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Abstract.  As civil infrastructure continues to age, the extension of service life has become a financially attractive 
solution due to cost savings on reconstruction projects. Efforts to increase the service life of structures include non-
destructive evaluation (NDE) and structural health monitoring (SHM) techniques. Nonetheless, visual inspection is 
more frequently used due to high equipment cost from other techniques and federal biennial inspection requirement. 
Recently, low-cost Radio Frequency Identification Devices (RFID) have drawn attention for crack monitoring; 
however, it was yet to be implemented in the field. This paper presents a crack monitoring algorithm using a 
developed RFID-based sensing system employing machine learning under temperature variations for field 
implementation. Two reinforced concrete buildings were used as testbeds: a parking garage, and a residential 
building with crumbling foundation phenomenon. An Artificial Neural Network (ANN)-based crack monitoring 
architecture is developed as the machine learning algorithm and the results are compared to a baseline model. The 
results show promise for field implementation of crack monitoring on building structures. 
 

Keywords:  crack detection; crumbling foundation; machine learning; residential building; RFID; 
structural health monitoring 
 
 
1. Introduction 

 
Structural Health Monitoring (SHM) is a broad field that encompasses multiple topics 

including damage detection, model updating, sensor development, cyber physical systems, and 
others. Civil structures can experience damage over time, such as fatigue, corrosion, crack 
propagation, and natural disaster damage. In 2017, the American Society of Civil Engineers 
(ASCE) infrastructure report card rates infrastructure at a D+ on a national scale (ASCE 2017). To 
improve infrastructure, service life extension of structures can be accomplished through damage 
detection. In addition, SHM has been relevant to other fields such as marine (Elshafey et al. 2010), 
aerospace (Giurgiutiu and Zagrai 2005), mechanical (Xia and Curtin 2007), automotive (Medeiros 
et al. 2014), and biomechanical (Muller et al. 2008), which have applications where structural 
damage needs to be detected. 
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Damage detection is the process of comparing two or more structural systems to identify 
changes to the materials or geometric properties. The damage identification process consists of 
damage existence, location, type, and severity (Park et al. 2003). This process can be executed for 
a structure on the global or local scale. In global SHM, an undamaged structure’s vibration 
characteristics are compared with those of a damage structure. This is followed by the 
implementation of an algorithm that would go through the damage identification process. In local 
SHM, the existence and location of damage in a structure is known prior. Non-destructive 
evaluation (NDE) techniques, such as acoustic emission testing, eddy current pulsed thermography, 
and ultrasonic sensing are then used to identify the type and severity of damage. NDE techniques 
have proven sufficient results for local SHM but are typically expensive in implementation. 
Therefore, departments of transportation (DOTs) who have budget constraints tend to not use NDE 
techniques for mandatory maintenance. 

Visual inspection is the most used technique for monitoring steel, concrete, and timber bridges 
by contractors, state, and County DOT’s (FHWA 2001). However, there are limitations with this 
approach. Visual inspections are based on the inspector’s expertise and might result in an 
inconsistent categorization of damage between projects. Additionally, the tracking of damage is 
limited by the inspector’s line of sight and may lead to gaps in the data logs. Therefore, there is a 
need for a process that allows for asset tracking, while being cost-effective. 

Radio-frequency identification (RFID) technology is used for a broad spectrum of applications 
like asset tracking and inventory analysis. Due to mass production of tags, RFID is relatively low-
cost, time-efficient, and independent of inspector experience. RFID can be categorized as an 
impedance-based damage detection method where smart piezoelectric ceramic material (PZT) is 
used as a built-in diagnostic system (Park et al. 2003, Giurgiutiu and Craig 1997, Raju 1998, Sun 
et al. 1994, Zagra and Giurgiutiu 2001). As such, RFID technology is an NDE that has gained 
interest over time due to its material testing capabilities. 

For testing, RFID has three components: an RFID tag, reader, and interrogator. The RFID 
reader transmits a signal to a tag in the form of an electromagnetic field. The tag will receive and 
backscatter the signal to the reader, where the interrogator will determine the electronic product 
code (EPC) value and a received signal strength indicator (RSSI) value. The EPC value can be 
considered as the label or name for a specific tag, letting the user know that tag is located nearby. 
The RSSI value is a measurement of power reflected from the tag, usually determined by distance 
from the reader and changes in environment where the tag is attached. Therefore, RFID can be 
applied to crack detection and the monitoring of the state of the crack. 

Recently, researchers have leveraged the theoretical understanding of received power to 
investigate the use for RFID in terms of crack detection using low-cost commercial RFID sensors. 
Martínez-Castro et al. (2017) verified the performance of a new RFID based crack sensor using 
low-cost commercial RFID in a lab scale experiment for metal structures. Following this, 
researchers continued the investigation of RFID based cracks sensors on metal structures (Xu et al. 
2019, 2020, Marindra and Tian 2019, Marindra et al. 2018). Bruciati et al. (2019) extended this 
knowledge to cementitious material and verified its performance in a lab scale experiment. In the 
lab, researchers were able to achieve a controlled environment. However, for field implementation, 
a methodology to address environmental fluctuations is required. 

Variations in the environment are known to influence RSSI. A study conducted by Amajama 
(2016) found that an increase in temperature correlated to the decrease in signal strength. In civil 
structures, changes in temperature and material properties cause a nonlinear effect on the data of 
interest. Methods to address nonlinear effects on data include traditional statistical methods, like 
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multivariate linear regression and artificial intelligence (AI). From the late 1980s, an increase in 
research has emerged using artificial intelligence for structural damage detection, notably, artificial 
neural networks (ANN). ANNs are an effective method because they can adapt to nonlinear effects 
during neural network training. Researchers developed an auto-associative neural network (AANN) 
based method that can consider environmental and operational conditions for structural damage 
detection (Sohn et al. 2002). Also, an ANN-based temperature-effect compensation method was 
presented by (Sepehry et al. 2011) for impendence monitoring in bolted joints. These works show 
viability for monitoring structures experiencing environmental damage. 

Concrete foundations are susceptible to damage due to excessive loading, temperature, 
humidity, and material degradation due to chemical reactions. In Eastern Connecticut, many 
municipal and residential buildings are impacted by Crumbling Foundations (Holleran 2020). In 
Connecticut, crumbling foundations involve the deterioration of concrete due to the presence of a 
pyrrhotite-bearing aggregate (Duchesne and Fournier 2013). In the presence of oxygen and water, 
pyrrhotite undergoes sulfide oxidation to produce iron oxyhydroxides and sulfuric acid. The 
resulting sulfuric acid reacts with Portland cement paste phases to create gypsum and ettringite. 
The formation of these two products causes an increase in volume, which leads to an expansion in 
the concrete structure and ultimately cracking (Duchesne and Fournier 2013). The formation of 
said cracks can be observed around 10 to 30 years into the structure’s service life (Schaefer and 
Schaefer 2020). Therefore, low-cost RFID-based crack sensors can be beneficial to monitor such 
crack propagation. 

In this paper, a systematic approach for crack detection using machine learning under 
environmental fluctuations has been developed and experimentally implemented for two building 
structures using the low-cost RFID-based sensors. Multivariate Linear Regression (MLR) and 
Artificial Neural Networks (ANN) have been adopted for predicting crack propagation under 
environmental variabilities, and their performances have been compared. The testbed structures are 
a reinforced concrete parking garage building and a residential building with a crumbling 
foundation in Connecticut. An RFID-based crack sensor has been installed on multiple locations 
with varying cracks. The crack width, environmental factors, and RFID tags’ RSSI have been 
measured. Using the measured data, the ANN-based crack prediction analysis has been conducted. 
This research is the first field implementation of the low-cost RFID-based crack sensors on 
building structures. 

 
 

2. Theoretical background 
 
This section presents an overview of the theory used to conduct this work. The development of 

RFID-based crack sensors is explained through the received signal strength indicator (RSSI). The 
baseline methods including MLR, ANN, and weighted percent error have also been presented for 
completeness. 

 
2.1 Received signal strength indicator 
 
An RFID-based crack sensor has been developed based on the correlation of crack appearance, 

to the change in impedance and radiation characteristics (Kalansuriya et al. 2013) 
 𝑃ோ = 𝑃்(𝐺்𝐺ோ)4𝜋 ൬ 𝜆(4𝜋𝑅்𝑅ோ)ଶ൰ଶ 𝜎 (1)
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where, PR is the backscatter power in dB, PT is the transmitted power in dB, GT is the transmitting 
antenna gain in dB, GR is the receiving antenna gain in dB, λ is the signal wavelength in meters, RT 
is the distance between the target and the transmitting antenna in meters, RR is the distance 
between the target and the receiving antenna in meters, and σ is the targets radar cross section in 
meters2. 

Using ultra-high frequency (UHF) passive RFID tags as sensing units, the most important 
measured values for crack detection from a tag, the RSSI, can be obtained 

 𝑅𝑆𝑆𝐼 = 10𝑙𝑜𝑔ଵ଴ ൬ 𝑃ோ1mW൰ (2)
 

where RSSI is the received signal strength indicator in dB. 
 
2.2 Multivariate linear regression 
 
To establish a baseline correlation between independent and dependent variables, a multivariate 

linear regression (MLR) method has been used. MLR is a method used to estimate the size and 
statistical significance of the relationship between these variables. MLR can be defined as follows 

 𝒀 = 𝑿𝑩 + 𝑬 (3)
 

where Y is the response matrix, X is the design matrix, B is the matrix of coefficients, and E is the 
error matrix (Helwig 2017). Therefore, MLR methods are used for multi-output cases. 

 
2.3 Artificial Neural Network (ANN) 
 
An Artificial Neural Network (ANN) is a computational system designed to mimic the 

performance of the human brain. The ANN finds patterns in data, which are too complex or too 
large for typical computational systems, by analyzing past data (Dormehl 2019). The model 
hyperparameters are parameters that determine how the model is trained and how it is structured. A 
particular set of hyperparameters can be classified as the architecture of the model. This 
architecture determines the patterns that will be learned by the model given a set of data. Here, the 
architecture defines algorithms like the loss function and optimizer, along with structure of the 
network (Leonel 2019). 

To judge the performance of the ANN model, the mean squared error (MSE) metric has been 
used because of its enhanced ability to handle the multi-output case. The MSE is estimated over 
the number of samples, 𝑛samples, such that 

 𝑀𝑆𝐸(𝑦௜, 𝑦௜̂) = 1𝑛samples
෍ (𝑦௜ − 𝑦̂௜)ଶ௡samplesିଵ
௜ୀ଴  (4)

 

where 𝑦̂௜ is the predicted value of the 𝑖-th sample, and 𝑦௜ is the corresponding true value. 
The Loss function is another hyperparameter that serves to compute the quantity that a model 

should seek to minimize (Keras 2015). When the distribution of the target variable is mostly 
gaussian, but has some outliers, an acceptable loss function to use is MAE (Brownlee 2018). 
Therefore, MAE is estimated over 𝑛samples 
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𝑀𝐴𝐸(𝑦௜, 𝑦௜̂) = 1𝑛samples
෍ |𝑦௜ − 𝑦̂௜|௡samplesିଵ
௜ୀ଴  (5)

 

where 𝑦̂௜ is the predicted value of the 𝑖-th sample, and 𝑦௜ is the corresponding true value. 
For the optimizer, Adagrad was used because it is a gradient-based optimizer designed to 

updates infrequent parameters at a higher rate than frequent parameters (Ruder 2017). This 
attribute lead makes Adagrad well suited to handle datasets have a sparse nature, which is typically 
the case in experimental work. 

 
2.4 Model performance validation 
 
The performance of the predicted MLR and ANN models have been compared to the real crack 

widths obtained via visual inspection. To do this, the analysis consists of a percent error 
 %𝐸𝑟𝑟𝑜𝑟 =  |(Predicted୑୭ୢୣ୪ − Realୈୟ୲ୟ)|(Realୈୟ୲ୟ) × 100 (6)
 

where, Predicted୑୭ୢୣ୪  is the predicted crack width for the MLR or ANN model and the Realୈୟ୲ୟ is the crack width collected via visual inspection. However, to account for non-crack 
values, or cracks of width 0, Eq. (6) is modified as follows 

 %Error୵ୣ୧୥୦୲ୣୢ =  |(Predicted୑୭ୢୣ୪ − Realୈୟ୲ୟ)|(Realୈୟ୲ୟ + 1) × 100 (7)
 
 

3. Methodology 
 
In this section, an overview of the methodology is presented. The damage detection process 

from planning a monitoring site and the crack prediction architecture using ANN are discussed. An 
overview of the experimental setup has been presented with the components of an RFID-based 
sensing system and equipment specifications. The information of the two test sites and testing logs 
have also been discussed. 

 
3.1 Damage detection procedure 
 
The damage detection procedure follows a crack detection flowchart shown in Fig. 1. Site 

planning involves identifying locations with necessary monitoring points, initializing the necessary 
sensors, such as RFID tags, and preparing equipment, e.g., reader and data collection tool. Data 
collection involves capturing screen recordings of continuous data for all testing sets, while also 
recording the pertinent weather data corresponding to the testing time. The data cleaning phase 
involves the transformation of recorded data to individual frames and the selection of data points 
at a uniform sampling rate. The data pre-analysis phase requires statistical metrics to be calculated 
to create a data frame with statistical metrics and weather information to correspond to the crack 
width. Finally, the produced data frame is utilized inputs to the ANN Architecture that will be 
discussed in the next section. This flowchart procedure allows for the integration of prediction 
models for field testing. 
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Fig. 1 Crack detection flowchart

 
 

Fig. 2 ANN architecture
 
 
3.2 ANN-based damage prediction architecture 
 
A base ANN model has been created to aid in the identification of cracks and the quantification 

of their corresponding widths. The hyperparameters of this model have determined the network 
structure and the training process. The network structure contains 4 layers as shown in Fig. 2. The 
input layer has 5 nodes corresponding to the input parameters. The input parameters describe the 
RFID data series along with the environmental conditions during testing. This has been followed 
by 2 hidden layers that have 100 nodes each. The nodes in the hidden layer determine the capacity 
for the model to learn (Dormehl 2019). 100 nodes were selected via experimentation to avoid 
overfitting of the model to the data. The last layer is the output layer and contains only one node. 
This node is the crack width prediction given by the ANN model. 

The algorithm developed is defined by several steps per epoch shown in Fig. 3. First, the 
weights, or parameters, of the model are randomly initialized at the beginning to small numbers 
close to zero. The first row of observations is then inputted into the input layers where each feature 
corresponds to an input node. Forward-propagation occurs from left to right, where the neurons are 
activated so that the impact of each neuron’s activation is limited by the weights. Propagations 
occur until a predicted values of crack widths, Ypred, is found. The prediction values are compared 
to the validation, Yval, and a loss is obtained. Once the loss is obtained, back-propagation, or from 
right to left, the error is used to update the weights to minimize the loss function. The algorithm 
then updates the weights and iterates the next batch of input observations. Once the iterations 
through all batches are complete, the training has successfully gone through one epoch. This 
process makes use of a batch size of 2 and 100 epochs. 

 
3.3 Experimental setup 
 
The testing equipment includes a handheld reader, RFID tags, Measurement Methods (MMs), 
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Fig. 3 ANN Procedure

 
 

Fig. 4 Experimental setup
 
 

Fig. 5 Alien Technology ALN-9662 short inlay tag
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and a camera as shown in Fig. 4. The ATID AT870N UHF Handheld Reader with anti-collision 
technology (ATID 2019) has an operating frequency of CE 865 MHz-868 MHz and FCC 902 
MHz-928 MHz and a read range up to 5 meters. For RFID-tags, the Alien Technology ALN-9662 
short inlay tag was used. This tag is EPG Gen 2 and ISO/IEC 18000-6C compliant and uses a 
Higgs 3 EPC Class 1 Gen2 RFID tag integrated circuit (IC). The tag IC is made of a flexible 
metallic material, which is adhered to a wet inlay (Alien 2014). Due to its commercial availability, 
the price per tag when purchased in bulk is around $0.10 to $0.20 in terms of purchasing size. A 
detailed view of the tag can be seen in Fig. 5. The sensor was directly attached on the concrete 
surfaces with masking tapes without substrate material. As cementitious materials are different 
than metal surfaces, the RSSI can be readily measurable on the material because of its low relative 
permittivity. 

Additionally, measurement methods (MMs) developed by Fils and Jang (2020) have been used 
to provide a controlled environment with accurate and consistent results. Researchers 
accomplished this by creating measurement methods (MMs), which consisted of cardboard 
enclosures of varying characteristics. The MMs that were most effective at controlling 
environmental effects on RFID readings have been employed for this paper. These MMs are 
MM_A1 and MM_A3.2 with dimensions of [length x width x depth]. MM_A1 is a cardboard box 
construction with dimensions [12 in × 3 in × 3 in] where all four antenna surface areas are 
connecting. MM_A3.2 is a cardboard box construction with dimensions [12 in × 3.25 in × 2.75 in] 
where all four antenna surface areas are connecting, and the internal corrugations are exposed (Fils 
and Jang 2020). All MMs are slightly different but the length, read distance, or interrogation 
distance have been kept constant in this work. 

 
 

4. Testbed 1: Reinforced concrete parking garage 
 
4.1 Testbed description 
 
For the first test bed, a precast reinforced concrete (RC) parking garage building at the 

University of Connecticut (UConn), as seen in Fig. 6, was adopted (Vistols 2020). Built in 1998, 
this build project encompasses 5 levels and holds 1,035 parking spaces (Unistress 1998). Located 
in New England, this building has been exposed to high and low temperature extremes. As a result, 
the exterior walls of the parking garage have various ranges of thermal cracks on concrete covers, 
which have been regarded as crack variation of the first set of experiment. However, no exposed 
rebar or other damage have been identified at the testing locations. 

The surface cracks, that have been induced by thermal shrinkage on the walls at the foundation 
level of the building, have been selected for testing because further cracking in-service building is 
prohibited. In total, four locations have been considered: one undamaged location for control, and 
three cracked locations with varying crack widths. The crack width and visual representations of 
these locations are shown in Table 1. 

The tests were conducted in accordance with the crack detection flowchart discussed in Section 
3.2. The equipment and RFID tags described in section 3.3 have been employed. At each location, 
the RSSI has been collected for a time span of 60 seconds at a 25 Hz sampling rate. The 
temperature data at the start of each measurement was collected. The raw data were cleaned 
deleting the first 5 seconds and the last 5 seconds, and down-sample the middle 49 seconds at a 5 
Hz. In total, 160 samples are used for analysis. 
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Fig. 6 North Campus Parking Garage (Vistols 2020)

 
 

Table 1 Damage description 
Location Identification Crack width (in) Visual representation 

1 No crack 
(Control) 0.000 

 

2 Vertical crack 0.020 

 

3 Vertical crack 0.025 

 

4 Vertical crack 0.030 

 

*X mark indicates the location where the left RFID patch was aligned when installed 
 
 
4.2 Results 
 
4.2.1 Statistical analysis 
To provide a comprehensive view of the measure data, various statistical measures were 

implemented among RSSI, temperature, and crack width. Distributions of the average, mode, 
standard deviation (StDev), and range of the individual samples were correlated to either 
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Fig. 7 Average RSSI and mode versus temperature

 
 

temperature or crack width. In Fig. 7, the correlation of the average and mode of the RSSI vs 
temperature is shown. Both the average and mode are in alignment and increased by an average of 
2 dB, as the temperature rises from 48°F to 81°F. Overall trend is proportional; however, it shows 
nonlinear behaviour around 61°F. This brings rise to potential future work to further investigate 
potential unknown factors. Possible parameters for future work include humidity, dew points, as 
well as the existence of hidden cracks underneath. To check the robustness of the developed ANN 
model, the results have been included in the training and test sets. 

 
 

 
Fig. 8 North garage RSSI standard deviation and range versus temperature 

 
 

 
Fig. 9 North garage RSSI average and node versus crack width 
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Fig. 10 North garage RSSI standard deviation and range versus crack width 

 
 
In Fig. 8, the StDev and range are plotted relative to temperature to illustrate the dispersion 

properties of the different samples. The StDev is consistent around 1 dB for all temperatures, 
signifying that temperature did not have a significant influence on the StDev. The range was 
fluctuating above and beyond 5 dB and experienced significant outliers at higher temperatures. 

After the correlation between RSSI vs. temperature was analyzed, the correlation between RSSI 
and crack width was investigated. In Fig. 9, the average and mode of all samples relative to the 
crack width is presented. Relative alignment of the average and mode are present along with an 
average decrease of 2 dB as the crack width increase from 0 to 0.3 inches. 

Next, in Fig. 10, the StDev and range of the RSSI relative to crack width is reported. Similar to 
the correlation between RSSI and the temperature, the StDev was consistent around 1 dB. 
However, in terms of the range, more outliers are present throughout different widths. 

The average and mode describe the correlation of RSSI to temperature or crack width, while 
StDev and range speak to the stability of testing. A general increase in average and mode RSSI is 
depicted as the temperature increases, while the standard deviation and range remain stagnant with 
a few outliers. The mixed behaviour of temperature and crack width, with respect to RSSI 
descriptive variables, add additional complexity to field testing; leading to the implementation of 
the damage identification method using ANN. 

Using the statistical measures of interest and environmental conditions, a data frame was 
created. This data frame contained average, mode, standard deviation, and range of the RSSI 
values along with the temperature and crack width corresponding to the location of damage. 

 
4.2.2 Machine learning-based measures 
The ANN for crack detection was created based on Figs. 2 and 3, and its crack prediction 

performance was validated with experimental data. Among all measured data, 90% of data was 
used to train and create the ANN for crack prediction. Then, the remaining 10% of data was 
inputted into ANN, so that it will output the crack quantities. For comparison, an MLR prediction 
was employed. 

In the process of training ANN, the loss function was plotted using a mean absolute error, Eq. 
(5), and a metric for model performance was used as the mean squared error, Eq. (4)). Fig. 11 
shows the training data along with the validation sets. As we train the ANN with more epochs, 
convergence of the training and validation data is reached. The convergence is an indication that 
that the model is sufficiently trained. Based on the loss functions and mean square error, the 
trained ANN shows stable convergence. 
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(a) Model loss (b) Model accuracy 

Fig. 11 Results for 90% trained ANN model
 
 

 
Fig. 12 Crack width predictions for MLR and ANN

 
 
Using the trained ANN, the crack quantities were predicted as shown in Fig. 12. Test trials were 

randomly chosen and input to ANN. For each trial, the crack prediction using ANN and MLR are 
shown and is compared with the actual crack quantities. The top left chart of Fig. 12 shows cases 
where there was no crack present. The ANN outperformed the MLR in these cases. The 
interconnected layers of the ANN were able to identify additional feature and provided a higher 
level of prediction flexibility to the ANN. Hence, the ANN model was able to learn the difference 
between a cracked and non-cracked case. The other cases predicted are 0.020 in, 0.025 in, and 
0.030 in, shown in the top right, bottom left, and bottom right respectively. Here we see the ANN 
predictions are in close alignment to the actual crack widths. Additionally, the ANN performance 
exceeded that of the MLR. 

In addition, the error in the model’s crack prediction is calculated as shown in Fig. 13. 
Considering the 16 test trials, the ANN predicted closer to the true value 12 out of 16, or 75% of 
the time. The MLR had a 1.07% error with a standard deviation of 0.65% while the ANN had a 
0.53% error with a standard deviation of 0.59%. Both methods provided reasonable crack 
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Fig. 13 Error in crack width prediction from the MLR and ANN models 

 
 

detection performance, however, the ANN predicted the crack widths more accurately than the 
MLR because of the deep learning capabilities of ANN. During the training of the ANN, the model 
was able to adapt to nonlinear effects by accounting for the variability in temperature and 
differentiating a cracked and a non-cracked case as small as 0.01 inches in width. 

 
 

5. Testbed 2: Residential building with crumbling foundation 
 
To investigate the overall nature of the Crumbling foundation cracking and its relative crack 

sensor sensitivity, a test bed that encompass multiple crack types is ideal. A test bed that also 
accounts for variables such as temperature, and varying crack widths is needed to accurately 
classify RFID crack sensor sensitivity. 

 
5.1 Testbed description 
 
A residential building in Coventry CT was identified as a crumbling foundation. Based on a 

visual examination report (Schaefer and Schaefer (2020), a licensed professional engineer 
concluded that the visible cracking patterns commonly associated with deleterious pyrrhotite-
bearing aggregate are present, with crack widths less than 1.0 mm (0.39 in) that extend less than 
20% of any contiguous wall plane. If these cracks surpass widths of 1.0 mm (0.39 in) then a 
category 3 would be initiated and a critical decision by the owner would need to be made. For 
crumbling foundations, no effective retrofitting method is known, therefore, the owner should 
either replace the foundation or vacate the premises. The tracking of the crack widths would be 
instrumental in determining this critical decision. For accurate crack evaluation, NDE method 
including X-Ray Fluorescence (XRF), Light Detection and Ranging (LiDar), Ultrasound, Ground 
Penetrating Radar (GPR) are desired (Gobi and Ashe 2019, Lienert and Lee 2020, Daniel 2020). 
However, a typical owner has limited access to high-cost high precision technology, and low-cost 
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Table 2 Damage description 
Location Crack type Initial crack width (in) Visual representation with RFID tags 

1 Vertical 0.004 

 

2 Vertical 0.004 

 

3 

A 
Intersection of 

three cracks 

0.009 

 

B 0.004 

C 0.009 

4 Vertical 0.016 

 

5 Vertical 0.004 

 

6 Horizontal <0.004* 

 

*0.004 was the minimum scale of the crack ruler used in the test 
 
 

crack evaluation can be desired. Therefore, crack monitoring using the RFID-based crack sensors 
was considered and long-term experiment was conducted. 

For a holistic view of the site, an initial visit was made. Through this visit, it was revealed, 
through owner account, that large cracks existed before purchasing the unit and the nearby 
residents were dealing with similar issues. In addition, expert investigation concluded the presence 
of shrinkage cracks ranging from 1-2 mm in the vertical direction, gypsum powder surrounding 
spider-like cracks on an interior non-load bearing wall, and hair line crack both vertical and 
horizontal on the surface of an exterior load bearing wall. For testing purposes, Table 2 illustrates 6 
damage locations with varying crack type and width that were adopted. 

The experiments of this residential building were conducted using the identical procedure as 
the testbed 1 in accordance with the crack detection flowchart discussed in Fig. 2. The experiments 
were planned for 1 year; however, actually conducted for 4 months between November 2019 to 
February 2020. The long-term experiment has stopped because of the COVID-19 pandemic in 
March of 2020. 
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Fig. 14 Log of crack width via visual inspection over time

 
 

 
Fig. 15 Log of average RSSI values for damage locations over time 

 
 
5.2 Results 
 
5.2.1 Visual inspection of cracks 
Visual inspection techniques and frequent site visits allowed for an initial analysis of the 

damage cases. The crack widths for the 6 different damaged locations were monitored as shown in 
Fig. 14. The threshold that separates a category 2 from a category 3 is denoted by the horizontal 
red solid line. Testing locations 4 and 5 are approaching the limit and need to be closely monitored. 
Other locations seem temporarily stable but can experience change in future observations. 

 
5.2.2 RSSI and statistical analysis 
Fig. 15 shows the average raw RSSI values computed for six different crack locations on four 

different tests, with the last two dates having two tests each. For Location 4, the overall crack 
width increased while the RSSI decreased. Therefore, a direct correlation between the crack width 
and the RSSI is shown. Overall, an inverse correlation between RSSI and crack width is presented. 
Location 5 is of particular interest because in Fig. 14, a high relative change in crack width 
between the November and December tests. Similarly, in Fig. 15, this phenomenon is reflected by 
the RSSI decreasing from -79 to -83 in dB scale. For locations 1, 2, 3, and 6, the crack width was 
smaller than 0.01 inches and no clear correlation was found. Past studies concluded that for cracks 
that are larger than 0.01 inches, a proportional relationship between the RSSI and crack width can 
be captured (Martínez-Castro et al. 2017, Bruciati et al. 2019, Sherpa et al. 2021). 

To provide a comprehensive view of the measure data, various statistical measures were 
implemented among the RSSI, temperature, and crack width. The distributions of the average, 
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Fig. 16 Correlation between average and mode RSSI and under temperature 

 
 

 
Fig. 17 Correlation between standard deviation and range RSSI and under temperature 

 
 

mode, standard deviation, and range of the samples as were correlated either temperature or crack 
width. Fig. 16 shows the correlation between the average and mode of all samples relative to the 
temperature. Both measurements are in alignment and increase by an average of 4 dB as the 
temperature rises from 30°F to 46°F reflecting the early winter season in New England. Overall, 
the average and mode of the RSSI are proportional to the temperature. 

Next, the StDev and range of the RSSI are plotted relative to temperature in Fig. 17. Similar to 
the results of testbed 1, the StDev remains around 1 dB for all temperatures indicating that 

 
 

 
Fig. 18 Correlation between average and mode RSSI and under crack width 
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Fig. 19 Correlation between standard deviation and range RSSI and under crack width 

 
 

temperature does not have a significant influence on the StDev of the RSSI. The range of the RSSI 
changes between 5 dB and 10 dB, exhibiting outliers at higher temperatures. 

Fig. 18 presents the average and mode of the RSSI relative to the temperature. The average and 
mode are reasonably aligned and shows a nonlinear anti-proportional relationship between the 
crack width by an average of 3 dB from 0.004 to 0.0225 inches. 

Lastly, the StDev and range of the RSSI are plotted relative to crack width in Fig. 19. Similar to 
the StDev of the temperature, the StDev of the RSSI remained around 1 dB. However, the range of 
the RSSI does not show significant outliers throughout different categories of the crack widths.  

The correlation of the average and mode of the RSSI, relative to temperature (Fig. 16) and to 
crack width (Fig. 18), showed similar results to one of testbed 1. Therefore, the damage 
identification method using ANN is employed for crack prediction as well. 

 
5.2.3 Machine learning-based measures 
Using the statistical measures and environmental conditions, an ANN data frame was created. 

This data frame contained average, mode, standard deviation, and range of raw RSSI values along 
with the temperature and crack width corresponding to the time and location of testing. This 
procedure, the identical procedure described in Figs. 2 and 3, and an MLR prediction method was 
employed for comparison. Both MLR and ANN models were trained using 90% of the data and 
the remaining 10% of data were used for crack prediction. 

The process of training ANN for testbed 2 was identical to testbed 1. The loss function was 
plotted using a mean absolute error, Eq. (5), and a metric for model performance was used as the 

 
 

 
(a) Model loss (b) Model accuracy 

Fig. 20 Results for 90% trained ANN model
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mean squared error, Eq. (4). Fig. 20 shows the training data along with the validation sets. Once 
more, convergence of training and validation data is observed as the number of epochs increases. 
Therefore, the successful training of ANN is assumed. 

The predictions and error in prediction from the MLR and the ANN can be seen in Figs. 21 and 
22, respectively. The data used for prediction allowed for one prediction for a few cases. This is 
not enough to determine performance on the MLR and ANN models for this testbed. For cases 
“0.0225 in” and “0.018 in”, both predictions were incorrect by roughly 1%. Given the data used 
for prediction allowed for one prediction for a few cases, the increase of data would benefit the 
outcome of this prediction and therefore shows promise. For cases “0.006 in” and “0.004 in”, the 
crack width was less than 0.01 inches. The model is expected to fail here due to the limitations 
presented by Sherpa et al. (2021). The sparse and small amount of experimental data caused the 
MLR to falsely conclude the negative crack prediction that correlation of the independent and 
dependent variables led to causation. Nonetheless, the ANN model prediction closely matched 

 
 

Fig. 21 Crack width predictions for MLR and ANN
 
 

Fig. 22 Error in crack width prediction from the MLR and ANN models 
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crack widths for “0.006 in” and “0.004 in” cases. 
Using the weight error presented in Eq. (7) and the error in the model’s prediction is presented 

in Fig. 22. The MLR had a 0.90% error with a standard deviation of 0.59% while the ANN had a 
0.62% error with a standard deviation of 0.62%. For cases “0.006 in” and “0.004 in”, the 
prediction error was 0.15% and 0.06% respectively, showing promise to experimental datasets that 
are sparse and small. Therefore, cracks of the residential building were successfully detected with 
the developed RFID-based sensing system with machine learning algorithms under temperature 
variability. Given the ANN and MLR models had 4 months of data instead of 12, the results show 
promise for future development. Other scopes of application for this cost-effective method of 
crack monitoring could be bridges as they often face cracking due to being greatly exposed to 
external forces. Additionally, bridges are greater used by the public and take in more traffic than 
buildings. This makes it more difficult to seal time and physical boundaries off to fix any severe 
cracking behavior that may occur. Based on this, several improvements can be made to the study 
design. More frequent testing would be ideal however this may be practically difficult as the 
testing site is a residential building. This would provide a more accurate picture as the changes are 
monitored day to day rather than month to month. Additionally, as it is difficult to distinguish 
between small changes in crack width within a fraction of 0.01 inches, a more accurate crack 
measurement method is needed for cracks smaller than 0.01 inches. With the current set-up, this 
method can be useful if the cracks from the crumbling foundation are greater than 0.01 inches, 
which would cover Categories 2 and 3 Crumbling Foundation with low cost. Further refinement is 
desired for the application for current structures before it is applied to bridges. 

 
 

6. Conclusions 
 
This paper demonstrated a successful crack monitoring algorithm with a developed RFID-

based sensing system using machine learning under temperature variations. The crack monitoring 
algorithm was validated on two physical building structures in the field including: (1) crack 
detection on a reinforced concrete parking garage structure and (2) a residential crumbling 
foundation. A categorization of RSSI verse temperature was obtained for field conditions under 
extreme temperature fluctuations. The average and mode RSSI value were in alignment for both 
test beds regardless of temperature and crack width correlation. This indicates the temperature 
effect were controlled using the stated MMs and that average and mode RSSI can be interchanged 
if a controlled environment is achieved. The ANN model outperformed the MLR model in both 
building structures due to ability to differentiate crack vs non-crack cases and robustness no small 
perturbations. Although there was nonlinear behavior at 61°F, the ANN predicted the crack width 
within reasonable range. Further investigation on additional environmental factors that can affect 
the RSSI in the field situation is still underway to improve the crack prediction accuracy. The 
insight presented in this paper showed great potential of the developed RFID-based crack sensors 
for field implementation on building structures subject to crumbling foundations. 
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