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Abstract.  Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane 
periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral 
surface. Proposed theory confirms the shear deformation effects and contains lower field components in 
comparison to first order and refined 4- unknown plate theories. A modified power-law function has been 
utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been 
represented in the context of Mathieu–Hill equations and Chebyshev-Ritz-Bolotin’s approach has been 
performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal 
constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale 
plates are researched. 
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1. Introduction 
 

Functionally graded materials (FGMs) contains two constituents which are usually ceramic and 

metal in a combined form. In fact, the material formation is graded between ceramic and metal and 

porosities will produce due to imperfect combination of the two phases. The material characteristics 

of FGMs may be described based on the portion of these two phases and also porosity amount 

(Atmane et al. 2015a, b). However, providing many outstanding properties, FG materials will be 

used in different engineering sections including mechanical and civil engineering (Ahmed et al. 

2018, Faleh et al. 2018, Thai et al. 2014, She et al. 2018a, b, 2019a, b, Shafiei and She 2018). 

Recently, engineering structures have been used in the production of nano-size devices and 

objects. Some of these structures have beam or plate shapes having nano dimensions (Zenkour 2016, 

She et al. 2017, Zenkour 2018, 2019). The most important issue about these structures is 

understanding their mechanical characteristics such as dynamic behaviors. However, such an 

investigation needs refined continuum mechanics due to nano dimension effects since classical 

mechanics is impotent to express such effects. To this end, nonlocal elasticity theory (Eringen 1983) 

is proposed to make the researchers able to analysis mechanical characteristics of nano-size 

structures. The theory proposed a modified stress-strain relation based on nonlocal parameter in 
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order to formulate nano-structures. This relation is used by many researches to provide suitable 

formulations for nano-structures (Zemri et al. 2015, Larbi Chaht et al. 2015, Cherif et al. 2018, 

Khetir et al. 2017, Karami et al. 2017,2018, Bouafia et al. 2017, Bouadi et al. 2018, Mouffoki et al.  

2017, Bellifa et al. 2017, Mokhtar et al. 2018, Yazid et al. 2018, Karami et al. 2018a, b, Shahverdi 

and Barati 2017, Malikan et al. 2018). The theory is also applicable for nano-structures made of 

FGMs. Natarajan et al. (2012) explored finite element based vibrational response of graded nanosize 

plates with simply-supported and clamped edges. Belkorissat et al. (2015) examined vibrational 

characteristics of graded nanosize plates by introducing a size-dependent four-unknown plate theory. 

They showed that the classical plate model cannot consider the shear deformation mechanism and 

proposed a more accurate theory containing a shear stress function. So, higher order theories such 

as third-order (Reddy 1990), 4-unknown and 3-unknown theories are more applicable for thick 

plates (Tai et al. 2013, Zenkour 2009, Mehala et al. 2018, Sadoun et al. 2018, Mahmoudi et al. 2018, 

Houari et al. 2016, Belabed et al. 2018). Also, Hosseini and Jamalpoor (2015) presented an 

analytical investigation of thermo-mechanical vibration behavior of bilayer FG nanoplates in elastic 

medium. Mechab et al. (2016) presented the size-dependent and porosity-dependent analysis of FG 

nanoplates lying on an elastic substrate. All of above researches on FG nano-size plates studied their 

static stability or free vibration behavior. Thus, dynamic instability of 3-unkown FG nano-size plates 

under in-plane periodic loads is not studied yet. 

In this research, dynamic instability properties of a FG nanoplate exposed to in-plane periodic 

loads have been researched via a novel 3- unknown plate theory based on exact position of neutral 

surface. Proposed theory confirms the shear deformations impacts and contains lower field 

components in comparison to first order and refined 4- unknown plate theories. A modified power-

law function has been utilized in order to express the porosity-dependent material coefficients. The 

equations of nanoplate have been represented with the form of Mathieu–Hill equations and 

Chebyshev-Ritz-Bolotin’s method has been performed to derive the stability boundaries. Detailed 

impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material 

index and porosities on instability boundaries of graded nanoscale plates are studied. 

 

 

2. Governing equations 
 

2.1 Modeling of FG nanoplates 
 
Assume a rectangular FG nanoplate with thickness h as illustrated in Fig. 1. A FG material may 

be specified by changing of the volume fractions. Based upon the modified power-law model, Young’ 

modulus E and density ρ are described as (Yahia et al. 2015) 
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in which z is the distance from the mid-surface of the plate. Also, c and m are corresponding to 

material properties related to ceramic and metallic constituents, respectively and p denotes 

inhomogeneity or power-law index. Moreover,   defines the porosity volume fraction. 
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Fig. 1 A FGM nanoplate having porosities rested on elastic substrate 

 

 

Based on nonlocal elasticity theory, the nonlocality of stress field can be incorporated into the stress-

strain relationship as 

0
2(1 ( ) ) ij kle a                                 (2) 

in which 2 is the Laplacian operator and 
0

e a  is the scale parameter which considers the small 

size effect. Also, ij and kl respectively denote the stress and strain field components. 

Finally, the nonlocal constitutive relations based on refined FG plate model can be expressed by 

0

0 0 0
11 12

0 0 0
12 22

2 0 0) 66 0 0(1

0 0

0 0

0 0 44

550 0

( )

Q Q

Q

xx xx

yy yy

xy xy

y

Q

z y

Q

Q

Q
z

xz xz

e a

 

 

 

 

 

  
   
   
   
    

    
    
    
    

      

  
           (3) 

where 

11 22 12 11 44 55 662

( ) ( )
, ,

1 2(1 )

E z E z
Q Q Q Q Q Q Q

 
     

 
 

 

2.2 Formulation based on 3-unknown theory 
 

Modeling of the nanoplate is performed employing a 3-unknown plate theory which has fewer 

field unknowns compared with the refined 4-unknown and also first order plate theory (Zidi et al. 

2017, Kaci et al. 2018, Hachemi et al. 2017). The three dimensional displacement field (ux, uy, uz) 

of the 3-unknown plate model can be expressed by 
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( , , , ) ( , , )zu x y z t w x y t                        (6) 

Here, u and v are in-plane displacements and w denotes the transverse displacement; ( )z is shear 

deformation function. For more accurate modeling of FGM structures, it is crucial to consider the 

exact positions of neutral surface. Generally, there is coupling between in-plane and out-of-plane 

displacements of FGM plates, as it can be seen in Eqs. (4) and (5). By considering the exact position 

of neutral surface, it is possible to eliminate this coupling. So, the displacement field of 3-unknown 

plate model can be reduced to the following form: 
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( , , , ) ( , , )zu x y z t w x y t                        (9) 

It is evident that the displacement field is reduced to a single-unknown model and the location 

parameters of neutral surface are (Han et al. 2015) 
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In the present paper, the shear deformation function has been selected as 
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Finally, the strains based on the three-unknown plate model are obtained as 
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where ( ) ( )g z z and 
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The strain energy may be defined by 
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Inserting Eqs. (12) and (13) into Eq.(14) yields 

0.5

11 11 11 11
0.5

2 2 4 4 2 4

11 11 12 12 122 2 4 4 2 4

2 4 4 2

12 122 4 4 2

2 4 2 40.5

2 4 2 40.5
[ 2 2 2

2 2 2

2 2

0.5
b

s s

b

s s

s s

a

a
B B D

w w w w w wu v u u
D H A B B

x x x x x y x y x y

w w w w
D D

x y x y

w w w wu u u u
U A

x x x x x x x x
  

        
    

         

   
  

   

      


       

2 2 4 4

12 122 2 4 4

2 4 2 4

12 12 11 11 112 4 2 4

2 4 2 2 4 4

11 11 112 4 2 2 4 4

66 66

2 2

2 2 2 2

2

( 2 ) 4 (

s

s s

s s

w w w w
D H

x y x y

w w w wv v v v v v
B y B A B B

x x y x y y y y y y

w w w w w w
D D H

y y y y y y

u u v u v v
A B

y y x y x x

   


   

        
    

         

     
  

     

      
   

     

2

2 2 2 2 2 2 2

66 66 66

2 2 2 2 3 3 3 3

66 55 443 3 3 3

)

( ) ( )
4 ( ) 4 4

( ) ( )
2 ]

s s

s s s

wu v

y x x y

w w w w wu v
B D D

y x x y x y x y x y x y

w w w w w w
H A A dxdy

x y x y y y x x




   

       
   

           

       
  

       
(15) 

The work of non-conservative forces is expressed by 

2 2 2 2
0.5 0.5

0 0 0 0

2 2 2 20.5 0.5

2 2

2 2

0.5 (

)

a b

x x y y
a b

w w p

w w w w w w w w
V N N N N

x x x x y y y y

w w w w w w
k w k k dydx

x x x x x x

 

 

 

       
   

       

     
   

     

 
      (16) 

where 0 0,x yN N are interior applied forces and ,w pk k  define elastic substrate constants. Next, the 

kinetic energy is obtained as 
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As mentioned, bending-extension coupling eliminates by incorporation of neutral surface 

position. Eqs. (15) and (17) can be reduced in term of w by discarding u and v as 
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3. Solution approach 
 

Based on Chebyshev-Ritz method, the dynamic buckling problem of a porous FG nanoplate will 

be solved in this section. First, the field components may be assumed in the following form 

1

( , , ) ( , ) ( ) ( ) ni tu

nm m n

n

u x y t R x y U P x P y e






                   (25) 

1

( , , ) ( , ) ( ) ( ) ni tv
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v x y t R x y V P x P y e
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

                 (26) 

1

( , , ) ( , ) ( ) ( ) ni tw
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w x y t R x y W P x P y e





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Consider the following essential boundary conditions: 

Simply-supported (S): 

2

2
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w
w

x


 


 at x=+0.5a, -0.5a 

2

2
0

w
w

y


 


 at y=+ 0.5b, 0.5-b 
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Clamped (C): 

0
w

w
x


 


 at x=+0.5a, -0.5a and y=+0.5 b, -0.5b 

Also, Pm(x) is the n-th Chebyshev polynomials of the first kind may be expressed as 

2
( ) cos[( 1)arccos( )]

2
( ) cos[( 1)arccos( )]

m

n

x
P x m

a

y
P y n

b

 

 

                   (28) 

Also, Ri functions (i=u, v, w) are corresponding to the essential boundary conditions. Also, the 

genral form of Ri functions can be presented by 

* * * *2 2 2 2
( , ) (1 ) (1 ) (1 ) (1 )i p q r sx x y y

R x y
a a b b

             (29) 

Note that p* ,q* , r*, s* rely on edge condition kind. In the case of CCCC condition, p*= 

q*=r*=s*=2 and for SSSS edges p*= q*=r*=s*=1. Substituting Eqs. (25)-(27) in  
Π = (𝑈 + 𝑉 − 𝐾) = 0 and performing its minimization to unknown coefficients Umn, Vmn, 

and Wmn, the below equation results in some algebraic equations in terms of unknowns. 

mn mn mnU V W

  
 

  
                       (30) 

The governing equations of periodically loaded FG plate in matrix form may be expressed as 

0[ ]{ } [[ ] ( )[ ]]{ } 0mn mnM W K N t G W                  (31) 

in which [M] , [K] and [G] denote the mass, stiffness and geometrical stiffness matrices, respectively. 

The periodic force with excitation frequency   may be defined as

0( ) [ cos( )] crN t t N      , then the equations become 

[ ]{ } [[ ] { cos( )} [ ]]{ } 0cr mnM K t N G W                   (32) 

Here, static and dynamic force components have been denoted by α and 𝛽 and the excitation 

frequency is normalized as 

ρ

E

c

c

h                              (33) 

By assuming periodic coefficients of Mathieu–Hill kind, the solution becomes 
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[[ ] { 0.5 }[ ] 0.25 [ ]]{ } 0cr mnK N G M W                 (34) 

Above equation must be solved numerically to derive instability regions. Further studies are based 

on following normalized coefficients 

24 3
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2
, , ,

12(1 )

pw c
w p c

c c c

k ak a E h e a
K K D

D D v a
   


           (35) 

 

 
4. Results and discussions 
 

This section contains obtained results for instability region of periodically loaded FG nanoplates 

having porosities. First, the instability regions of FG plates without porosities have been verified 

with those obtained by Han et al. (2015), as reported in Table 1. This table confirms that the proposed 

solution and plate formulation is correct. The results based on the proposed 3-unknown plate model 

are very close to the results of 4-unknown plate theory obtained by Han et al. (2015). But, the 

superiority of the proposed 3-unknwon model is that it provides simpler formulation and lower 

mathematical effort due to presenting fewer field components. Then, based on 3-variable plate 

theory and proposed solution, a convergence study has been presented in Table 2. Further 

investigations are based on 4 terms in the solution and the material properties are: 

 𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3, 𝑣𝑐 = 0.3,  

 𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3, 𝑣𝑚 = 0.3,  

 

Fig. 2 illustrates the impact of static force component (α) and nonlocal constant (µ) on dynamical 

instability boundaries of porous FGM nanoplates when a/h=10, p=1 and Kw=Kp=0. The instability 

boundaries are clearly shown in first part of this figure. The right hand side of the instability 

boundaries is called instable region.  One can find from the figure that as the static force component 

growths, the boundaries of dynamical stability will decrease at prescribed nonlocal coefficient. Also, 

it is clear that by increase of nonlocal coefficient, the dynamical stability boundary will be 

diminished. Moreover, the start point (β=0) will be decreased as nonlocal coefficient rises. This is 

because of plate stiffness reduction at nano-dimension interaction.  

 
Table 1 Validation of normalized excitation frequency for FG plates at 𝛽=0.5 

  𝛼=0  𝛼=0.1  𝛼=0.2  𝛼=0.3  

  Han 

et al. 

(2015) 

present Han  

et al. 

(2015) 

present Han  

et al. 

(2015) 

present Han  

et al. 

(2015) 

present 

[ ] (0.5 ) [ ]crK N G  p=0.1 3.0113 3.01141 2.8033 2.80349 2.5787 2.57885 2.3325 2.33267 

 p=1 2.9785 2.97861 2.7729 2.77295 2.5507 2.55075 2.3072 2.30725 

 p=10 2.9365 2.93662 2.7337 2.73384 2.5147 2.51477 2.2746 2.2747 

          

[ ] (0.5 ) [ ]crK N G  p=0.1 3.8874 3.88761 3.7287 3.72889 3.5629 3.56309 3.389 3.3892 

 p=1 3.8452 3.84531 3.6882 3.68830 3.5242 3.52431 3.3522 3.3523 

 p=10 3.7910 3.79113 3.6362 3.63633 3.4745 3.47464 3.3049 3.30504 
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Table 2 A study of frequency convergence for proposed Chebyshev-Ritz approach (a/h=20). 

m µ =0 µ =1 µ =2 

1 10.8639 10.3581 9.917 

2 10.9427 10.4333 9.98902 

3 9.86239 9.40898 9.01286 

4 9.86239 9.40899 9.01286 

5 9.86239 9.40899 9.01286 

6 9.86239 9.40899 9.01286 

 

  
(a) α=0.1 (b) α=0.2 

 
(c) α=0.3 

Fig. 2 Normalized frequency according to dynamic force component based on various nonlocal and static 

force constants (p=1, p=1, ξ=0, Kw=0 ,Kp=0) 
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(a) p=1 (b) p=2 

 
(c) p=5 

Fig. 3 Normalized frequency according to dynamic force component based on various material index and 

porosity amount (a/h=10, α=0.3, Kw=0, Kp=0) 

 

Porosities amount influence on instability boundary of FGM nanoplate according to dynamical 

force component has been plotted in Fig. 3 when µ=0.2, α=0.3 based of various material exponents. 

Increasing in porosities amount yields smaller vibration frequency due to decreasing the stiffness of 

nano-dimension plates. Moreover, the instability boundary gets smaller by the increasing of 

porosities amount. Thus, a porous FGM plates exposed periodic forces becomes more stable than 

non-porous plates. One can also find that by the decreasing of material exponent the instability 

region will increase. Actually, by the increment in material exponent value, the vibration natural 

frequency has been reduced. 
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(a) Kp=0 (b) Kp=2 

 
(c) Kp=5 

Fig. 4 Normalized frequency according to dynamic force component based on various foundation constant 

(a/h=10, α=0.3, p=1, µ=0.2) 

 

 

In Fig. 4, the changing of normalized excitation frequency according to dynamical force 

component (𝛽) based on various elastic foundation constants is studied for simply-supported 

nanoplates when p =1, 𝛼=0.3 and µ=0.2. It is observable that increasing the foundation constants 

induces greater normalized excitation frequencies. Actually, by increasing in foundation constants, 

i.e. increasing in nanoplate bending stiffness, the dynamic buckling boundaries will be moved to 

upper regions of the origin.  
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Fig. 5 Normalized frequency according to dynamic force component based on various plate models (p=1, 

α=0.3, µ=0.2, Kw=25, Kp=2) 

 

 

 

Fig. 6 Normalized frequency according to dynamic force component based on various boundary condition 

(p=1, a/h=10, α=0.3, µ=0.2, Kw=25, Kp=2) 
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Fig. 5 shows the normalized frequency of the nanoplate versus dynamical force component 

according to the classical and 3-unkonwn plate theories when α=0.3, p=1, µ=0.2, Kw=25, Kp=2. At 

affixed dynamic load factor, it can be seen that frequency results according to the classical plate 

theory are overestimated. In fact, more accurate examination of stability boundaries of FG 

nanoplates can be carried out employing higher order shear deformation plate theories. However, 

the value of side-to-thickness ratio has a remarkable influence on the instability boundaries. One can 

see that the width of instability boundaries for a/h=10 is smaller than that of a/h=5. In other words, 

excitation frequency reduces with the increasing of side-to-thickness ratio at a constant dynamical 

force component. 

Also, Fig. 6 compares the effects of various boundary conditions on instability boundaries of FG 

nanoplates. One can confirm that at prescribed dynamical force component, the nanoplate having 

stronger boundary conditions provides greater excitation frequencies. Thus, CCCC boundary 

conditions provides greatest excitation frequencies. 

 

 
5. Conclusions 

 

This paper presented new results for instability regions of periodically loaded FG nanoplates 

having porosities based on a 3-variable plate theory. The solution was based on Chebyshev-Ritz-

Bolotin method. It was seen that as the static force component raised, the boundaries of dynamical 

stability will decrease at prescribed nonlocal coefficient. Also, it was understood that by increase of 

nonlocal coefficient, the dynamical stability boundary diminished. Increasing in porosities amount 

led to smaller vibration frequency due to decreasing the stiffness of nano-dimension plates. 

Moreover, the instability boundary gets smaller by increasing of porosities amount. It was seen that 

increasing the foundation constants induced greater normalized excitation frequencies. Also, at 

prescribed dynamical force component, the nanoplate having stronger boundary conditions provided 

greater excitation frequencies.  
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