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Abstract.  Sensor placement optimization is an attempt to reduce the cost and enhance the detection performance 
in structural health monitoring (SHM) systems. This paper aims at studying sensor placement optimization for SHM 
systems. The attention is paid to lamb wave or guided wave-based SHM (GWSHM). By using detection theory and 
Bayes risk framework the expected cost (loss) of decision making or Bayes risk for SHM system is minimized and 
the optimal detector is derived. The global detection and false alarm rate are used for quantifying the detector 
performance. In this framework the sensor coverage, directionality and probabilities of damage occurrence are all 
accounted for. The effect of cross-correlation among actuator-sensor pairs is then considered by presenting an 
appropriate model for covariance structure. Applying the genetic algorithm, the global false alarm rate is minimized 
for a target global detection rate and different levels of correlation. In addition, the receiver-operating characteristic 
(ROC) is determined to analyze the effect of correlation on the system performance and optimal arrangement. For 
demonstration of the effect of cross-correlation on damage detection a numerical analysis is carried out using 
ABAQUS standard. Finally, it is concluded that by increasing the correlation among actuator-sensor pairs, the 
performance of the SHM system decreases. 
 

Keywords:  structural health monitoring; optimal sensor placement; Bayes risk; detection theory; lamb 
wave 
 
 
1. Introduction 

 
Structural health monitoring involves with identifying the health state of the mechanical, civil 

and aerospace structures and is defined as the non-destructive and continuous monitoring of the 
structures using an array of sensors. In the other words SHM is the process of in-service and real-
time monitoring data acquisition for health management of structural system and scheduling 
maintenance routines (Adams 2007). SHM reduces the maintenance costs because it detects the 
accumulated damage before reaching to its critical level (Gopalakrishnan et al. 2011). The key 
idea in SHM is to compare data acquired from damaged state to a baseline that can be thought of 
as the measurements taken when the structures is undamaged. To enhance the performance of the 
detection process it is required to reduce data dimension using signal processing in order to extract 
effective features that are representative of the damages (Farrar and Worden 2013). 
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One of the most critical issues in SHM is the optimal system design in order to assess the state 
of the structure with a desirable accuracy. Some factors that play rule in system design include 
transducer arrangement, operational and environmental conditions and type of sensors. For 
example, it is desirable to place the limited number of actuator/sensors in positions that can 
maximize the detection performance and minimize the cost. Optimal sensor placement (OSP) 
approaches are widely used to maximize the detection performance of a SHM system. OSP 
strategies have also the potential to reduce life cycle costs, risk of false detection and cost of 
closure and maintenance of structures. 

The first famous attempt towards OSP approaches was introduced by Kammer (1991). In his 
research, the optimal arrangement is determined by minimizing determinant of Fisher information 
matrix (FIM). FIM denotes the error covariance matrix of the estimated parameters, which reflects 
the importance of the dynamic information in the measurement responses. Maximizing the 
determinant of the FIM will maximize a combination of the spatial independence of the target 
modal partitions and their signal strength in the sensor data. Liu et al. (2008) used the modal 
assurance criterion (MAC) and modal strain energy (MSE) as objective function to determine the 
optimal location of sensors. Guo et al. (2004) obtained an objective function based on the fact that 
the presence of damage in the structure leads to a change in the stiffness and consequently mode 
shapes. They used an improved genetic algorithm to find the optimal positions of sensors on a 
truss structure. Yi et al. (2012a) used a modified monkey algorithm to optimally place the sensors 
on a high-rise building. They also published another work (Yi et al. 2012b) and applied a 
methodology called asynchronous-climb monkey algorithm (AMA) for optimal sensor placement 
on canton tower in china. These monkey algorithms were demonstrated to be more accurate than 
binary coding methods (i.e., evolutionary algorithms) in the local and global search capability. 
Zhou et al. (2014) presented a firefly algorithm for sensor placement problem exploiting modal 
data. Yang (2018) presented a hybrid optimization algorithm using finite element grids updating 
for sensor placement optimization. He applied the effective independence method in conjunction 
with a sensor distribution index for improving OSP performance. Azarbayejani et al. (2008) 
applied a probabilistic method based on the concept of probability of detection (POD) for optimal 
sensor placement on a bridge structure. Sun and Büyüköztürk (2015) proposed a discrete 
optimization using artificial bee colony algorithm for OSP in three structures: a 27 bar Truss 
Bridge, a 21-storey building at the MIT campus and the 610 m high Canton Tower. Yi et al. (2016) 
used the wolf algorithm for OSP based on a multiaxial modal assurance criterion. 

Most of the works in literature have been dedicated to OSP based on modal properties of the 
structure whereas there have been a few studies in the framework of GWSHM. Lee and 
Staszewski (2007) studied the effect of sensor-actuator positions on the reliability of damage 
detection process. They used the local interaction simulation method and experiment to obtain 
amplitude of wave packages scattered from a rectangular slot with different sizes and fatigue crack. 
Their study reveals that the best locations for sensors are the areas where the increase in amplitude 
of wave packets is higher than other regions. In the research done by Gao and Rose (2006), a 
confident monitoring region is presented for a damage probability distribution. The formula for 
probability of detection is simply derived from the assumption that the signal strength is 
proportional to the inverse of the distance between sensor and damage. Das et al. (2009) faced the 
problem of OSP by presenting the certainty region of actuator-sensor pairs. Without consideration 
of directionality, they minimized the overlap between neighbouring sensors to place sensors in 
regions with best spatial coverage. Mallardo et al. (2012) utilized a probabilistic analysis for 
optimal placement of piezoelectric sensors for impact localization in a stiffened composite panel. 
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They introduced a fitness function as a measure of probabilistic error for impact detection and 
minimized that by genetic algorithm. Thiene et al. (2016) proposed an OSP strategy by 
maximizing the coverage area of sensors in a composite panel. This methodology relies on 
physical properties of wave propagation and geometrical features of structure. Salmanpour et al. 
(2016) extended the method for delay and sum damage detection algorithm while considering the 
other physical constraints including line of sight of the sensors, the attenuation due to distance and 
attenuation due to stiffeners. Similar to the work of Gao and Rose (2006), Coelho et al. (2011) 
presented an OSP method based on the maximum coverage area determined by probability of false 
alarm for a lug joint and naval structure. Tarhini et al. (2018) also exploited the concept of 
coverage area and determined the optimal piezoelectric sensor locations using mixed integer 
nonlinear programming. Vanli et al. (2012) tried to minimize the maximum probability of non-
detection (POND) through their minimax algorithm. Venkat et al. (2015) have done a numerical 
and experimental analysis and demonstrated that the points with high amplitude are best locations 
for recording signals. Ewald et al. (2018) use a similar approach but instead of locating sensors at 
the highest point, they recommend identification of the area of maximum difference using the blob 
detection algorithm. 

All of the above mentioned guided wave-based OSP strategies define fitness function based on 
the coverage area and wave amplitude strength over the structure and they are application specific. 
Flynn and Todd (2010a) introduced a new flexible approach to OSP for GWSHM. They developed 
the Bayes risk formulation that takes local costs of decisions and a prior probability distribution of 
damage into account and then derived the optimal detector that minimizes the Bayes risk. They 
introduced two performance measures, global detection rate (complement of type II error) and 
global false alarm rate (type I error) as the candidate objective functions and then maximized the 
former to determine the optimal arrangement. The approach considers both coverage and 
directionality of the wave packets generated from active piezoelectric sensors in a flexible 
statistical framework. In addition, it is possible to simultaneously consider the effect of boundaries, 
prior knowledge of damaged areas, structural features (stiffeners), attenuation of wave and 
scattering pattern for any kind of damage shape. 

In this paper we use the general framework described by Flynn and Todd (2010a) and address 
the issue of effect of spatial correlation among actuator-sensor pairs on the system performance 
and optimal arrangement in GWSHM. In SHM systems, deploying densely distributed sensors 
could monitor the local structural regions with high spatial resolution, which yields to highly 
correlated measurements. Beside the fact that the existence of measurement correlation provides 
better local resolution, it seriously degrades the global detection performance if neglected and 
increases the difficulty of distributed data processing. First fundamentals of the detection theory 
and Bayesian decision making are presented and applied to the OSP problem. The pitch-catch 
activation scheme is considered for active sensing process and feature vectors are statistically 
modeled by multivariate Gaussian probability density function (PDF). Then the relations for mean 
and covariance structure are modeled in terms of the actuator/sensor placement and the damage 
position. Afterward the global false alarm rate is minimized for some hypothetical global detection 
rates with three levels of correlation using genetic algorithm. The spatial maps of local detection 
rate and local false alarm rate and the ROC curves are obtained and discussed. To verify the 
effectiveness of the proposed issue in GWSHM a finite element analysis is done using commercial 
ABAQUS software to simulate the propagation of guided waves in an aluminum plate under 
healthy and damaged states. Then a damage localization technique is applied on the differenced 
signals for each optimized sensor arrangement. 
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2. Theoretical framework 
 
2.1 Bayes risk detector 
 
The Bayesian decision making (damage detection) treats the event probabilities as measures of 

knowledge or belief. In this way it is possible to assign probabilities to priori knowledge about an 
event or state (Berger 1980). In OSP problems this state of nature is damage states over the entire 
regions of structure. Bayes risk or integrated risk is the loss (cost) function averaged over state of 
nature and feature space. It is computed as the sum of the expected costs of every outcome, which 
is equal to the cost of each outcome multiplied by the probability of that outcome occurring. In 
SHM, these outcomes consist of all the possible combinations of predicted (decided) and true 
damage states of the structure. 

Flynn and Todd developed a practical formulation for the Bayes risk by dividing the structure 
into K spatial regions and considering some logical assumptions such as linearization of cost 
function and putting emphasis on local costs of decision. For binary damage states each region k 
takes on two states: the state m0 as undamaged and the state m1 as damaged case. In this sense the 
total Bayes risk is written as (Flynn and Todd 2010) 

 𝐶 = ෍ ෍ 𝑐௜௝[𝑘]. 𝑃(𝑑௞௜|ℎ௞௝). 𝑃(ℎ௞௝)ଵ
௜,௝ୀ଴

௄
௞ୀଵ  (1)

 
where 𝑐௜௝[𝑘] is the local cost of deciding the damage state mi when the true state is mj, 𝑃(ℎ௞௝) 
the probability of the true local damage state, mj, in region k and 𝑃(𝑑௞௜|ℎ௞௝) the conditional 
probability of deciding the damage state mi at region k, 𝑑௞௜, when the true state is mj. Now one 
can derive the local binary detector that minimizes the Bayes risk. The Bayes risk can be rewritten 
as follow 

 𝐶 = ෍ ൬𝑐଴଴[𝑘]. 𝑃(𝑑௞଴|ℎ௞଴). 𝑃(ℎ௞଴) + 𝑐଴ଵ[𝑘]. 𝑃(𝑑௞଴|ℎ௞ଵ). 𝑃(ℎ௞ଵ) +𝑐ଵ଴[𝑘]. 𝑃(𝑑௞ଵ|ℎ௞଴). 𝑃(ℎ௞଴) + 𝑐ଵଵ[𝑘]. 𝑃(𝑑௞ଵ|ℎ௞ଵ). 𝑃(ℎ௞ଵ) ൰௄
௞ୀଵ . (2)

 
The conditional probability 𝑃(𝑑௞௜|ℎ௞௝) is given by Eq. (3). 
 𝑃(𝑑௞௜|ℎ௞௝) = න 𝑝(𝑣|ℎ௞௝)𝑑𝑣௏ೖ೔  (3)

 
where v is the feature vector and 𝑉௞௜ is the critical decision region for 𝑑௞௜. In the other hand the 
conditional probability over 𝑑௞଴ is complement of that over 𝑑௞ଵ (Kay 1998) 

 න 𝑝(𝑣|ℎ௞௝)𝑑𝑣௏ೖబ = 1 − න 𝑝(𝑣|ℎ௞௝)𝑑𝑣௏ೖభ  (4)
 
By substituting Eqs. (4) and (3) into Eq. (2) the Bayes risk is 
 𝐶 = ෍ ቆ𝑐଴ଵ[𝑘]. 𝑃(ℎ௞ଵ) + 𝑐଴଴[𝑘]. 𝑃(ℎ௞଴) + න ൜[𝑐ଵ଴. 𝑃(ℎ௞଴) − 𝑐଴଴𝑃(ℎ௞଴)]𝑃(𝑣|ℎ௞଴) +[𝑐ଵଵ. 𝑃(ℎ௞ଵ) − 𝑐଴ଵ𝑃(ℎ௞ଵ)]𝑃(𝑣|ℎ௞ଵ) ൠ 𝑑𝑣௏ೖభ ቇ௄

௞ୀଵ (5)
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So, the Bayes risk detector can be stated as “decide m1 at region k only if the integrand is 
negative in the other words (Flynn and Todd 2010a) 

 (𝑐ଵ଴. 𝑃(ℎ௞଴) − 𝑐଴଴𝑃(ℎ௞଴))𝑃(𝑣|ℎ௞଴) <. . . (𝑐ଵଵ. 𝑃(ℎ௞ଵ) − 𝑐଴ଵ𝑃(ℎ௞ଵ))𝑃(𝑣|ℎ௞ଵ) (6)
 
By assuming that the cost of making correct predictions of each state is less than making 

incorrect predictions, the detector is (Flynn and Todd 2010a) 
 𝑇[𝑘] = 𝑝(𝑣|ℎ௞ଵ)𝑝(𝑣|ℎ௞଴) > (𝑐ଵ଴[𝑘] − 𝑐଴଴[𝑘])(𝑐଴ଵ[𝑘] − 𝑐ଵଵ[𝑘]) 𝑃(ℎ௞଴)𝑃(ℎ௞ଵ) (7)

 
For notational simplicity, one can rewrite the cost ratio as (Flynn and Todd 2010a) 
 𝛾[𝑘] = (𝑐ଵ଴[𝑘] − 𝑐଴଴[𝑘])(𝑐଴ଵ[𝑘] − 𝑐ଵଵ[𝑘]) (8)

 
The cost function in general will be a function of inspection and failure costs. In decision 

making the cost ratio is called the decision threshold. If the cost ratio is set to one for all regions, 
then the optimality criteria reduces to the minimum probability of error (Kay 1998). In Bayesian 
decision making a set of cost ratios must be derived so that they minimize either the total type I or 
the type II error rate when the other is fixed. Type I error of false positive is the situation in which 
the state of a structure is identified as damaged while the true state of structure is undamaged 
which leads to unnecessary inspection and repair of the structure and introduces additional costs. 
Type II error or false negative occurs when the structure is detected to be healthy when the real 
state of the structure is damaged and this may result in further damage progression or catastrophic 
failures. 

 
2.2 Performance measures 
 
For present OSP problem the performance metrics for the detector are considered to be global 

detection and false alarm rate that quantify the performance of the system. These performance 
measures are equivalent to the weighted average of correctly detecting a damaged region as 
damaged and incorrectly detecting an undamaged one as damaged over all damage modes. The 
global detection and false alarm rate are expressed as (Flynn and Todd 2010a) 

 𝑃ሜ஽ = ෍ 𝑃(𝑑௞ଵ|ℎ௞ଵ)𝑃(ℎ௞ଵ)∑ 𝑃(ℎ௞ଵ)௄௞ୀଵ
௄

௞ୀଵ . (9)

 𝑃ሜி஺ = ෍ 𝑃(𝑑௞ଵ|ℎ௞଴)𝑃(ℎ௞଴)∑ 𝑃(ℎ௞଴)௄௞ୀଵ
௄

௞ୀଵ . (10)

 
where 𝑃(𝑑௞ଵ|ℎ௞ଵ)  and 𝑃(𝑑௞ଵ|ℎ௞଴)  are PDF of the detector under alternative and null 
hypotheses. The optimal set of cost ratios can be determined by fixing one of the two performance 
criteria and maximizing (or minimizing) the other. This constrained problem is solved using 
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Lagrange multipliers, that is the optimal set of cost ratios are calculated for optimizing 𝑃ሜ஽ or 𝑃ሜி஺ 
for the constraint 𝑃ሜி஺ = 𝛼ி஺ or 𝑃ሜ஽ = 𝛼஽, respectively. In the other words (Flynn and Todd 
2010a) 

 ෍ 𝑝்(𝛾[𝑘]|ℎ௞ଵ)𝑃(ℎ௞ଵ)௄
௞ୀଵ − 𝜆 ෍ 𝑝்(𝛾[𝑘]|ℎ௞଴)𝑃(ℎ௞଴)௄

௞ୀଵ = 0. (11)

 𝑃ሜி஺ − 𝛼ி஺ = 0       or       𝑃ሜ஽ − 𝛼஽ = 0. (12)
 

where 𝑝்  is the probability distribution function of the detector, 𝛼ி஺  and 𝛼஽  denote the 
allowable global false alarm rate and the target global detection rate. 

 
2.3 Detector statistics 
 
The features are representative of real data acquired from experimentation/simulation and 

affect the damage detection process and optimal arrangement. The desired feature here which is 
also the most prominent one in GWSHM is the subtraction of damaged and undamaged signals. 
Other features maybe the difference of signal energies, cross correlation and other statistical 
measures of two signals in damaged and healthy conditions. To derive the detector one must first 
obtain the probability distribution of the features and its statistics. For the sake of simplicity, we 
just consider Gaussian distribution. This assumption is valid for most of SHM problems because 
the received signals which are inherently random and consist of many ensembles, are averaged for 
each time bin. The optimal detector for non-Gaussian features can be determined using Monte-
Carlo method to numerically integrate the right tail probabilities with some additional complexities. 
So, the feature vector takes the form of (Flynn and Todd 2010a) 

 𝑣 = ൜𝑁(0, 𝛴௞)  , hk0𝑁(𝜇௞, 𝛴௞)  , hk1. (13)
 

where 𝜇௞ and 𝛴௞ are the mean and covariance matrix of the feature for damage mode, k. By 
substituting the feature PDF into the optimal detector given in Eq. (7) and taking the natural logs 
from both sides leads to the traditional form of the linear detector (Flynn and Todd 2010a) 

 𝑇’[𝑘] = 𝑣்(𝛴௞)ିଵ𝜇௞ > 𝛾’[𝑘] (14)
 
The new threshold then takes the form (Flynn and Todd 2010a) 
 𝛾’[𝑘] = 𝑙𝑛( 𝛾[𝑘]) + 12 (𝜇௞)்(𝛴௞)ିଵ(𝜇௞) + 𝑙𝑛( 𝑃(ℎ௞଴)𝑃(ℎ௞ଵ)). (15)

 
The detector is a now a weighted sum of Gaussian random variables and, as a result, is also 

Gaussian. By taking expectation and variance of the detector the detector statistics are then (Flynn 
and Todd 2010a) 

 𝑇’[𝑘] = ቊ𝑁(0, 𝑑ଶ[𝑘])𝑁(𝑑ଶ[𝑘], 𝑑ଶ[𝑘]). (16)
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where 𝑑ଶ[𝑘] referred to as the “deflection coefficient” that is a measure of the separation of two 
Gaussian-distributed variables and defined as (Flynn and Todd 2010a) 

 𝑑ଶ[𝑘] = 𝜇௞் 𝛴௞ି ଵ𝜇௞. (17)
 
The new Lagrange multiplier 𝜆’ = 𝑙𝑛( 𝛾[𝑘]) in Eq. (15) must be solved by constraining one of 

the performance metrics. After inserting the detector statistics into Eqs. (9) and (10) the two 
performance metrics are written as (Flynn and Todd 2010a) 

 𝑃ሜி஺ = ෍ 𝑄 ቆ𝜆’ + 𝑙𝑛( 𝑃(ℎ௞଴)/𝑃(ℎ௞ଵ)) + 0.5𝑑ଶ[𝑘]ඥ𝑑ଶ[𝑘] ቇ௄
௞ୀଵ

𝑃(ℎ௞଴)∑ 𝑃(ℎ௞଴)௄௞ୀଵ . (18)

 𝑃ሜ஽ = ෍ 𝑄 ቆ𝜆’ + 𝑙𝑛( 𝑃(ℎ௞଴)/𝑃(ℎ௞ଵ)) − 0.5𝑑ଶ[𝑘]ඥ𝑑ଶ[𝑘] ቇ௄
௞ୀଵ

𝑃(ℎ௞ଵ)∑ 𝑃(ℎ௞ଵ)௄௞ୀଵ . (19)

 
Here, 𝑄(𝛾) is the right tail probability of a zero-mean, unit-variance, and Gaussian random 

variable, which can be expressed using the complementary error function, Erfc 
 𝑄(𝛾) = න 1√2𝜋 𝑒𝑥𝑝 ൬− 12 𝑡ଶ൰ 𝑑𝑡∞

ఊ = 12 𝐸𝑟𝑓𝑐(𝛾/2). (20)

 
To determine the optimal actuator/sensor arrangement one must first decide whether to 

maximize global detection rate or minimize global false alarm rate. In this study the global false 
alarm rate is minimized for fixed global detection rates because of its faster convergence. After 
that the Lagrange multiplier 𝜆’ has to be calculated using Eq. (19) for a fixed global detection rate 
and an initial value of deflection coefficient for a two-transducer arrangement all over the structure. 
The spatial distribution of deflection coefficient is obtained for a single pair of transducers which 
is constructed from one way actuator-sensor path. Note that because the actuation scheme is 
considered to be only the pitch-catch, there is just one path between two transducers. By 
substituting the desired global detection rate into the left side of Eq. (19) and the deflection 
coefficient and damage statistics into the right side of Eq. (19), the Lagrange multiplier 𝜆’ can be 
obtained numerically. Finally, the Lagrange multiplier is substituted into the right side of Eq. (18) 
to evaluate the global false alarm rate as the fitness function in genetic algorithm. 

 
 

3. Statistical models of feature vector 
 
Feature statistics plays a key role in SHM applications, particularly the present OSP strategy 

because it must give reliable information regarding the physics of wave propagation, size and type 
of damage, environmental conditions and etc. and finally classify the state of the structure. The 
features translate measurements into decisions regarding the state of the structure or regarding 
future actions with respect to the structure’s operation. This process is been used basically in 
statistical pattern recognition paradigm (Farrar and Worden 2013). In what follows first the 
geometric parameters are defined and then the components of feature vector are modeled. 
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Fig. 1 Distances between actuator-POI-sensor
 
 
3.1 Definitions 
 
The length of the features depends on the number of transducers, actuation scheme and discrete 

regions. We chose pitch catch scheme so with N number of sensors the total actuator-sensor path is 𝑝 = 𝐶(2, 𝑁) = 𝑁(𝑁 − 1)/2. For example, the total paths for a sensor network consisting of 5 
sensors that serve as both actuator and sensor are 𝑝 = 𝐶(2,5) = 10. So, if the structure is 
discretized to K regions, the total length of feature vector is Kp. Noted that each region must be 
small enough to be represented by its centroids. These centroids are called points of interest (POI). 

Spatial coordinates of actuator, sensor and POI are denoted as vectors 𝑥௔, 𝑥௦ and 𝑥௞. The 
locations of actuator, POI and sensor and their distances are depicted in Fig. 1. In addition, the 
angle created between actuator-POI-sensor is denoted by 𝜃௞௔௦. Note that in GWSHM a wave 
propagation path is referred to the path from actuator to POI and from POI to sensor. The ||()|| 
operator denotes the Euclidean distance between two vectors 

 ‖𝑟ଵ − 𝑟ଶ‖ = ඥ(𝑟ଵ − 𝑟ଶ). (𝑟ଵ − 𝑟ଶ) (21)
 

where 𝑟ଵ and 𝑟ଶ are two arbitrary vectors in 2D space and dot indicates the inner product 
between two vectors. The angle between two vectors is determined as follow 

 𝜃 = 𝐴𝑟𝑐 𝑐𝑜𝑠 ൬ 𝑟ଵ. 𝑟ଶ||𝑟ଵ||. ||𝑟ଶ||൰ (22)
 
3.2 Mean structure 
 
The mean vector is expressed as follow (Flynn and Todd 2010a) 
 𝜇௞[𝑝] = 𝐴௘ ቆ 𝜂𝜂 + ඥ𝑟௞௔ቇ 𝑆(𝜃௞௔௕) ቆ 𝜂𝜂 + ඥ𝑟௞௦ቇ. (23)

 
The term 𝐴௘  accounts for the overall actuation and sensing system efficiency i.e., the 

amplitude of the initial driving signal as well as the transducer efficiency of the actuator and sensor. 
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Fig. 2 Far field scattering
 
 

The second is the beam spread function that captures the amplitude reduction of the planar point-
source wave and follows the physics of wave propagation. In the other words, this function is 
inversely proportional to the square root of distance between transducer and POI. The parameter 𝜂 
approximates the finite near-source behaviour of the propagating waves. The scattering term 𝑆(𝜃௞௔௦) used to model the change in the feature amplitude due to the relative positioning of the 
POI with respect to the actuator and sensor. To model the 𝑆(𝜃௞௔௦), it is assumed that the defect is 
a symmetric scatterer and the dominant mode of far-field scattering is longitudinal. The scattering 
term is presented as (Flynn and Todd 2010a) 

 𝑆(𝜃௞௔௦) = 0.18 + 0.19 𝑐𝑜𝑠(𝜃௞௔௦) + 0.17 𝑐𝑜𝑠(2𝜃௞௔௦)               +0.068 𝑐𝑜𝑠(3𝜃௞௔௦) + 0.014 𝑐𝑜𝑠(4𝜃௞௔௦) (24)
 

where 𝜃௞௔௦ is the angle between the vector formed by the actuator and POI and the vector formed 
by the POI and sensor. This model is a specific form of the far-field scattering presented in 
publications (Diligent et al. 2002 and Grahn 2003) that emphasizes on the forward direction. This 
analytic model is verified by finite element analysis and experiments in the research of Diligent et 
al. (2002). The polar plot of this model is shown in Fig. 2. As can be seen the main lobe of the 
symmetric lamb wave mode, S0, is in the forward direction. 

It is worth mentioning that the scattering term can be determined from theoretical and/or 
numerical analysis and experimentation for any specific application. For example, for defects with 
different shapes and sizes, the wave scatters in different directions can be determined using FEM 
and modeled in terms of the angle between incident and scatter angles. In addition, if there are 
some structural features such as stiffeners perpendicular to the propagation path, one can also 
derive a scattering term by considering the transmission and reflection of incident waves propagate 
through the stiffener. 

 
3.3 Covariance structure 
 
Of interest in this material is to analyze the effect of cross correlation among actuator-sensor 

pairs on the performance of GWSHM system. In the other words we have to present a statistical 
model for non-diagonal elements of covariance matrix. The statistical model for the mean vector 
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and diagonal elements of covariance matrix were considered as the same one presented by Flynn 
and Todd (2010b). It is worth mentioning that the covariance matrix of a multivariate PDF in a 
GWSHM system contains information regarding to the noise processes. The noise processes may 
arise from changes in temperature or boundary conditions and sensor electrical/mechanical noise. 
In the next two subsections the statistical model for diagonal and non-diagonal elements of 
covariance matrix are presented. 

 
3.3.1 Diagonal elements of covariance matrix 
The diagonal elements of the covariance matrix are scaled linearly by the total propagation path 

and take the form (Flynn and Todd 2010a) 
 𝜎௞[𝑝] = (𝑟௞௔ + 𝑟௞௕)𝜙௣ + 𝜎௠. (25)
 
Here the parameter 𝜎௠ can be thought of as the ambient noise that is independent of sensor 

arrangement and 𝜙௣ is a scaling parameter. 
 
3.3.2 Non-diagonal elements of covariance matrix 
The spatial correlation amongst actuator-sensor pairs in any sensor network system is important 

because two sensors in close proximity have a strong spatial correlation and capture almost the 
same data and consequently degrades the performance of the systems (Liu 2007 and Kim et al. 
2009). For example, in cognitive radio networks, for a desired detection probability and constant 
signal to noise ratio (SNR), the false alarm probability of the energy detector increases as cross 
correlation among multiple antennas increases (Kim et al. 2009). The same analysis and 
conclusions are presented by Shbat and Tuzlukov (2013) for assessing the performance of the 
generalized detector in spectrum sensing. It is proved that an exponential model can capture the 
dependence of correlation coefficient on the antenna placement. 

So back to GWSHM applications, by taking this effect into account one can avoid 
overestimating the system performance and use a few numbers of sensors that reduces the cost of 
SHM system design and the dimension of data. It is evident that the correlation between two 
neighboring sensors is higher than correlation between two sensors that are far apart. In the other 
hand the non-diagonal elements of the covariance matrix are obtained by multiplying variances of 
two variables by the correlation coefficient. So, it is reasonable to model the spatial correlation in 
terms of sum of a second order polynomial and an exponential function decreasing along the 
propagation path. In the other words the covariance structure for pairs sharing one actuator can be 
modeled as below 

 𝛴௜௝ = 𝑏ଵ + 𝑏ଶ(𝑟௞௔ + 𝑟௦೔௦ೕ) + 𝑏ଷ(𝑟௞௔ + 𝑟௦೔௦ೕ)ଶ + 𝑏ସ 𝑒𝑥𝑝( − 𝑏ହ(𝑟௞௔ + 𝑟௦೔௦ೕ)) (26)
 

where 𝑟௞௔  and 𝑟௦೔௦ೕ  are distance from actuator to the POI and the distance between two 
correlating sensors; 𝑏ଵ to 𝑏ହ are model parameters. For the other pairs the covariance structure is 
written as 

 𝛴௜௝ = 𝑏ଵ + 𝑏ଶ(𝑟௞௔ + 𝑟௦೔௦ೕ) + 𝑏ଷ(𝑟௞௔ + 𝑟௦೔௦ೕ)ଶ + 𝑏ସ 𝑒𝑥𝑝( − 𝑏ହ(𝛥𝑟௞௔௦ + 𝑟௦೔௦ೕ)) (27)
 

where 𝛥𝑟௞௔௦  is the distance between actuators of two different pairs. It is noted that the 
exponential term accounts for inverse relation between correlation and spatial positions of 
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measurement points (Kim et al. 2009 and Shbat and Tuzlukov 2013). The term 𝑏ଵ is independent 
of transducer placement and used to control the levels of cross-correlation amongst actuator-sensor 
pairs. It is worth mentioning that determining the covariance structure using experimentation leads 
to cost insufficiency since it needs many sensors to be installed on a structure. 

 
 

4. Results 
 
In this section the OSP approach is demonstrated through hypothetical scenarios. We seek to 

optimally place 5 sensors on a rectangular plate so the total number of paths is p = 10. The 62 × 59 𝑐𝑚 plate is divided into discrete regions of size 1 𝑐𝑚ଶ.The model parameters are set as 
follow 

 𝜂 = 5,  Aா = 15,  𝜙௣ = 0.03, 𝜎௠ = 2, 𝑏ଶ = 0.09, 𝑏ଷ = 0.03, 𝑏ସ = 0.1, 𝑏ହ = 2 (28)
 
To show the effect of cross correlation among sensors on the performance and optimal 

arrangement we minimized the global false alarm rate for a number of global detection rate values 
and different correlation levels (i.e., different 𝑏ଵ  values). Fig. 3 shows the spatial map of 
deflection coefficient for an actuator-sensor pair. After evaluating 𝜆’ for each scenario the global 
false alarm rate (fitness function) in Eq. (18) is minimized to determine the optimal sensor 
locations. Note that in real applications the parameters in Eq. (28) are case dependent and can be 
evaluated using a nonlinear-regression on data acquired from a dense array of transducers when 
the structure is undamaged. The signals are recorded for as many as possible sets of three 
transducers with different locations. For each set with two paths a bivariate PDF is considered and 
its statistics are estimated by sample mean and covariance of the received signals. By repeating 
this and recording the values of mean covariance elements, a nonlinear regression is applied to fit 
the data to Eqs. (27)-(29). 

The authors selected the genetic algorithm to search for optimal sensor locations because it is 
quite easy to implement and is appropriate for searching in multidimensional discrete space. In 

 
 

Fig. 3 Spatial map of deflection coefficient for two-transducer arrangement in pitch-catch scheme
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genetic algorithm coding, every individual (sensor locations) is expressed by 8-bit string of 0 s and 
1 s. For the population size of 40 and mutation rate of 0.015 the program starts with an initial 
population and continues iteratively by applying one-point cross-over and forced mutation until 
the global false alarm rate converges. For avoiding local optimum one can increase the population 
size and mutation rate but in the expense of slower convergence. So there have to be a trade-off 
between accuracy and convergence. Note that the global false alarm is chosen as fitness function 
because its convergence found to be faster than the case in which global detection is maximized. 

 
4.1 The case of uniform damage rate 
 
In this case the prior probabilities of damage event over the entire structure are assumed 

uniform. After inserting the PDF of detector in the performance measures, the global false alarm 
rate is minimized for a fixed detection rate of 𝑃஽ = 0.95. The map of local detection and false 
alarm rates for uniform distribution of damage probability and different correlation levels 𝑏ଵ =0.2, 0.4, 0.7  are shown in Figs. 4-6. The resulting global false alarm rates are 𝑃ሜFA =0.047, 0.095, 0.112. 

First of all, it can be inferred from Fig. 4 that the blind regions on the plate which cannot be 
detected by the network of optimized sensor arrangements are regions far from the direct line of 
sight between actuator-sensor paths. For instance, three regions at the corners of plate in the map 
of local detection rate in Fig. 4 which are identified by blue color are blind regions in a detection 
process. Therefore, one can conclude that for a structure with equal possibility of damage 
occurrence all over the structural regions, the optimal sensor arrangement is expected to be the one 
that can cover/monitor most of the regions. The map of local false alarm rates in Fig. 4 indicates 
that when the sensors are placed at the edges of plate so that the network covers most areas, the 
probability of falsely detecting the damage in these regions is the least. Secondly by comparing 
Figs. 4-6 it can be seen that by increasing the cross-correlation among sensors the global false 
alarm increases which is equivalent to lower detectability of optimized sensor arrangement. In the 
other words the more actuator-sensors pairs are correlated in the sensor network the more miss-
detected blind regions are present on the structure. Despite that in Figs. 5 and 6 the local detection 
rates are increased in some regions, the quality of coverage is diminished and global detectability 

 
 

Fig. 4 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for a fixed 
global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.2
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Fig. 5 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for a 
fixed global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.4

 
 

Fig. 6 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for a fixed 
global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.7

 
 

is reduced for highly correlated pairs. This increases the local probability of detection in areas 
close to sensors at the expense of lower coverage. It is also noted that the fact of “high 
detectability in direct line of sight” is more apparent in Fig. 6. 

 
4.2 The case of non-uniform damage rate 
 
In this section the optimal positions of sensor/actuator pairs are obtained for non-uniform 

damage distributions. In real world applications in the field of civil, mechanical and aerospace 
engineering, complex structures are constructed from two or more parts joined by using techniques 
such as welding, riveting and bolt fasteners. In this case the damage probabilities are non-uniform 
because the possible damages initiate at regions around joint connections (regions with high stress 
concentration). As can be seen schematically in Fig. 7, three rows of rivets joined two plate-like 
structures. 
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Fig. 7 Riveted joints connecting two panels
 
 

Fig. 8 Non-uniform damage distributions over the plate with three riveted holes 
 
 
In order to understand the effect of damage probability distribution on OSP problem we 

consider three holes on the plate to account for rivet locations. Fig. 8 shows a typical spatial map 
of non-uniform damage probabilities over the structural regions. As depicted the regions around 
rivet holes have a high probability of damage occurrence. 

Now the procedure in the 4.1 section is repeated and optimal arrangements is obtained using 
the genetic algorithm. For the global detection rate of 𝑃஽ = 0.95 the global false alarm rate is 
minimized to obtain the optimal arrangement. This is repeated for three levels of correlation levels 𝑏ଵ = 0.2, 0.4, 0.7. The local detection rates and false alarm rates are depicted in Figs. 9-11. The 
resulting global false alarm rates are 𝑃ሜFA = 0.044, 0.0937, 0.088. 

According to these Figures the most apparent point is that the algorithm provides the optimal 
arrangement so that the detection rate is high in regions around rivet holes. Similar to the case of 
uniform damage distribution, the regions at the corners of the plate are blind regions and have the 
least probability of detection which can be easily observed in Fig. 9. The map of local false alarm 
rate in Fig. 9 indicates that around the third hole, the false alarm rate is maximum which is the 
result of using pitch-catch-scheme. That is the regions neighboring the direct line of sight of more 
actuator-sensor paths have less false alarm rate and better detectability. For instance, the regions 
around the last actuator-sensor path have less probability of detection than that of for example the 
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Fig. 9 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for a fixed 
global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.2

 
 

first path which can also be covered by other adjacent paths. This can be overcome by considering 
the pulse-echo mode of actuation but at the expense of higher cost, higher data dimension and 
numerical costs. It can be inferred from Figs. 10 and 11 that the optimal locations are close to high 
damage rate regions as expected. This is the procedure that is been used in practical SHM 
applications. Similar to the uniform damage case, high correlation amongst pairs results in poor 
system performance and less coverage over structural regions. The negative effect of cross-
correlation in more drastic in this case since it leaves more areas to be miss-detected which is clear 
in the maps of local false alarm rate in Figs. 10 and 11. So, in the sensor networks with highly 
correlated arrangements there are more regions to be missed during the damage detection process. 

 
4.3 Receiver operating characteristics (ROC) curves 
 
To Figure out the effect of cross correlation on the system performance quantitatively we plot 

the global detection rate versus the global false alarm rate for increasing levels of correlation 
 
 

 
Fig. 10 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for 

a fixed global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.4 
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Fig. 11 Local detection (left) and false alarm rate (right) with five-sensor optimal arrangement for 
a fixed global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.7 

 
 

Fig. 12 ROC curve for different levels of correlation for uniform damage distributions 
 
 

Fig. 13 ROC curve for different levels of correlation for non-uniform damage distributions 
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(different values of 𝑏ଵ). First, second and third correlation levels are related the values 𝑏ଵ =0.2, 0.4, 0.7.  This can be thought of as global form of well-known Receiver Operating 
Characteristic (ROC) curves. After running program for 21 hypothetical scenarios, ROC curves for 
both damage rate cases are obtained and shown in Figs. 12 and 13. As can be seen by increasing 
the correlation among pairs the performance of the SHM system decreases since the coverage over 
the structure is diminished. This fact has been mentioned by Flynn and Todd (2010a, b) and has 
been quantitatively shown in communication systems (Kim et al. 2009 and Shbat and Tuzlukov 
2013). In the other words for a desired global detection rate which is specified by user, the 
probability of which the SHM system falsely detects the structural regions as damaged, is 
increased. 

 
 

5. Verification of proposed method 
 
5.1 Numerical analysis 
 
To verify the negative effect of cross-correlation on the damage detection a numerical analysis 

using FEM is carried out for the optimal arrangement obtained from the case of uniform damage 
probability. The guided wave propagation in an aluminum plate is simulated using commercial 
software ABAQUS/Explicit. The material properties of 62 × 59 × 0.1 𝑐𝑚 aluminum plate are: 
density 𝜌 = 2700 kg/mଷ, Young modulus 𝐸 = 70 Gpa, poisson’s ratio 𝑣 = 0.33. The excitation 
signal is 5 cycle Hanning windowed sinusoid with central frequency of 100 kHz. At this frequency 
the first antisymmetric mode, A0, dominates the first symmetric mode, S0. In GWSHM it is proved 
that modulation of signals with 5 cycles reduces the frequency band and dispersion behavior and 
consequently increases the signal energy or (SNR). The excitation signal and its Fourier spectrum 
are shown in Fig. 14. 

To achieve the good spatial and temporal resolution it is recommended that the element size 
and integration time step must meet the conditions below (Alem et al. 2016) 

 

Δ𝑡 < 120𝑓௖ ,   Lmin ≤ 𝜆10 (29)
 

where 𝑓௖  is the excitation frequency and 𝜆 is the wavelength of the desired lamb mode. 
 
 

 
Fig. 14 A 5 cycle tone burst signal and its frequency response 
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Fig. 15 Dispersion curve of lamb modes for aluminium plate (a) phase velocity; (b) group velocity 

(Liu et al. 2012) 
 
 

According to the Rayleigh- Lamb dispersion curves in Fig. 15, for center frequency 𝑓௖ = 100 𝑘𝐻𝑧 
the phase velocity is almost 𝑣௣ ൎ 1500 𝑚/𝑠 , and the wavelength of A0 mode is calculated as 𝜆𝑝௖௠௜௡. Therefore, the element size and time step for the ABAQUS solver must be less than 1.5 
mm and 0.5 microseconds respectively. In this study we set the element size and time step to be 1 
mm and 0.1 microseconds respectively.  To reduce the computational cost,  the 
ABAQUS/EXPLICITE is utilized so that instead of modeling the PZT elements, a nodal force in 
the thickness direction is applied on the node corresponding to the location of actuator and nodal 
displacements in the z direction, w, is recorded at sensor locations. The capability of this 
simplification in fault detection is demonstrated by Bagheri et al. (2013). In addition, a continuum 

 
 

Fig. 16 Signal recorded from path 1-4 in undamaged plate
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shell element is used to further decrease the runtime. Sharif-Khodaei and Aliabadi (2014) 
demonstrated that choosing shell elements can efficiently excite and capture the propagation of 
fundamental lamb modes. 

After setting up the model in ABAQUS for each optimal arrangement, the guided wave packets 
are recorded for 10 actuator-sensor pairs. An example of the received waveform for optimal 
arrangement obtained from correlation level 𝑏ଵ = 0.2 in undamaged plate is depicted in Fig. 16. 
The first wave packet is incident A0 mode and the others are boundary reflections. The presence of 
strong boundary reflections in received signals which is due to placement of sensors at the plate 
edges, are automatically removed by differencing signals received in damaged and healthy states. 

A through-thickness hole with the diameter of 40 mm is considered as damage. The hole 
location and its corresponding element distribution is shown in Fig. 17. Computations in 
ABAQUS are based on Lagrangian scheme so that the elements are attached to material and 
deform with respect to its mechanical properties. Therefore, the regions around the hole should be 
discretized in a smooth pattern to efficiently simulate the propagation of guided waves. The 
element sizes for partitions around the hole are less than 0.9 mm. The total number of 268490 
elements is created in the model. Snapshots of the propagation of wave in the damaged plate are 

 
 

 
 

 
Fig. 17 Position of the through-thickness hole
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Fig. 18 Wave propagation in presence of a through-thickness hole 
 
 
depicted in Fig. 18. An example of the recorded signal for path 8 in which sensor 2 acts as actuator 
and sensor 3 is receiver is illustrated in Fig. 19. First and second wave packets are incident A0 
mode and its boundary reflection and the third component is direct wave scattered from the 
through-thickness hole. Visibility of damage scattered wave is dependent on existence of the 
damage in direct line of sight from actuator to sensor. 

 
5.2 Damage detection strategy 
 
In GWSHM the detection process is generally based on the comparison of signals acquired in 

healthy and damaged states. Accordingly, the feature vector is constructed by subtracting the 
waveforms of damaged state from those of intact structure. After evaluating the feature vector for 
all actuator-sensor pairs for each optimal sensor arrangement, the well-known delay-and-sum 
(DAS) beamforming/imaging can be applied to locate the position (Michaels and Michaels 2007, 
Michaels et al. 2009 and Hall et al. 2014). DAS method which is also called ellipse method 
exploits the time of flight (TOF) of the differenced signals. The image pixel at each point on the 
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Fig. 19 Received waveforms for path 8 and the case with correlation level 𝑏ଵ = 0.2 
 
 

plat is evaluated as follow (Michaels and Michaels 2007) 
 𝐼(𝑥, 𝑦) = 1𝑃 ෍ |𝑑௜(𝜏௜(𝑥, 𝑦))௉

௜ୀଵ |ଶ (30)

 
where P is the number of actuator-sensor pairs, d is the feature or differenced signal and 𝜏௜ stands 
for the time of arrival (TOA) of the scattered wave for ith transducer pair. 

It is found that scaling the image removes multiple peaks other than the peak related to the 
damage. Therefore, to improve the image resolution the pixel value is scaled as 

 𝐼’(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝜇ௗ𝜎ௗ  (31)
 

where 𝜇ௗ and 𝜇ௗ are set to be mean and variance of the differenced signal for each propagation 
path, 𝑑௜(𝜏௜(𝑥, 𝑦)).  

For pair i the TOA is determined from the distances between actuator, damage (pixel point) and 
sensor 𝜏௜(𝑥, 𝑦) = 𝐿஺஽ + 𝐿஽ௌ𝑉  (32)

 
where 𝐿஺஽ and 𝐿஽ௌ are the distance from actuator to damage and from damage to sensor. V is 
the group velocity of the A0 mode and it is assumed to be constant after reflection from damage. 
The different paths are shown in Fig. 20 schematically. Note that it is assumed that the wave 
velocity before and after passing through the hole is identical. 

 
5.2 Results of damage detection 
 
We applied the delay and sum algorithm to locate the position of through-thickness hole for 

three optimized arrangements. Fig. 21 shows the image generated by standard DAS beamforming 
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Fig. 20 Propagation paths from an actuator to damage to sensors 
 
 

Fig. 21 Delay and sum imaging result with optimal arrangement for global detection rate 
of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.2

 
 

for the optimized arrangement in the first case with the global detection rate of 𝑃஽ = 0.95 and 
correlation level 𝑏ଵ = 0.2. The current sensor network locates the damage with an acceptable 
accuracy. The discrepancy between the estimated and true damage position is because the 
transducers are arranged at plate edges to maximize the coverage and probability of detection for 
all regions equally. Generally, a transducer arrangement which surrounds the damage region gives 
the best detection result but in real applications in which there is a constraint regarding the number 
of sensors and hardware installations, it misses to monitor regions outside the sensor network. 

For the second case which has higher correlation level of 𝑏ଵ = 0.4 the result of DAS 
beamforming is shown in Fig. 22. In this case the damage detection is almost acceptable and the 
error is less than 5 cm. Besides other major peaks are decreased in the respective image it’s 
accuracy in less than the first case with lower correlated pairs. 

For the optimized arrangement with the highest correlation level of 𝑏ଵ = 0.7, the result of 
damage imaging is illustrated in Fig. 23. Since the damage is surrounded by transducer 3, 
transducer 4 and transducer 5 and the corresponding pairs have more shares in the image pixel 
values there is a peak close to the exact damage position. It can also be seen that there is another 
peak farther from the damage location. So, it is concluded that this transducer arrangement misses 
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Fig. 22 Delay and sum imaging result with optimal arrangement for global detection rate 
of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.4 

 
 

Fig. 23 Delay and sum imaging result with optimal arrangement for global detection rate of 𝑃஽ = 0.95 and correlation level 𝑏ଵ = 0.7 
 
 

to effectively locate the position of damage and increases the false alarm in inspection of the 
structure. 

 
 

6. Conclusions 
 
This paper is devoted to study the sensor placement optimization in GWSHM systems. This 

problem is tackled using a flexible strategy within a detection theory and a Bayes risk framework 
so that the physical and geometrical features of structure and damage are accounted for. We 
minimized the global false alarm rate for a fixed global detection rate using genetic algorithm and 
determined the optimal arrangement for different scenarios. In particular, the effect of cross-
correlation between pairs on performance of the system is taken into account. Spatial maps of local 
detection rate show that for a targeted global detection rate by increasing the cross correlation 
among actuator-sensor pairs, the global false alarm rate is increased and system performance is 
degraded. Considering spatial correlation among features provides more real system performance 
and meets the SHM system demands such as reducing cost, increasing probability of detection. To 
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quantify the effect of cross correlation on the system performance the so-called ROC curves are 
obtained for uniform and non-uniform damage rates. Regarding the ROC curves one can generally 
say that increasing the sensor correlation would lead to a decrease in performance of the SHM 
system in terms of its detectability. Finally, the applicability and effectiveness of the optimization 
results are tested using FEM for an aluminum plate. Results obtained from delay and sum 
beamforming shows that the accuracy of damage localization is generally weakened in the 
transducer arrangement with highly correlated pairs. In addition, it is concluded that using spars 
array of sensor for health monitoring of structures increases the coverage but it would degrade the 
accuracy of damage localization. 
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