well behaved” components (i.e., IMFs, analogous to 
modal response) and responses from several sensors are employed together for damage detection. 

Eventually, this calls for the use of spatial dimension of responses as well, thereby justifying 
the need of a 2D version of CNN. Also, the detection network should be trained with temperature 
invariant data similar to fundamental mode-shapes that exhibit sufficient robustness against global 
temperature variance. However, typical frequency or time-frequency domain analysis approaches 
(FFT, wavelet analysis etc.) either bank on stationarity or requires a template signal to convolute. 
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Fig. 2 The flowchart for the proposed algorithm

 
 

It’s true that these approaches, by and large, are suitable for most condition assessment problems. 
However, the current state of the art demands the developed algorithms to suit even non-stationary 
signals aiming for real-time detection. The EMD approach, better suiting to this requirement, is 
therefore adopted in this study. 

This article, therefore, combines the EMD with a 2D CNN network to identify damage from 
the ambient strain response under varying temperature conditions. In this approach, the noise-
contaminated response data is firstly decomposed with the EMD into component IMFs from which 
strongly informative IMFs are chosen while neglecting all other less informative ones. This 
strategy takes basis on the assumption that the neglected IMFs constitute the signal's noise, which 
has no role in damage detection. Selection of the informative IMFs is undertaken through a 
correlation study following the works of Xun and Yan (2008), which are further classified against 
their corresponding damage cases by the 2D-CNN network. The proposed method is demonstrated 
in the following, along with the functioning of proposed approaches: i.e., EMD and CNN. A 
schematic of the proposed approach is presented in Fig. 2. 

 
3.1 Empirical mode decomposition (EMD) 
 
EMD self-adapt൴vely decomposes a raw s൴gnal ൴nto component IMFs w൴thout tak൴ng the bas൴s 

on any pr൴mary funct൴on (e.g., s൴nuso൴dal funct൴on ൴n Four൴er transform and mother wavelet ൴n 
wavelet analys൴s) or preconce൴ved f൴lters (Flandr൴n et al. 2004). These IMFs are assoc൴ated w൴th 
energy at d൴fferent t൴me scales and conta൴n essent൴al character൴st൴cs of the real s൴gnal. The 
extract൴on of IMFs from the raw s൴gnal ൴s ach൴eved through an ൴terat൴ve process known as “s൴ft൴ng”. 
Each IMF must sat൴sfy the follow൴ng two cond൴t൴ons (Huang et al. 1998): 

 
● The total number of extrema and zero cross൴ngs should ൴deally be preserved or at most can 

d൴ffer by one. 
● Mean of the envelopes def൴ned by the local max൴ma and m൴n൴ma should ൴deally be zero. 
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For a t൴me ser൴es, 𝐱(ଵ௫௧) = ሼ𝐱௞;   𝑘 = 1, . . . , 𝑡}, with 𝑘 be൴ng the t൴me ൴nstants at wh൴ch the 
s൴gnal ൴s sampled, the extremes are f൴rstly f൴tted through cub൴c spl൴nes ൴n order to form the upper 
and lower envelopes. The envelope means, 𝜇(𝐱), ൴s then subtracted from the or൴g൴nal s൴gnal, x, to 
obta൴n the f൴rst component, 𝐡(ଵ×௧)ଵ , of the s൴ft൴ng process. 

 𝐡ଵ = 𝐱 − 𝜇(𝐱) (1)
 
The resultant s൴gnal, 𝐡ଵ ൴s trated same as the or൴g൴nal s൴gnal and the s൴ft൴ng process ൴s repeated 

to obta൴n next mean subracted component, 𝐡ଵଵ as 
 𝐡ଵଵ = 𝐡ଵ 𝜇(𝐡ଵ) (2)
 

where 𝜇(𝐡ଵ) denotes the envelop mean of 𝐡ଵ. The s൴ft൴ng process cont൴nues for 𝑘 t൴mes unt൴l 
the 𝐡ଵ௞ becomes the true IMF, as 

 𝐡ଵ௞ = 𝐡ଵ(௞ିଵ) − 𝜇൫𝐡ଵ(௞ିଵ)൯ (3)
 

and ൴s des൴gnated as the f൴rst IMF, 𝐢(ଵ×௧)ଵ . W൴th each ൴terat൴on, the s൴ft൴ng process produces a 
symmetr൴cal s൴gnal w൴th respect to mean zero. Huang et al. (1998) proposed cr൴ter൴on to stop the 
s൴ft൴ng process keep൴ng the phys൴cal sense of the ampl൴tude and frequency modulat൴ons ൴nto 
cons൴derat൴on. The cr൴ter൴on takes bas൴s on the standard dev൴at൴ons of the deduced s൴gnal from the 
last two consequent s൴ft൴ng steps. Typ൴cally, the f൴rst IMF component, 𝐢ଵ, ൴s the component of the 
s൴gnal hav൴ng the shortest per൴od. The 𝐢ଵ can then be separated from the or൴g൴nal s൴gnal to obta൴n 
the res൴dual, 𝐫(ଵ×௧)ଵ  as 

 𝐫ଵ = 𝐱 − 𝐢ଵ (4)
 𝐫ଵ, conta൴n൴ng the components of longer per൴ods, ൴s further treated as the raw s൴gnal to extract 

IMFs of longer per൴ods. Recurs൴on of th൴s process leads to 𝑛 emp൴r൴cal IMFs, {𝐢௜, 𝑖 = 1, … , 𝑛} 
and a res൴due 𝐫௡ wh൴ch can e൴ther be a mean trend or a constant. Ideally, the or൴g൴nal s൴gnal x, can 
be rega൴ned by summ൴ng up all the component IMFs and the res൴due as 

 𝐱 = ෍ 𝐢௜ + 𝐫௡௡
௜ୀଵ  (5)

 
It should be ment൴oned here that, ൴n the context of ൴nfrastructural health mon൴tor൴ng, promptness 

൴s one of the most ൴mportant aspect to ach൴eve other than accuracy. The s൴mpler computat൴on 
process for EMD helps ൴n mak൴ng the overall process of damage detect൴on faster. Typ൴cally, 
because of the advantages offered ൴n terms of stab൴l൴ty, convergence and second order smoothen൴ng, 
cub൴c spl൴ne ൴nterpolat൴on ൴s mostly approached for develop൴ng s൴gnal envelops. Yet, th൴s approach 
൴s suscept൴ble to cause over/undershoot lead൴ng to mode al൴as൴ng and end effect. To c൴rcumvent 
these ൴ll effects, P൴ece-w൴se Cub൴c Herm൴te Interpolat൴on Polynom൴al (PCHIP) has been employed 
൴n th൴s study supported by the works of Shul൴n et al. (2007). In several comparat൴ve stud൴es 
(Rabbath and Corr൴veau 2019), PCHIP has been perce൴ved as “shape-preserv൴ng” and “v൴sually 
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pleas൴ng” ൴nterpolat൴on that can reconstruct the or൴g൴nal s൴gnal much better than cub൴c spl൴ne 
൴nterpolat൴on and as such does not cause over/undershoot൴ng. 

 
3.2 CNN 
 
The article employs CNN to extract abstract features from the supplied IMF signals which are 

extracted from the response signals those are simultaneously recorded from multiple sensors. For a 
set of response time series ൛𝐱ଵ ⋯ 𝐱௡ೞൟ(௧×௡ೞ) of length t collected from 𝑛௦ sensor locations, the 

IMFs are firstly extracted as 𝐢௜௝, for, 𝑖 = 1, ⋯ , 𝑛௦  and 𝑗 = 1, ⋯ , 𝑛௘.  Here the notation 𝐢௜௝ 
denotes 𝑗௧௛ IMF extracted from response measurement recorded from 𝑖௧௛ sensor. Thus, with 𝑛௘ 
numbers of IMFs taken into consideration, the overall input data that is supplied to CNN can be 
denoted as a three dimensional matrix 𝐈(௧×௡ೞ×௡೐) from which each layer of size (𝑡 × 𝑛௦) is fed to 
the CNN as individual image layers, 𝐼(௧×௡ೞ) for feature extraction purpose. 

For each of these image layers, 𝐼(௧×௡ೞ) ∈ 𝐈(௧×௡ೞ×௡೐) , CNN employs 𝑛௙ local filters of 
dimension (𝑚 × 𝑚), i.e., ቄ𝑓௞(೘×೘);  𝑘 = 1, ⋯ , 𝑛௙ቅ. These filters are convoluted on 𝑛௧௛ window 
of the response 𝐼௜:௜ା௠షభ,௝:௝ା௠ିଵ(೘×೘)  (denoted here on as 𝐼௜,௝,௠ for the sake of compactness) to 
yield convoluted feature for 𝑛௧௛  response window as as 𝑐௞,௜௝௠  (𝑛 denotes the index of the 
window comprising the data 𝐼௜,௝,௠ as 

 𝑐ሼ௞,௜௝௠} = 𝜙൫𝑓௞. 𝐼௜,௝,௠ + 𝑏௞൯ (6)
 
Thus, 𝑐ሼ௞,௜௝௠} can be regarded as the feature obtained through convoluting the filter 𝑓௞ over 

the windowed signal data 𝐼௜,௝,௠. Here < 𝑠ଵ ⋅ 𝑠ଶ > denotes a convolutional operation between 𝑠ଵ 
and 𝑠ଶ . 𝜙(⋅) denotes a nonlinear activation function and 𝑏௞ denotes bias parameter. This process 
is followed for the entire signal 𝐼(௧×௡ೞ) by sliding this filter over the entire span (over the entire 
row and column space) of the data in order to obtain the feature map activated by the 𝑘௧௛ filter as: 𝐂௞(௤×௥) where 𝑞 = (𝑡 − 𝑚) 𝑠⁄ + 1 and 𝑟 = (𝑛௦ − 𝑚) 𝑠⁄ + 1 . Here 𝑠  is a hyper-parameter 
termed as stride that denotes the jump the filter makes between two successive convolutions. 

In the following, pooling operation is performed over the feature map with an aim to 
dimensional reduction of the feature map as well as compress the information. Pooling techniques 
like max-pooling, min-pooling and average-pooling extracts max, min or average values from a 
window of the convoluted feature map of dimension (ℎ × ℎ) with a stride value of 𝑆௛. Here ℎ 
and 𝑆௛ are hyper-parameters for the pooling operation and its value is generally decided through 
trial and error. The pooling window is slid over the convoluted feature map 𝐂௝ to down-sample 
the features to some manageable dimension. The pooled feature is denoted here as: 𝐏௞(௤ത×௥̅) 
where and 𝑞ത = (𝑞 − ℎ) 𝑠௛⁄ + 1 and 𝑟̅ = (𝑟 − ℎ) 𝑠௛⁄ + 1.

𝐏௞ = ൦𝑝ଵ,ଵ 𝑝ଵ,ଶ ⋯ 𝑝ଵ,௥𝑝ଶ,ଵ 𝑝ଶ,ଶ ⋯ 𝑝ଶ,௥⋮ ⋱ ⋮𝑝௤‾,ଵ 𝑝௤‾,ଶ ⋯ 𝑝௤‾,௥‾൪
(௤‾×௥‾)

 (7)

 
An arbitrary element in the 𝐏௞ matrix (say 𝑝(ప,̅ఫ̅)) can be obtained as the maximum value 
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pooled from the block (i.e., 𝐂௞(௦̅:௦̅ା௛,௧̅:௧̅ା௛)) of the convoluted matrix 𝐂௞ involving row space ሼ𝑠̅: 𝑠̅ + ℎ} and column space ሼ𝑡: 𝑡̅ + ℎ} where 𝑠̅ = ൫𝑖ሶ ̅ − 2൯ ∕ ℎ + 𝑠 + 1 and 𝑡̅ = (𝚥̅ − 2) ∕ ℎ +𝑠 + 1 can therefore be obtained as  𝑝(ప,̅ఫ̅) = max (𝐂௞(௦̅:௦̅ା௛,௧̅:௧̅ା௛)). 
Thus, a two dimensional signal 𝐼 of dimension (𝑡 × 𝑛)௦ is first convoluted to a feature map 𝐂௄  of dimension (𝑞 × 𝑟) using a filter 𝑓௞ of dimension (𝑚 × 𝑚). A pooling layer of dimension (ℎ × ℎ)  further down-samples the information to a matrix 𝐏௞ of dimension (𝑞ത × 𝑟̅) . The 

dimensional reduction of information is performed several times by including several such stacked 
convolutional and pooling layers. Finally, after sufficient compression of the available information, 
the abstract feature map is classified using a fully connected layer and a softmax layer. 

In the following, the proposed approach has been validated using numerical experiment. The 
further details of this approach are discussed specific to the problem accordingly. 

 
 

4. Numerical experiment 
 
Current study attempts level 2 damage detection only (occurrence and location) coherent to the 

existing ML-based SHM researches (Jin et al. 2016, Weinstein et al. 2018, Zhu et al. 2019). With 
a primary objective of prompt detection of occurrence and location, severity detection is not 
attempted. However, the limiting level of damage that can be sensed with the proposed approach is 
investigated. In absence of real data corresponding to damaged and undamaged states of a 
structure, typically numerical experiments are adopted (Zhou et al. 2011, Yarnold and Moon 2015, 
Jin et al. 2016, Weinstein et al. 2018)s to validate the proposed approach. Nevertheless, even for 
the practical application of the proposed approach, damaged response of the real structure is 
required. While undamaged response collection is easy, the availability of damaged response of a 
physical structure under different damage conditions (location as well as severity) and varying 
temperature conditions is practically not possible. This study, therefore, resorts to a numerical 
model of a bridge structure, considered here in this study as the “test structure” (a proxy for the 
real structure) from which the response under different damage and temperature conditions are 
simulated. It should be mentioned here that, employment of synthetic damaged response instead of 
real damaged response is quite well-practiced approach in the literature (Jin et al. 2016, Weinstein 
et al. 2018, Zhu et al. 2019). Further details and modeling approach adopted for this ``test 
structure'' is demonstrated in the following. Accordingly, application of the proposed method for a 
real structure will follow these steps: 

 
(1) identification of the real structure in its undamaged condition, 
(2) creating its "Digital twin" (DT) to replicate the undamaged state, 
(3) simulation of damaged response from the DT and finally, 
(4) using this damaged response (along with real undamaged response) for training for the 

proposed supervised learning approach. 
 
4.1 The “test structure” 
 
The “test structure” for this numerical experiment is basically a numerical model of a single 

span T-beam concrete bridge. The geometric details of this structure are presented in Table 1 while 
Fig. 3 presents a schematic representation of the bridge idealized as a beam-like structure. In 
practice, the bridges are often assumed to be fixed at one end while the other end to be supported 
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(a) Beam idealization

 

(b) Bridge cross section

Fig. 3 Idealization of the numerical bridge model
 
 

Table 1 Assumed material and geometric properties for the numerical model 
Material properties Geometric and simulation details 

Density (kg/m3) 2400 Area (m2) 4.69 
E (GPa) 26.5 Ix (m4) 2.79 

Poisson’s ratio 0.1 Iy (m4) 27.382 
G (GPa) 12.086 J (m4) 30.18 

Thermal coefficient (/℃) 1x10-5 Temperature -30℃ to 60℃ 
 
 

by a roller. Nevertheless, compared to reality, this idealization of the support condition is only an 
over-simplification of the actual boundary condition. In reality, the rollers mostly don’t allow 
complete release in the axial dof 1 and can be idealized as a finitely restrained support. This 
article attempts to model the supports more realistically in which the roller end is assumed to be 
finitely restrained by a linear spring. The schematic representation of the assumed boundary 
condition is presented in Fig. 3(a). This boundary condition allows finite thermal expansion, while 
the triggered thermal stresses can potentially alter the geometric stiffness of the bridge. The roller 
end is also considered to be rotationally restrained so that the bowing effect can be manifested. A 
much elaborate discussion on temperature and its effect on structural performance has been 
corroborated in (Sharma and Sen 2021a, b). The readers are requested to go through these articles 
for further details of the modeling. 

 
4.1.1 Modelling the effect of temperature 
In order to replicate the impact of ambient temperature on real bridges, both, thermal expansion 

and bowing has been modeled along with their effects on geometric stiffness within a 
geometrically nonlinear Finite Element Model (FEM) of the bridge. An elaborate explanation of 
the modelling intricacies has been avoided here for the sake of compactness and for the relevant 

 
1dofs: degrees of freedom 
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details, the readers may follow (Sharma and Sen 2021a, b). A brief detail of the same is, however, 
presented in the following. The girder bridge is subjected to varying temperatures ranging from −30℃ to 60℃. Apart from the uniform temperature change over the entire span, a thermal 
gradient of 3℃ is also induced across the section to cause a thermal bowing. 

It is perceived in general that temperature impacts stiffness more significantly compared to 
mass or damping. The property of structural material, being dependant on temperature, naturally 
impacts the material stiffness 𝐊௠. The current study, therefore, employed temperature dependant 
material properties for elasticity, Poisson’s ratio and thermal expansion coefficients for the 
component structural materials, i.e., concrete, and steel, following the studies of Khoury et al. 
(1985), Reddy and Chin (1998), Yan et al. (2005). The pertinent descriptions are presented in Figs. 
4(a) and (b). 

The temperature-induced expansion/contraction can cause supports to move which might cause 
a change in the support conditions, especially for the one assumed for this experiment. The linear 
spring at support ends can allow the expansion/contraction only finitely yielding axial thermal 
stress (tensile/ compressive) in addition to the allowed expansion. With a linear spring of stiffness 𝑘௟ at support end, the developed axial stress (𝜎௔) due to temperature variation ∆𝑇 for a bridge of 
cross-section 𝐴, length 𝑙, equivalent material elasticity 𝐸 and thermal expansion coefficient α 
can be obtained as 𝜎௔ = 𝐸 ∝ 𝛥𝑇1 + 𝐸𝐴 ∕ 𝑘௧𝑙 (8)

 
Here ∆𝑇 corresponds to a uniform temperature rise to 𝑇௔௩௚  from a bench-marked 

temperature 𝑇଴  (temperature at no stress condition). With 𝑇ଵ and 𝑇ଶ being the temperatures of 
deck and the soffit of the bridge (commonly observed in bridges due to differential solar heating), 

 
 

(a) Material: Concrete
 

(b) Material: Steel

Fig. 4 Effect of temperature on elastic modulus for concrete and steel 
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𝑇௔௩௚ is the average temperature of the cross-section (i.e., (𝑇ଶ + 𝑇ଵ 2⁄ ). Further, due to a linear 
gradient in temperature 𝑇,௬ (= |𝑇ଶ + 𝑇ଵ| 𝑑⁄ ) over the section depth 𝑑, thermal bowing may set in 
causing the beam-like structure to experience thermal-induced curvature. With support ends 
rotationally fixed, a tensile strain 𝜀థ  and associated tensile stress 𝜎௕  will eventually be 
developed, where 

 𝜀థ = 1 − sin(𝑙𝜙 2⁄ )𝑙𝜙 2⁄ ; 𝜎௕ = 𝐸𝜀థ (9)

 
Here, ϕ is the radius of curvature due to bowing calculated as 𝜙 = 𝛼𝑇,௬ . It should be noted 

that a gradient in temperature only in the vertical direction is considered while it has been assumed 
that the temperature along the bridge axis and across the deck is constant. Evidently, two stresses 
are generated in the structure due to a change in temperature which can potentially impact the 
overall stiffness through altering the geometric stiffness 𝐊௚. With 𝜎௧ being the effective stress 
(i.e., 𝜎௧ = 𝜎௔ − 𝜎௕), the corresponding geometric stiffness matrix 𝐊௚ can be obtained following 
(Gavin 2012) and further can be added to the material stiffness matrix 𝐊௠.  

 
4.1.2 FEM of the “test structure” 
The bridge is numerically simulated using the geometrically nonlinear FEM approach in which 

the entire span is discretized into ten segments of equal length. Each of these segments is modeled 
using a two-noded three-dimensional Euler-Bernoulli beam element involving geometric 
nonlinearity and its analytical consequence, i.e., geometric stiffness. The geometric stiffness 
accounts for the effect of finite deformation on the structural stiffness due to the induced thermal 
prestress. Each node of the employed 3D beam elements is defined with six dof s (three 
translational and three rotational). The material properties are defined with their dependence on 
temperature following Fig. 4. 2% Rayleigh damping has been assumed for simulation. 

Various damage scenarios are introduced randomly in terms of numerical reduction in material 
elasticity (E) in different segments under temperature variability. In this paper, the assumed 
damage severity is considered to be varying within the range of 20-80% of the original material 
elasticity, which is further categorized into three levels: weak (20-40%), moderate (40-60%), and 
strong (60-80%) in order to investigate the efficacy of the proposed algorithm in detecting 
damages of varying severities. It should be noted that the mentioned damage severities are given in 
terms of elasticity loss and not to be confused with the actual reduction in elasticity which is a 
result of combined effect of elasticity loss due to damage and temperature. 

To simulate response from the “test structure”, it is excited in its all vertical dofs with a 
stationary white Gaussian noise (SWGN) force model of distribution 𝑁(0, 𝑸)2 considered as the 
ambient forcing acting on the structure. Each of the segments is assumed to be instrumented at its 
respective middle point with a strain gauge patched at its bottom surface (soffit of the T-girder) 
recording axial strain component along the axis of the bridge. The dynamic strain is sampled from 
these gauges at a constant sampling frequency of 50 Hz for 1024 long time-series data. Each 
simulation is associated to one realization of damaged segment (𝜖ሼ0,1, ⋯ 10}, 0 denotes 
undamaged), severity (in % 𝜖 ሼ20,80} of material elasticity) and ambient temperature (𝜖 ሼ−30℃, 60℃}) drawn from uniform distributions (discrete or continuous): 𝑈ௗ([0; 10]),  

 
2 A distribution 𝑁(0, 𝑸)2 signifies a zero mean SWGN of variance 𝑸 
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Fig. 5 Variation of healthy and damaged frequencies under varying temperature 
 
 𝑈௖([20; 80])  𝑈௖([−30; 60]) respectively 3. 
Further, to replicate the real field scenarios, the simulated responses are contaminated with 

various levels of measurement noise. The added noise is assumed to be following an SWGN 
model and defined with signal-to-noise (snr) measure in which a 𝑥% snr signifies that the ratio of 
standard deviations of noise to original uncontaminated signal is 𝑥%. For each noise level, a set of 
1100 cases are simulated for 11 damage scenarios (10 damaged + 1 undamaged) under 100 
instances of ambient SWGN forcing. Each of these simulation cases yielded a strain data of 
dimension of 1024 × 10 attributed to strain responses from 10 members of 1024 data points in time. 
A sample comparison is presented between healthy and damaged frequencies under temperature 
variability in Fig. 5 that demonstrates the substantial impact of temperature on the frequencies. 

 
4.2 IMF extraction and training 
 
The contaminated strain responses are further put through the EMD technique to extract the 

pertinent IMFs sensitive to the presence of damage in the structure. In this regard, a correlation 
study is undertaken for both damaged and undamaged responses in which the correlation between 
IMFs and the original signal is estimated. Following the works of Xun and Yan (2008), the 
adopted strategy assumes that the poorly correlated IMFs constitute the less significant portion of 
the signal majorly originated due to the noise present in the signal. A sample of this study is 
presented in Fig. 6. The first two IMFs are consistently perceived as the IMFs of strong correlation 
and therefore should always be considered in the subsequent training steps. For signals with high 
levels of noise contamination, the third IMF is also found to be moderately correlated at times. The 
trend is also observed to be uniform for both damaged and undamaged responses 

While the inclusion of more numbers of IMFs in the calculation increases the computation 
exponentially, it does not necessarily increase the precision or accuracy in detection substantially. 
A separate study has been taken up that involves increasing numbers of IMFs in the CNN-based 
detection network to check how the level of detection accuracies varies with the number of IMFs 
considered. Four such tests are undertaken with 1/2/3 and 5 IMFs extracted from the same signal 
and the detection accuracies are monitored. The results are presented in Fig. 7(b) where from it is 
evident that up to the third IMF the accuracy levels are increasing. Any further increase in IMF 
does not benefit in terms of accuracy while making the approach compute intensive. An example 

 
3 𝑈௖ ௗ⁄ ([𝑎: 𝑏]) denotes a uniform distribution bounded within the closed set [𝑎; 𝑏]. Superscript 𝑐 and 𝑑 
signifies continuous or discrete type distribution 
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(a) Correlation coefficients for undamaged case
 

(b) Correlation coefficients for damaged case
 

(c) Correlation coefficients with 10% snr

Fig. 6 The correlation coefficients of first four IMFs with signal at 20°C 
 
 

of corresponding IMFs are presented in Fig. 7(a). Thus, a maximum of three IMFs is chosen for 
this study that is manageable within computational limitation while being sufficient enough to deal 
with signals with any practical levels of noise contamination. Eventually, the EMD approach 
decomposed a 2D strain data of dimension (1024 × 10) into 3D IMF data of dimension (1024 × 10 
× 3). In the following, the IMF data is fed to the proposed 2D CNN network in its input layer 
while the corresponding damage cases are fed in the output layer. 70% of the simulated data is 
used for training and remaining 30% for validation and testing. Each damage identification index 
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(a) The first three IMFs of the simulated

 

(b) Effect of increasing number of IMFs on accuracy levels
 

(c) Effect of increasing stack of convolutional and pooling layers 

Fig. 7 Performance analysis of the proposed algorithm
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is one component from a categorical vector 𝐶 of dimension (11 × 1) Categorical vector 𝐶 stores 
the eleven possible damage classes (one healthy and 10 damaged). Consideration of multiple 
damage cases will eventually call for more damage cases jeopardizing the promptness aspect. It 
should be noted here that, the proposed approach can be categorized as a near-real-time approach 
detecting the damage instantly once the 1024 long time series is available. Accordingly, for 
pragmatic reasons, only single damage cases have been considered presuming only one damage is 
expected to occur within the time frame of sampled measurements. For real-life SHM problems, it 
is highly unlikely to have two disjointed spans getting damaged at once. Of course, for such less-
likely scenarios, damage occurrence can still be detected without a perfect localization. 

The network design needs certain hyper-parameters to be decided, e.g., filter size and numbers, 
number of stacking layers and sampling windows etc., which is usually undertaken by recursive 
trials with an aim to improve detection accuracy with the training dataset (Abdeljaber et al. 2017, 
Avci et al. 2017). In this process, it is not uncommon to have parameters more than the length of 
the signal. While, typical MNIST problem (handwritten digit recognition) requires only two stacks 
of CNN, keeping the complexity of the detection problem into consideration, current study 
investigates the required numbers of stacking that can yield good accuracy with the training data. 
The size of filters has also been optimized in this attempt in order to not miss the important 
information while being within manageable computation demand. In such contexts, ancillary 
algorithms are typically employed, especially for big data problems, to remove weaker nodes. 
Nothing such was however attempted in this study since the computation was already within 
acceptable limits. 

The selection of the required layers of convolution and pooling in the employed CNN network 
is therefore an iterative effort. In this article, a rigorous numerical study is undertaken involving 
different stacks of CNN layers (2/3/4/5) and corresponding accuracy levels with the training data 
are monitored. The results are presented in Fig. 7(c). It has been found that four stacks of 
convolution and pooling are sufficient to yield the required accuracy even with the most 
contaminated signal, while a further increase is observed to only exhausting the computational 
resource at no extra benefits (cf. Fig. 7(c)). A four-layer 2D CNN network is therefore 
standardized for all numerical case studies undertaken in this study. 

The finally standardized CNN architecture is presented in Table 2 with details of all the layers 
employed. Overall, this 2D-CNN network constitutes four stacks of convolution and pooling 
layers apart from regular batch normalization, dropout, and activation layers (relu layer). The input 
layer consumes a 3D image-like input of dimension 1024 × 10 × 3 (similar to RGB matrix of image 
inputs) and the output layer assigns one of the eleven possible damage cases to this input. A 
learning rate of 0.001 and Stochastic Gradient Descent with momentum (SGDM) is used as an 
optimiser with a batch size of 50. The network is trained over the 300 number of epochs. The final 
feature map is classified using a fully connected layer with the help of the softmax activation 
function. Table 2 lists all the component layers elaborately along with the relevant dimensions. 

The network is first tested for its efficiency in detecting damages in the “test structure” under a 
moderate damage level (40-60%) and under a moderate noise contamination level (2% snr). The 
network is trained using strain responses corresponding to 1100 test cases (11 damage cases × 100 
simulations under random damage level, location, ambient temperatures and forcing). The 
proposed 2D-CNN network is observed to be very precise in detecting the occurrence of damages 
while pinpointing their locations for most cases. The algorithm is also found to be causing 
significantly low numbers of false alarms. The detection accuracy in terms of True Positive (TP), 
True Negative (TN), False Positive (FP), False Negative (FN) are presented in Table 3. The 
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Table 2 Details of CNN architecture 
Layer Name Operation Dimensions 

1 ‘image input’ Image Input 1024 × 10 × 3 images 

2 ‘conv_1’ Convolution 512, 3 × 3 × 3 convolutions with 
stride [1 1] and padding [1 1 1 1] 

3 ‘batchnorm_1’ Batch Normalization Batch normalization with 512 channels 
4 ‘relu_1’ ReLU Activation function 
5 ‘maxpool_1’ Max Pooling 2 × 2 max pooling with stride [2 2] 

6 ‘conv_2’ Convolution 128, 3 × 3 × 512 convolutions with 
stride [1 1] and padding [1 1 1 1] 

7 ‘batchnorm_2’ Batch Normalization Batch normalization with 128 channels 
8 ‘relu_2’ ReLU Activation function 
9 ‘maxpool_2’ Max Pooling 2 × 2 max pooling with stride [2 2] 

10 ‘conv_3’ Convolution 64, 3 × 3 × 128 convolutions with 
stride [1 1] and padding [1 1 1 1] 

11 ‘batchnorm_3’ Batch Normalization Batch normalization with 64 channels 
12 ‘relu_3’ ReLU Activation function 
13 ‘maxpool_3’ Max Pooling 2 × 2 max pooling with stride [2 2] 

14 ‘conv_4’ Convolution 16, 3 × 3 × 64 convolutions with 
stride [1 1] and padding [1 1 1 1] 

15 ‘batchnorm_4’ Batch Normalization Batch normalization with 16 channels 
16 ‘relu_4’ ReLU Activation function 
17 ‘maxpool_4’ Max Pooling 2 × 2 max pooling with stride [2 2] 
18 ‘dropout’ Dropout 50 % dropout 
19 ‘fc’ Fully Connected 11 fully connected layer 
20 ‘softmax’ Softmax softmax 
21 ‘classoutput’ Classification Output ‘0’and 10 other classes 
 
 

relevant numerical expressions are also given therein. Additionally, the ratio of TP and TN, 
Accuracy (ACC), precision (PPV) and Youden’s index (YI) are also presented for a better 
judgment of the efficacy of the proposed algorithm. YI or Informedness index is single statistic 
that assesses a multi-class classifier’s performance while giving false positive and negative 
detection equal importance. YI ranges from 0 to 1, where 0 and 1 signifies a very poor and perfect 
performance classifier respectively. In contrast to a random guess, YI facilitates with an informed 
decision that takes all predictions in to consideration. 

Next, the noise sensitivity of the proposed algorithm with the defined network is investigated. 
SWGN noise of four different strengths (0/1/2/5 % snr) are experimented with. It has been 
observed that the proposed network can efficiently identify the damage locations even in presence 
of noise as high as 5% snr. For a particular level of induced damage, the level of accuracy is, 
however, observed to be decreasing with the increasing levels of noise (cf. Table 4). To have a 
conclusive remark on the noise sensitivity of the proposed algorithm and the levels of damage that 
can be practically identified with this proposed algorithm, a detailed study is undertaken 
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Table 3 Performance assessment for a moderate damage case with 2% noise level 

Class 

TP TN FP FN TPR TNR ACC PPV YI 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Numerical definitions 𝑛ଵ|ଵௗ  𝑛଴|଴ௗ  𝑛ଵ|଴ௗ  𝑛଴|ଵௗ  
(1)(1) + (4) 

(2)(2) + (3) (1) + (2)(1) + (2) + (3) + (4) (1)(1) + (43) (5) + (6) − 1
0 81 966 34 19 0.81 0.96 0.95 0.70 0.77 
1 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
2 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
3 99 947 0 1 0.99 1.00 0.99 1.00 0.98 
4 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
5 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
6 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
7 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
8 100 948 0 0 1.00 1.00 1.00 1.00 1.00 
9 100 947 1 0 1.00 0.99 0.99 0.99 0.99 

10 66 981 19 34 0.66 0.98 0.95 0.77 0.64 
Notation 𝑛௔|௕ ௗ counts the instances of network decision for segment d as a while the truth is b. 
Notation 𝑛௖ௗ counts the instances for segment d with state c. 
a, b, c are Boolean variables taking values 0 or 1 denoting healthy and damaged states respectively. 

 
 

Table 4 Detection efficiency of the proposed algorithm for different damage 
and noise contamination levels 

Damage severity Weak: (20-40%) 
Noise (%snr) 0 1 2 5 
Time (secs) 10869 11410 11334 11470 

Accuracy (%) 86.36 79.90 79.70 77.88 
Damage severity Moderate: (40-60%) 

Noise (%snr) 0 1 2 5 
Time (secs) 6600 6947 6958 7020 

Accuracy (%) 95.90 95.45 93.03 91.80 
Damage severity Strong: (60-80%) 

Noise (%snr) 0 1 2 5 
Time (secs) 5317 5297 5863 5880 

Accuracy (%) 100.00 100.00 100.00 100.00 
 
 

involving different noise levels and damage severities. 
As mentioned previously in this article, the possible damage scenarios are segmented into three 

severity levels (weak: 20-40%, moderate: 40-60%, and strong: 60-80%). It has been presumed that 
the employment of SHM for damages over 80% is not pragmatic, while any damage of severity  
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< 20% is also not feasible. The latter assumption has further been confirmed using a separate study 
which showed very poor performance with the algorithm even with moderate noise contamination 
levels (2-5%). The reason for this poor performance can be attributed to the imperceptible change 
induced by such weak damage (1.96% change in the first frequency for a 10% damage in the 
second segment). Thus, this study focused on detecting practical levels of damage within the range 
(20-80%). However, for weaker damage cases, an alternate approach has been suggested later in 
this article. 

Three sets of experiments are undertaken for the three mentioned damage severities for all four 
predefined noise levels. It has been found that estimation accuracy depends on noise sensitivity 
and damage levels. For uncontaminated signals, all of the damage levels are estimated without 
much difference in the accuracies. However, for noisy signals, damage levels are found to play a 
major role in the detection accuracies. On the other hand, signals with strong damage severities are 
found to be sufficiently robust against noise contamination levels and therefore, the accuracy 
levels are mostly undeterred for all noise levels. Nevertheless, signals of weak damage severities 
are found to be significantly sensitive to noise. 

Overall, the algorithm has been found to be sufficiently robust for all damage severities for 
moderate noise contamination levels. The signals, perceived to be contaminated with high levels 
of noise (> 5% snr), or from a weakly damaged (< 20%) structure is advised to be taken special 
care in order to ensure certainty in detection. A Probability of Detection (POD) measure can be an 
efficient approach in this endeavor. For this, several signals from the same structure should be put 
through the proposed algorithm and the detection decisions have to be judged based on the 
frequency of the decisions provided by the algorithm. Mostly, the segment with actual damage 
should ideally be having maximum POD measure. For an example case study with 10%$damage, 
the POD measures are presented in Fig. 8 where it can be observed that the proposed algorithm 
can still detect the damage location probabilistically. The precision of the detection will, however, 
depend on the noise levels and damage severities. 

 
 

Fig. 8 Probability of Detection for < 20% damage case
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5. Conclusions 
 
A deep learning-based 2D-CNN approach coupled with EMD is adopted in this study to 

develop a near-real-time damage detection algorithm that is robust against ambient thermal 
uncertainty and practical levels of measurement noise. The EMD approach decomposes the 2D 
array of dynamic strain signals, recorded from a network of strain gauges, into damage-sensitive 
IMFs. Further, abstract spatio-temporal features embedded within these IMFs, sensitive only to 
damage, are extracted automatically by the 2D-CNN approach. The adopted CNN approach does 
not require a preconceived feature as the basis for damage identification. Instead, it extracts the 
features all by itself from the signal and categorizes them into corresponding damage cases. The 
selection of temperature invariant yet damage-sensitive features is thus automated, circumventing 
any forms of human intervention and associated bias. Overall, the proposed approach reduces the 
impact of sensor noise contamination while making the damage detection approach feature-free. 

Considering the non-availability of structural response data in its healthy and damaged 
conditions under varying temperature conditions, the present study resorted to numerical 
experiments (a FEM as a proxy for real structure) to validate the proposed ML-based SHM 
approach. For this, a bridge structure modeled using a geometrically nonlinear FEM involving 
thermal effects in its material and geometric stiffness. From this model, the impact of ambient 
temperature on structural stiffness is perceived to be significant compared to the structural damage. 

FEM simulated responses are subsequently analyzed with the proposed approach in which the 
selection of the IMFs is found to play a major role in deciding the detection accuracy. Supported 
by a correlation study following (Xun and Yan 2008), the first three IMFs are found to be sensitive 
as well as affecting the accuracies positively. The inclusion of any further IMFs was either 
redundant or detrimental from the perspective of the computational economy. 

 The further elaborate validation study established that the proposed algorithm is very accurate 
and precise in damage identification as long as the damage levels are ≥ 20% with noise ≤ 5%. 
The coupling of EMD with 2D CNN approach exploited the spatio-temporal correlations in the 
recorded signal arrays which is much less sensitive to ambient thermal variability. The approach 
ensured better precision even with moderate to high noise-contaminated signals. For damage level 
<20\% and noise levels > 5\%, a POD approach is proposed that takes a frequentist approach in 
search of the most probable damage location. 
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