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Abstract.  This paper presents an improved time series based damage detection approach with 
experimental verifications for detection, localization, and quantification of damage in shear-type structures 
under varying mass effects using output-only vibration data. The proposed method can be very effective for 
automated monitoring of buildings to develop proactive maintenance strategies. In this method, 
Auto-Regressive Moving Average models with eXogenous inputs (ARMAX) are built to represent the 
dynamic relationship of different sensor clusters. The damage features are extracted based on the relative 
difference of the ARMAX model coefficients to identify the existence, location and severity of damage of 
stiffness and mass separately. The results from a laboratory-scale shear type structure show that different 
damage scenarios are revealed successfully using the approach. At the end of this paper, the methodology 
limitations are also discussed, especially when simultaneous occurrence of mass and stiffness damage at 
multiple locations. 
 

Keywords:  structural health monitoring; damage detection; time series analysis; structural dynamics 

 
 
1. Introduction 
 

Over the past decades, structural health monitoring (SHM) systems have been increasingly 

implemented on various civil infrastructures, aerospace and mechanical systems due to its 

effectiveness in increasing the safety and reliability of structures (Balageas et al. 2006, Bas et al. 

2017, Fan and Qiao 2011, He and Zhu 2011, Sony et al. 2019). Among SHM tasks, there is no 

doubt to say that the critical component is damage detection. In this context, damage detection is 

defined as a process that employs a variety of techniques to detect, locate, and quantify the damage 

caused by structural changes using vibration based monitoring data (Nguyen et al. 2018, Xi et al. 

2018).  

In damage detection process, local and global damage detection methods are two most general 

categories (Balageas et al. 2006). The process of detecting damage that happened locally at a 

specific time using modern techniques such as distributed fibre optic sensors, ultrasound is the 

priority of local methods, whereas global methods focus on condition assessment of the overall 

behaviour of structures mostly using dynamic response from which modal and physical parameters 
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such as natural frequencies, mode shapes, stiffness and damping coefficients are some of the useful 

properties estimated by numerous methodologies (Agarwal and Mitra 2014, Li and Wu 2007, 

Izuru and Nakamura 2000, Siebel et al. 2012, Soman et al. 2017, Takewaki and Nakamura 2005, 

Zhang and Johnson 2013a, b). However, there are a number of issues that need to be addressed 

before a vibration based damage detection framework can be routinely deployed in real-life 

applications. For instance, modal parameter based damage detection method is one of the most 

commonly applied global damage detection methods although the features may not be very 

sensitive to damage, especially under environmental and operational changes. 

Among various SHM approaches, time series analysis based approaches have been widely used 

to analyse SHM data and to identify damage (Gül and Catbas 2009, Gül and Catbas 2011, Lu and 

Gao 2005, Omenzetter and Brownjohn 2006, Peter Carden and Brownjohn 2008, Roy et al. 2015, 

Shahidi et al. 2015). Auto-Regressive (AR) and Auto-Regressive Moving Average (ARMA) 

models are the early models employed for damage detection in SHM. These time series models 

show great potential in SHM applications since such statistical models can be effectively 

implemented in an automatic SHM system. A majority of recent applications of time series models 

has shown that the availability of current structural conditions is not required, which is more 

feasible for real-life applications. The following paragraphs summarise some remarkable studies 

that employ time series models for damage detection.  

Loh et al. (2011) presented two methods for structural health monitoring by examining SHM 

data from the Fei-Tsui dam in Taiwan to define their trends and a threshold from which warning 

alarm will be activated if over-threshold occurs. Two methods, i.e. AR model and nonlinear 

Principal Component Analysis (PCA) using auto-associative neural network method 

(NPCA-AANN), were the proposed in the paper. The residual errors between the estimated trends 

and actual trends were computed, and subsequently the threshold was determined based on the 

training data. Piezoelectric active-sensing technique was applied to the recorded data from which 

time series models were employed to fit and build damage-sensitive features proposed by 

Figueiredo et al. (2012). Correlation analysis and PCA were then applied to the extracted features 

from the models to reduce their dimensions. Subsequently, Mahalanobis distance was used in a 

machine learning process to eliminate the environmental and operational effects. Results from the 

experimental composite plate showed that the damage was well identified. A study from Bao et al. 

(2013) proposed a combination of multiple techniques for damage detection where ARMA model 

was built to fit the acceleration data. Then, loading condition effects are reduced by introducing 

the partial auto-correlation function to optimize the AR parameters, which are in turn the damage 

indicators. Location of damage was identified based on the Mahalanobis distance of the estimated 

AR parameters for different damage cases. 

It is worth noting that most studies were successful in identifying only the existence of damage, 

which is level 1 of damage detection according to the categorization proposed by Rytter (1993). 

This is apparently insufficient for real-life systems since location and severity of damage are 

equally important. Kuwabara et al. (2013) presented a method for system identification and 

damage detection of shear type high-rise buildings by using ARX models and then defined the 

limit of the identification function at zero frequency. The advantage of their method is that 

stiffness and damping of a story can be identified by simply using acceleration right above and 

below the story. However, only relatively large damage could be located and there was no 

information about the damage severity, and mass information of each floor is required as one of 

the inputs. Gül and Catbas (2008) presented their on-going research on a methodology where 

ARMAX model was utilized to build the statistical relationship among the response outputs at 
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different locations of structures based on the equation of motion. The numerical applications 

revealed very promising indications of the locations, and severity of different damage scenarios. In 

order to comprehensively describe the dynamic response using time series models and further 

improve the methodology, the authors advised that a more sophisticated derivations of the equation 

of motion should be conducted (Celik et al. 2018, Gül and Catbas 2009, Gül and Catbas 2011). 

Operational effects such as additional mass coming from non-structural elements have an 

impact on system identification and damage detection since these effects can greatly alter the 

dynamic behaviour and damage indicators, which in turn reduce the effectiveness of the vibration 

based damage detection methodologies in use. For instance, Assi et al. (2016) showed that 

additional masses of non-structural components such as facades, glass panels and electrical 

equipment contribute to 21.7% reduction in first natural frequency of a six-storey reinforced 

concrete building. Mehdy Mehdi (2010) conducted modal tests on an office building floor from 

newly built to operational stage. It was shown that the experimental modal frequencies decreased 

by over 20% at the second stage (e.g., reducing from 3.25 Hz to 2.54 Hz) due to the additional 

mass of the non-structural elements. Effects of operational mass can be found in other studies 

conducted by Devin and Fanning (2012); Bighamian and Mirdamadi (2013). 

The current paper can be considered as a follow-up study of the previous work by the authors 

(Mei and Gül 2015) where ARMAX models were used to fit acceleration response from multiple 

sensor clusters for localizing and quantifying the changes of mass and stiffness simultaneously 

with numerical applications only. In this paper, the authors continue to study the methodology on 

an experimental 4-story shear structure. It is shown in this paper that damage in shear-type 

structures (such as buildings) can be effectively detected, located and quantified even under 

varying mass effects using output-only vibration data. The proposed method can be very effective 

for automated monitoring of buildings to develop proactive maintenance strategies. The paper is 

organized as follows. Section 2 summarizes a brief introduction about time series models, and the 

main steps of the proposed method. Section 3 presents the experimental structure from which the 

proposed method is verified and validated via a series of damage scenarios. The effectiveness, and 

limitations of the method are also discussed. 

 

 
2. Methodology 

 

2.1 Time series model 
 

The methodology used in this paper is based on ARMAX model, which can build the direct 

relationship between input and output variables. Full explanations of the model can be found in the 

literature (Box et al. 2016, Montgomery et al. 2008). The general form of the ARMAX model is in 

Eq. (1). 

1 1

1

( ) ( ) ( ) ( ) ( )

                                                                   ( ) ( ) ( )

a b

c

n a n b

n c

y t a y t t a y t n t b u t t b u t n t

e t d e t t d e t n t

+ − + + −  = − + + − 

+ + − + + − 
      (1)

 

where y(t), u(t) and e(t) are output, input and error terms of the model, respectively; the parameters 

of the model are symbolized as 𝑎1, … , 𝑎𝑛𝑎
; 𝑏1, … , 𝑏𝑛𝑏

; 𝑑1, … , 𝑑𝑛𝑐
. A more general form of the 

model is shown in Eq. (2). 
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( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t D q e t= +                         (2) 

where q is the back-shift operator. For example, if a time-dependant variable x(t) is multiply by qj, 

it will result in x(t-jΔt). Therefore, A(q), B(q), and D(q) can be expressed in the Eq. (3). The orders 

of the parameters of the model are denoted as na, nb, and nc. Different time series models can be 

created by adjusting the value of the model’s orders. For example, an AR model with the order of 

nc can be created by defining zero values for both nb and nc. The exogenous inputs in the model are 

expressed as the sequence u(t). 
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2.2 Building ARMAX models for different sensor clusters 

 

The linear dynamic response of an N degree of freedom (DOF) system due to an excitation is 

described in the equation of motion given in Eq. (4), where M, C, and K are the mass, damping 

and stiffness properties in forms of matrices, respectively. The acceleration, velocity, and 

displacement vectors correspond to the terms 𝒙̈(𝒕), 𝒙̇(𝒕), and 𝒙(𝒕) in Eq. (4). The excitation 

source is denoted by f. 

( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f                           (4) 

Mathematical transformations of the equation of motion are introduced before fitting the 

ARMAX models with the dynamic response of the system. Firstly, the ith row of Eq. (4) is written 

separately in Eq. (5). After rearranging this equation, acceleration of the ith channel is described in 

terms of other components, which is shown in Eq. (6). It is assumed that mass of the system is 

lumped at each DOF. Therefore, the acceleration terms on the right side of Eq. (6) can be removed 

since any off-diagonal entries of the mass matrix are zeros. Also, preliminary analysis showed that 

the damping terms have very little effect on the balance of the equation, so they are ignored, and 

the simplified equation is shown in Eq. (7). As can be seen in Eq. (7), displacements are required, 

which is not easy to obtain in real-life application. Thus, it is worth trying to eliminate the 

displacement terms by taking the derivative of Eq. (7) twice which results in Eq. (8) where the 

fourth derivative of displacement, and accelerations are on the left and right sides of the equation, 

respectively. Finally, Eq. (9) is derived by employing the forward difference technique (Levy and 

Lessman 1961) twice on Eq. (8). 

( ) ( ) ( )1 1 1 1 1 1i iN N i iN N i iN N im x m x c x c x k x k x f+ + + + + + + + =
           (5) 

1 1 , 1 1 , 1 1

1 1 2 2 1 1 2 2                              

i i i i i i i iN Ni
i

ii ii

i i iN N i i iN N

ii ii

m x m x m x m xf
x

m m

c x c x c x k x k x k x

m m

− − + ++ + + +
= −

+ + + + + +
− −

         (6) 
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1 1 2 2i i i iN N
i

ii ii
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+ + +
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1 1 2 2i i i iN N
i

ii ii

f k x k x k x
x
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+ +
= −
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1 1 2 2

( 2 ) ( ) ( ) ( )

( ) ( ) ( )
i i i i

i i i iN N

ii ii

x t t x t t x t t x t

f k x t k x t k x tt t

t m m

+  − +  +  −
−

+ + +  = −
      (9) 

It can be observed in Eq. (9) that 𝑥̈𝑖(𝑡) appears on both sides, which can cause trivial solutions 

to the parameters of ARMAX models. To overcome this problem, a new sequence 𝑦̈𝑖(𝑡) is 

defined as 𝑦𝑖(𝑡) = 𝑥̈𝑖(𝑡 + ∆𝑡) − 𝑥̈𝑖(𝑡). The final form for the equation of motion of the ith DOF is 

shown in Eq. (10), from which the change in the system’s properties (mass and stiffness) can be 

treated as a function of change on the relation among the signals in different sensors.

 
1 1 2 2

2

( ) ( ) ( ) ( ) ( )i i i i i iN N

ii ii

y t t y t f k x t k x t k x t

t m m

+  − + + +
= −

                  (10)

 Comparing Eq. (10) and Eq. (1), 𝑦𝑖(𝑡) and 𝑥̈𝑖(𝑡) are corresponding to output and input terms 

of the ARMAX model, respectively. The second derivative of excitation force can be assumed as 

white noise excitation represented by the error terms in the ARMAX models. It is decided that the 

order na and nb of the ARMAX model can be assigned as 1 and 1 by aligning the input and output 

terms of the model and the corresponding entries in Eq. (10). After examining the residuals, nc is 

chosen to be 15 to account for the errors caused by noise and transforming the equation of motion. 

The final ARMAX model represents the dynamic response of the ith DOF can be approximately 

estimated as given in Eq. (11) 

1 1 2 2 1 15( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 15 )i i i i

i i N Ny t t a y t b x t b x t b x t e t d e t t d e t t+ + = + + + + + − + + −   (11)
 

Similarly, it is straightforward to build N different ARMAX models for the remaining 

equations of motion of N DOF system. As mentioned above, the system has sparse stiffness and 

mass matrices meaning that the signal on a channel and its adjacent ones would interrelate closely. 

The ARMAX models are then simplified in a way that only the reference channel, and its 

neighbouring channels are present in the corresponding model. In this context, the sensor cluster 

technique proposed by Gül and Catbas (2011) has been employed such that an ARMAX model 

corresponds to a sensor cluster, and the output of the model is defined as the reference channel of 

the sensor cluster. It is expected that any changes in mass and stiffness would be revealed by 

examining changes in the ARMAX coefficients, which are the basics of building the 

damage-sensitive feature. 

Once two sets of ARMAX models at the baseline and unknown case are successfully built, the 

location, and severity of damage in stiffness and mass can be revealed by choosing the appropriate 

damage feature (DF). In this study, the DF is defined as the relative difference of the B(q) 

coefficients at the unknown and baseline cases, which is shown in Eq. (12)
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, ,

,

100%

 ,  

i i

j baseline j damaged

ij i
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b b
DF

b

i sensor clusters j adjacent sensors

−
= 

                   (12)

 In the next section, a description of a lab-scale shear-type structure and results for different 

damage scenarios are presented. 

 

 

3. Experiments and results 

 

3.1 Description of the structure 

 

A lab-scale four-story shear structure was utilized for experimental verification of the 

methodology. As depicted in Fig. 1, the structure has four stories with height of 0.4 m for each 

story, and the floor area is 0.4 m×0.4 m. For the baseline case, sections L 31.75 × 31.75 × 4.76  
mm were used for columns, and they were connected to each other at each floor using bolts. In this 

way, damage in columns at different floors could be easily simulated by changing cross-sections or 

materials of columns. There was a steel plate attached at each floor using bolted connections to 

represent the extra lumped mass as a result of operational effects. As shown in Fig. 1, in order to 

prevent the structure from being exited in rotational mode, which is beyond the scope of the 

current study, the structure’s base was rigidly clamped to the ground via an HSS beam.

 The structure was triggered by ambient vibration, and monitored using only four 

accelerometers installed at one edge of each floor (Fig. 1). The accelerometers used herein are 

Integrated Electronics Piezoelectric (IEPE) uniaxial accelerometers from the PCB model 393A03 

with a sensitivity of 1000 mV/g and a frequency range of 0.5 to 2000 Hz. The recorded dynamic 

response data were generated by randomly and simultaneously tapping the structure at the centre 

edges of any floors by impact hammer or fingertips, sample vibration data at each floor are shown 

in Fig. 2. 

 

 

 
Table 1 Damage Patterns for the experimental structure 

Damage Pattern (DP) Descriptions  

DP1 Replacing Two Thinner Columns between the First and Second Floors 

DP2 Replacing Four Thinner Columns between the First and Second Floors 

DP3 Replacing Two Thinner Columns between the 1st and 2nd floors; the 3rd and 4th floors 

DP4 Removing One Plate at the Fourth Floor 

DP5 Removing One Plate at the Fourth Floor + DP3 
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(a) Baseline case (b) connection details 

Fig. 1 The experimental structure 

 

 

In the current study, five damage patterns listed in Table 1 are induced. For each damage 

scenario, 10 tests have been conducted and the damage features are shown as the average value 

and the standard deviation (in the parenthesis).

  

3.2 Damage Pattern 1 (DP1): Replacing two thinner columns between the first and 
second floors 

 

The primary damage pattern introduces a stiffness reduction between the first and second floors. 

The computed DFs are shown in Table 2 where each row in the table is a sensor cluster, and each 

entry in the row represents the neighbouring sensors. For example, the first sensor cluster is placed 

in the first row, where acceleration at the 1st floor is the reference channel. Only the 2nd floor 

acceleration is the adjacent channel. Since accelerations at the 3rd and 4th floors are not directly 
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related to the 1st floor, so the last two columns in the first row are not applicable (N/A). To increase 

the statistical confidence, the results presented in percentage are the average of 10 trials and the 

values within the brackets are the standard deviation (also in percentage). It can be seen that the 

DFs around the 3rd and 4th floors are close to zero, showing that there is no damage occurred near 

these floors. However, top-left corner in the table shows some high values indicating that damage 

has affected the 1st and 2nd floors. Approximately, replacing two thinner columns (I=1.827×10-8m4 

would cause a decrease of  2 × [(𝐼𝑑 − 𝐼𝑏)]/[4 × 𝐼𝑏]% = −14.28% at K12, K21and 2 × [(𝐼𝑑 −
𝐼𝑏)]/[8 × 𝐼𝑏]% = −7.14% at K11, K22 in the stiffness matrix of the structure. Table 2 shows that 

the values of DF12, and DF21 are -9.06%; -8.58% respectively, whereas DF11 and DF22 show a 

reduction of 4.35% and 5.01%. In fact, the damage at the 1st floor linearly affects the structural 

stiffness at K12, K21, K11 and K22. Therefore, the existence, location and severity of damage have 

been successfully detected. However, The DFs values are smaller than expected. One possible 

reason is that the overall stiffness of the structure is also affected by other components, e.g., 

connections, floor stiffness, etc. The standard deviations of the DFs in the parentheses demonstrate 

that the results are stable since most standard deviations are very small even though some DFs 

have greater standard deviations. However, these slightly greater standard deviations are still 

acceptable considering the noise from experimental data. 

 

 

 

Fig. 2 Sample acceleration at four floors 
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Fig. 3 Damage Pattern 1: Replacing two thinner columns between the first and second floors 

 
Table 2 DFs in percentage for Damage Pattern 1 (Average and Standard Deviation in the parenthesis) 

DOF 1st 2nd 3rd 4th 

1st -4.35 (0.54) -9.06 (0.93) N/A N/A 

2nd -8.58 (1.23) -5.01 (1.11) -2.89 (2.28) N/A 

3rd N/A 0.35 (1.65) 1.85 (0.99) -0.18 (1.24) 

4th N/A N/A -0.38 (2.42) 1.15 (1.6) 

 

 

3.3 Damage Pattern 2 (DP2): Replacing four thinner columns between the first and 
second floors 

 
In order to further confirm that the methodology is able to reveal the severity of damage, all 

four columns between the first and second floors were replaced with thinner ones in this damage 

pattern, which is twice more severe (more stiffness reduction) than it was in Damage Pattern 1. It 

is observed from Table 3 that the DFs follow the same pattern as those in Table 2 since the 

damage occurred at the same location and only affected the first and second floors. DF11, DF12, 

DF21, DF22 are about twice the corresponding DFs in DP1 as expected since using four thinner 

columns would result in twice stiffness reduction compared with two thinner columns in DP1. 
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Fig. 4 Damage Pattern 2: Replacing four thinner columns between the first and second floors 

 

 
Table 3 DFs in percentage for Damage Pattern 2 (Average and Standard Deviation in the parenthesis) 

DOF 1st 2nd 3rd 4th 

1st -8.15 (1.08) -18.00 (0.79) N/A N/A 

2nd -18.00 (1.44) -10.38 (1.97) -1.07 (3.39) N/A 

3rd N/A -0.29 (1.67) 0.35 (1.63) -1.54 (0.97) 

4th N/A N/A -1.96 (2.04) -0.57 (2.59) 

 

 

3.4 Damage Pattern 3 (DP3): Replacing two thinner columns between the first and 
second floors; the third and fourth floors 

 

Multiple damages caused by stiffness reduction were introduced in this case, where two thinner 

columns were used to replace the ones between the first and second floors and between the third 

and fourth floors. This damage case is similar to DP1 but at two locations simultaneously. Thus, it 

is expected that the DFs related to these floors would yield noticeable changes. It can be seen that 

the values at the left-top corner of Table 4 are almost the same as the corresponding DFs in Table 

2, indicating that the location and severity of damage between the first and second floors are 

revealed successfully. In addition, the DFs between the third and fourth floors show how the 

stiffness in these floors changes due to the replacement of two columns. In terms of magnitudes, 
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the values of DF33 and DF44 are -3.68% and -9.41% implying how much the total stiffness on the 

third and fourth floors reduced due to the change of columns’ cross-section. Furthermore, this 

damage creates approximately 7% stiffness reduction between the third and fourth floors. 

 

 

 

Fig. 5 Damage Pattern 3: Replacing two thinner columns between the first and second floors; the third 

and fourth floors 

 

 
Table 4 DFs in percentage for Damage Pattern 3 (Average and Standard Deviation in the parenthesis) 

DOF 1st 2nd 3rd 4th 

1st -4.86 (0.19) -9.74 (0.33) N/A N/A 

2nd -8.80 (1.71) -5.99 (1.19) -0.16 (3.36) N/A 

3rd N/A -0.52 (0.96) -3.68 (0.58) -6.00 (0.77) 

4th N/A N/A -7.48 (1.33) -9.41 (0.82) 
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3.5 Damage Pattern 4 (DP4): Removing one plate at the fourth floor 
 

The above sections demonstrate the effectiveness of the method in evaluating stiffness 

reduction. In this section, the plate mounted at the fourth floor was removed to simulate a 

reduction of mass. As calculated approximately, the percentage of mass reduction over the total 

weight of the fourth floor (40 kg) would be 11.3%. As explained in the methodology, the DFs 

represent both mass and stiffness information where the mass term is in the denominator, which 

means a reduction of 11% in mass would result in an increase of [1/(1-0.11)-1]%=12.4% in DFs in 

the entire corresponding sensor cluster or the corresponding row in the DF table. As shown in 

Table 5, the removal of the plate leads to an increase in all DFs of the fourth sensor cluster, i.e., 

DF43, and DF44 (between 12 to 14%). The change at all entries in the fourth row is due to the 11% 

reduction in mass at this floor. This asymmetric phenomenon in the table is characterized as the 

main difference between changes in mass and stiffness whose change is approximately 

symmetrical. It is noted that there is a small change at DF23, which is an error since this change is 

not consistent with the change in DF32 in the DF table. It could be caused by the noise while the 

experiment was being conducted. 

 

 

Fig. 6 Damage Pattern 4: Removing one plate at the fourth floor 

 
Table 5 DFs in percentage for Damage Pattern 4 (Average and Standard Deviation in the parenthesis) 

DOF 1st 2nd 3rd 4th 

1st -0.08 (0.37) 0.01 (0.69) N/A N/A 

2nd -1.01 (1.35) -1.31 (1.02) -3.55 (2.47) N/A 

3rd N/A -1.21 (1.45) 0.1 (0.74) -0.19 (1.04) 

4th N/A N/A 12.17 (1.39) 14.08 (0.61) 
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3.6 Damage Pattern 5 (DP5): Removing one plate at the fourth floor + DP3 
 

Damage Pattern 5 introduces a damage caused by simultaneous occurrence of mass and 

stiffness changes at multiple locations. As can be seen in Table 6, the DFs between the first and 

second floors are close to the corresponding values in Table 2, which identifies the stiffness 

reduction between the first and second floors. In terms of the DFs between the third and fourth 

floors, DF33 and DF34 in the third row follow the same pattern as those from Table 4, which 

reveals the reduction in stiffness between the third and fourth floors. In the last row, two 

characteristics can be inferred due to the combination of simultaneous changes of stiffness and 

mass. DF33 and DF34 are caused by stiffness change only, whereas the results of DF43 and DF44 are 

due to the superposition of the two kinds of changes.  

 

 

 

Fig. 7 Damage Pattern 5: Removing one plate at the fourth floor +DP3 
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Table 6 DFs in percentage for Damage Pattern 5 (Average and Standard Deviation in the parenthesis) 

Ref. DOF 1st 2nd 3rd 4th 

1st -4.76 (0.13) -9.36 (0.36) N/A N/A 

2nd -8.79 (1.19) -5.65 (0.78) -2.73 (2.25) N/A 

3rd N/A -0.08 (0.83) -3.81 (0.66) -6.76 (0.75) 

4th N/A N/A 4.85 (1.52) 4.86 (0.27) 

 

 

Therefore, it is concluded that there is a stiffness reduction between the third and fourth floors at 

around 7% when looking at the third row. Subsequently, the mass change can be evaluated based 

on the first conclusion and interpreting the last row. The total of 4.85% increase in the last row 

comes from the combination 7% stiffness reduction at K44, and 11% mass reduction at m4. As 

explained in the Eq. (10), where the mass term appears in the denominator, and thus the above 

stiffness and mass reduction would result in [(1-0.07)/(1-0.11)-1]=4.49% increase in DF43, and 

DF44, which is close to 4.85%. Overall, the first step is to interpret the DFs table is to analyse the 

stiffness reduction based on symmetric changes of the DFs in each sensor cluster (each row of the 

DF table), then evaluate mass change based on the asymmetric changes of the DFs from which the 

stiffness change can be revealed accordingly in each cluster. 

 

3.7 Damage Pattern 6 (DP6): Removing one plate at the third floor + DP5 
 

In this case, one more plate has been removed at the third floor along with the DP5, resulting in 

a more complicated damage scenario with both mass and stiffness changes. As observed in Table 7, 

the stiffness reduction between the first and second floors can be revealed since DFs representing 

these floors show the similar pattern as those in DP3. Regarding the third row and fourth rows in 

the table, asymmetric changes in DF34 and DF43 show that there must be a mass change related to 

these floors. Also, the changes in rows are inconsistent, which shows that there should be a 

stiffness reduction between the third and fourth floors. As it is described here, a detailed analysis 

of the damage feature table is needed to uncouple the damage and mass changes for very 

complicated scenarios. Firstly, the inequality between DF32 and DF23 indicates there was a mass 

reduction at the third floor (which is approximately 12% mass reduction as DF32 is 14.4%).  

 

 

 
Table 7 DFs in percentage for Damage Pattern 6 (Average and Standard Deviation in the parenthesis) 

DOF 1st 2nd 3rd 4th 

1st -4.17 (0.73) -8.49 (1.16) N/A N/A 

2nd -6.11 (1.8) -3.63 (1.65) -1.59 (2.86) N/A 

3rd N/A 14.4 (2.51) 9.83 (2.04) 7.29 (1.4) 

4th N/A N/A 4.77 (3.29) 6.91 (1.24) 
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Fig. 8 Damage Pattern 6: Removing one plate at the third floor +DP5 

 

 

Therefore, the resultant 7.29% change at DF34 is due to the superimposition of 5.6% stiffness 

reduction, and 12% mass reduction at the third floor ([(1-0.056)/ (1-0.12)-1] = 7.29%). Regarding 

the 4th row of the damage feature table, as the stiffness between the third and fourth floor was 

inferred as 5.6%, the change of 4.8% at  DF43 can be explained as the superimposition of 5.6% 

stiffness reduction and 10% mass reduction at the fourth floor ([(1-0.056)/(1-0.10)-1] = 4.8%). 

Finally, it is can be concluded that there were approximately 12% mass reduction at the third and 

fourth floors and 5.6% reduction in stiffness between the two floors. 
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4. Conclusions  
 

This study presents an improved time series analysis method for damage detection and its 

experimental verifications. The methodology starts with mathematical transformation of the 

equation of motion in order to fit the ARMAX models. Once ARMAX models were created for 

different output-only acceleration clusters, the relative difference of the models’ coefficients 

between the baseline and damage cases are computed as the damage feature. The experimental 

data from a laboratory-scale structure was introduced to verify the methodology. The results show 

that the method is very effective in reflecting changes of mass and stiffness simultaneously. In 

addition, the DF values show the severity of damage and its location accurately. However, when 

multiple changes of stiffness and mass occur at the same time at close locations, decoupling the 

information about the mass and stiffness change may require a detailed analysis as discussed. In 

the current form, the method is applicable typically for shear type structures which is relatively 

easy to anticipate the number of DOF. However, general structures contain various DOFs 

depending on the professional judgement of engineers, and it would not be feasible to capture all 

information from all DOFs. Therefore, plans have been drawn to conduct a deeper study to 

minimize such limitations.  
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