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Abstract.  In the last decades, research efforts have been spent to investigate the effect of prestressing on 
the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached 
among the achievements obtained by different Researchers and among the theoretical and the experimental 
results for simply supported beams, very few researches have addressed this problem in continuous PSC 
beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and 
viaducts in the road and railway networks have been designed and constructed with this structural scheme. 
In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into 
account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the 
bending stress along the beam, also by means of the secondary moments, and influences the flexural 
stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a 
nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations 
corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been 
calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. 
The application of the proposed methodology to several case studies indicates that the shift from the 
uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation 
of the dynamic properties of the beam. In service conditions, this shift happens for low values of the 
prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the 
total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of 
the dynamic properties can provide meaningful information regarding the structural state of the PSC beam. 
 

Keywords:  prestressed continuous beams; bridge; prestress losses; non-destructive testing; dynamic 

properties 

 
 
1. Introduction 
 

Continuity has been introduced in road and railways bridges since ’60. Whereas this type of 

construction is, generally, more complicated than simple span bridges, the reduction of the 

maintenance costs associated with bridge deck joints and deck drainage together with the 

improved riding qualities have contributed to the use of this construction technique on a large scale. 

Nowadays these structures continue to age and their assessment is becoming of primary interest. 
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Different technologies are available to monitor large infrastructures (Li et al. 2014) and specific 

procedures have been proposed for specific bridge types (e.g., Huang and Nagarajaiah 2014) but 

further research efforts should be placed on prestressed concrete bridges. 

Regardless of the question whether the effect of prestressing, including secondary moments in 

statically indeterminate beams, should be taken into account only in service conditions or it should 

be considered at ultimate state conditions as well, there is no doubt about the need to assess the 

actual level of prestressing, especially in ageing existing structures. For this purpose, conventional 

techniques have been used by different Researchers. Remennikov and Kaewunruen (2015) used 

the dynamic relaxation technique to evaluate the prestressing force in prestressed concrete 

railways sleepers. Xuan et al. (2009) installed a monitoring system with optical fiber-sensors 

during the construction of a sewage treating tank aiming at evaluating the prestress force in the 

steel-strand. Both methods provide reliable estimate of the prestress force but their implementation 

requires, in the first case, some damage to the tested structure or, in the second case, the placement 

of the sensors during the construction stage. 

NDE techniques have been recently used to assess prestress forces. Kim et al. (2010) used the 

stress wave’s velocity that occurs when an impact is applied to a bonded tendon to evaluate its 

prestressing force. The experimental results demonstrate that the stress wave’s velocity increases 

nonlinearly as the applied tensile force level is increased. The authors observed the same trend also 

on the effect of prestress in varying the concrete elastic modulus. Similar conclusions have been 

also drawn by Noble et al. (2016) based on the results of several experimental tests on PSC beams 

with different strand eccentricities that cause upward cambers. Conversely, diverse results have 

been obtained in the case of PSC beams where the effect of the eccentricity of the post-tensioning 

strand induced further cracking at the bottom fibre of the beam. Lundqvist and Rydén (2012) used 

resonant acoustic spectroscopy to measure the torsional and the longitudinal frequencies of 

vibrations of three prestressed concrete beams under different levels of prestressing force. The 

results of the experiments clearly showed that the measured resonance frequencies increased for 

higher compressive stress produced by the prestressing force. 

Most of the investigations carried out so far on non-destructive techniques for the evaluation of 

the prestress force in PSC beams use dynamic identification techniques. Huang et al. (2011) 

analyzed the three-dimensional vibration behaviour of prestressed concrete bridges under moving 

vehicles using four-node isoparametric flat shell elements with transverse shear stiffness. The 

effect of prestress forces on the natural frequencies and on the dynamic response of the bridges 

was investigated by a step-by-step integration approach. According to their findings, the increase 

of the prestressing force yields a decrease in the natural frequencies and an increase in the 

time-dependent displacements of the bridge under moving loads. Similar numerical simulations 

were carried out by Li et al. (2013) to identify the magnitude of prestress force in a highway 

bridge by using the dynamic responses from moving vehicular loads. The unknown prestress force 

was iteratively identified from the measured structural dynamic responses by using an updating 

procedure based on the dynamic response sensitivity of a finite element model. Smail et al. (2014) 

proposed an inverse modeling technique that uses the dynamic strain responses and 2D 

elastodynamics to identify the pretension in the cable and the prestress in the concrete in a PSC 

beam. In their inverse technique, a classical data misfit function was minimized using a 

gradient-like algorithm identifying the stresses in the cable and in the concrete achieving an error 

smaller than 1% with only 4 iterations. Zhong et al. (2015) proposed a new bridge–vehicle model 

based on the principle of virtual work to investigate the interaction in terms of structural response 

between continuous prestressed bridges and vehicles with consideration of the prestress effect. The 
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model was validated by comparison with data available in the literature and with results of FE 

analyses. The conclusions indicate that prestress has a significant effect on the maximum vertical 

acceleration of the vehicles, which may provide a good index for detecting the change to the 

prestress force. Xiang et al. (2016) proposed a combination of 3 methods, the virtual distortion 

method, the Duhamel integral, and the load-shape function method to simultaneously identify the 

prestress force and the moving load acting on a PSC beam. Fang (2014) used the energy method to 

analyze the natural frequencies of externally PSC beams taking into account the second order 

effects and the compression softening phenomena. According to his findings, the compression 

softening effects vanishes progressively as the number of deviators increases from zero to a large 

number. It was also noticed that the eccentricity and the area of the tendon noticeably increase the 

1
st
 natural frequency of the simply supported beams. A general model able to take into account the 

effects of nonlinearity, softening, confinement and micro-cracking of concrete on the dynamic 

properties of simply supported PSC beams has been presented by Breccolotti (2018). The 

proposed model was applied with satisfactory results to four PSC beams with known mechanical 

and dynamic properties found in the literature. 

From the experimental point of view, Limongelli et al. (2016) recently described the results of 

an experimental campaign carried out on a post-tensioned concrete beam with the aim of 

investigating the possibility of detecting, among other signs of deterioration, the increasing loss of 

prestress in the post tensioning cables. Based on the results of the tests, it was claimed that 

variations of the first and second modal frequencies with the tension in the prestressing cables are 

hardly detectable, unless the prestress loss induces the formation of a relevant cracking state. In 

this situation it must be also taken into account that cracks can open and close during vibration 

depending on the intensity of the external force that causes the vibration. This effect yields 

changes to the beam’s flexural stiffness as reported by Breccolotti and Materazzi (2008) and by 

Breccolotti et al. (2008). 

According to the above literature survey it can be noted that very few studies have been 

conducted on continuous PSC beams whereas this structural scheme has been frequently used in 

the context of important road and rail infrastructures for its enhanced structural performances in 

comparison to those of single span bridges. This paper therefore focuses on the evaluation of the 

dynamic properties of continuous PSC beams and particularly on the link between the frequencies 

of vibration and the level of prestress and on the ability to use the former for the assessment of the 

latter. This investigation is therefore motivated by the idea of using the dynamic characteristics as 

a quantitative indicator of the prestress force. 

 

 

2. Eigenproperties of a two-span continuous beam with a nonlinear inner flexural spring 
 

Dynamic identification has been widely investigated in the attempt of detecting damage at the 

earliest possible stage in civil, mechanical and aerospace engineering (Farrar and Jauregui 1998). 

Among different approaches, the flexibility method, based on the evaluation of the modal 

properties of the investigated structure, has been adopted. 

The eigenproperties of a two-span continuous beam with a nonlinear flexural connection 

between the two spans (Fig. 1) can be derived from the classical free vibration equation according 

to the Euler-Bernoulli formulation with uniform cross section and negligible rotational inertia 
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  (1) 

where  v x,t  is the transversal displacement, EI  the bending stiffness and   the mass per 

unit length of the beam. With the variables separation method, the unknown displacement is 

written as 

  (2) 

The following solution can be obtained for each span 

  (3) 

where the coefficients kA  depend on the boundary and continuity conditions. In this case, and 

when the flexural stiffness EI  is uniform along the entire beam, the following conditions must 

hold 

  (4) 

where the subscripts 1,2 refer to the first (left) and second (right) span, 1L  and 2L  are the 

lengths of the first and second span, respectively, and rK  is the stiffness of the nonlinear 

rotational spring that links the two spans at the inner support. Introducing Eq. (3) into Eq. (4) 

yields the following set of equations written in terms of the unknowns kA  
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Fig. 1 Two-span continuous beam and nonlinear spring at the intermediate support (top) and first three 

mode shapes (bottom) 

 

 

  (5) 

After some trivial simplifications, this system of equations can be rewritten as 

  M A 0  (6) 

where M  is the coefficient matrix 
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  (7) 

with , , , , 

, , ,  with A  the 

unknowns vector 

  (8) 

The homogeneous system of Eq. (6) has non-trivial solutions if the determinant of the 

coefficient matrix M  vanishes. This condition yields a transcendental equation and its solutions 

na  are determined numerically. The natural frequencies of the n-th mode can be calculated as 

  (9) 

The mode shapes are schematically illustrated in Fig. 1. Depending on the value of the 

rotational stiffness rK  of the spring, different dynamic behaviors can be obtained. Specifically, if 

the value of rK  increases, the behavior gets closer to that of a continuous beam (no relative 

rotation of the two bays). If, conversely, the value of rK  decreases, the behavior tends to that of 

two simply supported beams connected by a hinge (null rotational stiffness) at the intermediate 

support. As will be shown later, in the present study it is hypothesized that the stiffness rK  of the 

connection between the two spans and, in turn, the dynamic properties of the beam, are nonlinear 

functions of the state of prestressing of the beam. Such a functional link is developed in the next 

section. 

 

 

3. Influence of prestressing on the dynamic properties of the two-span PSC beams 
 

The effect of prestressing on the dynamic properties of a continuous PSC beam is investigated 

with reference to a beam whose tendon profile is similar to the one reported in Naaman (2004). It 

is a two-span beam designed for a uniform service load distribution with the nonlinear tendon 
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profile shown in Fig. 2. It has to be highlighted that the permanent service load (the one that will 

be used in the evaluation of the dynamic properties of the beam) is naturally smaller than the loads 

used to check the safety of the beam at service and at ultimate conditions since it is hypothesized 

that variable loads, such as traffic, snow, etc., are not present during the execution of the dynamic 

tests. 

The procedure to evaluate the effect of prestressing on the dynamic behaviour of the PSC beam 

can be summarized with the following steps: 

1. Determination of the bending moment due to the beam self-weight, the superimposed loads 

and the prestressing force under the assumption that the beam is uncracked, linear, and elastic. 

2. Determination of the nonlinear moment-curvature relationship for the beam cross-section 

with different values of axial force (corresponding to different values of prestress) in the cracked 

and uncracked state. In addition, determination of the bending moments  crM P  that cause the 

cracking of the concrete for each different value of prestressing force P . 

3. Determination, for each value of the prestressing force P , of the portion of the beam that is 

subjected to a bending moment greater than  crM P  under the permanent service load. 

4. Determination of the stiffness to be assigned to the rotational spring between the two spans 

according to the value of the prestressing force, the nonlinear moment-curvature relationship 

evaluated at step 2 and, eventually, the length of the cracked part of the beam. 

5. Execution of dynamic analysis on the continuous beam composed by the two spans 

connected by the rotational spring and extraction of the free vibration frequencies and mode 

shapes for different values of the prestressing force. 

These different steps are examined separately in the following. It must be pointed out that this 

procedure is certainly valid for post-tensioned unbonded prestressing strands. In fact, the 

occurrence of cracking due to an excessive prestress loss does not produce any meaningful 

increase in the prestressing force being the required strain increase in the prestressing steel 

averaged along the entire length of the beam. The procedure can be considered also valid for 

post-tensioned bonded prestressing strands. In this case concrete cracking is responsible of local 

strain increase in the prestressing steel with the consequent local increase in the prestressing steel 

stresses. Nevertheless, this effect is limited to the zone where cracking occurs and does not modify 

the loads equivalent to the prestressing. 

 

 

 

Fig. 2 Tendon profile (beam length not to scale) 
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3.1 Bending moment due to prestressing 
 

While the effect of prestressing vanishes at ultimate states for the plastic deformation of the 

prestressing steel, it is still effective at permanent condition, thus influencing the distribution of the 

bending stresses along the beam. According to the standard procedure used in the design of 

prestressed beams, four equivalent systems of concentrated and distributed loads are introduced to 

replicate the effect of the prestressing force applied by the tendons. These latter are introduced by 

means of three parabolas, two of which with concavity upwards and one downwards, connected to 

each other to have the same tangent at the intersection point (Fig. 2). The equivalent loads exerted 

on the beam due to prestress are illustrated in Fig. 3. 

The bending stresses produced by the forces equivalent to the prestressing are superimposed 

with those produced by the external load to obtain the overall bending moment diagram M . The 

effect of different values of the prestressing force (or, alternatively, the effect of prestress losses) 

can be argued looking at the example shown in Fig. 4. 

 

3.2 Nonlinear moment – curvature relationship for prestressed sections 
 

The relationship between the bending moment and the corresponding curvature for a beam 

having a rectangular cross section and subjected to a compressive force P  equal to the 

prestressing force is analyzed assuming a plastic behaviour of the prestressing strand and the 

reinforcement rebar and nonlinear constitutive relation for the concrete in compression proposed 

by Park and Paulay (1975) 

 
2

0 0

2 c c
c,c c ck

 
f

 
 

 

  
    

  
                       (10) 

 

 

Fig. 3 Prestressing equivalent loads 
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Fig. 4 External loads, prestressing equivalent loads and overall bending moment for different values of 

the prestressing force 

 

 

 

where c,c  is the compressive stress in the concrete (positive), ckf  is the concrete characteristic 

compressive strength, c  is the concrete strain (positive in contraction), and 0 = 2‰. For 

concrete in tension, a linear elastic behaviour is assumed up to cracking 

                          (11) 

with 

                      (12) 

and where c,t  is the tensile stress in the concrete (negative), t    is the concrete strain and 

0c,E  is the tangent elastic modulus of the concrete at the origin. The complete stress-strain 

diagram for the concrete is displayed in Fig. 5(a). It is assumed that cracking of the concrete 

occurs when its strain reaches the value 

 
0

cfm
c,t

c,

f

E
   (13) 

with cfmf  mean tensile strength for bending stresses of the concrete (CEN 2014). 

For the reinforcement, steel type B450C (CEN 2014) is assumed. The stress-strain relation for 

the steel reinforcement is assumed linear up to yielding, both in compression and in tension (Fig. 

5(b)) 

                           (14) 
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(a) (b) 

Fig. 5 (a) Concrete stress-strain relationship and (b) Prestressing and reinforcing steels stress-strain 

relationships 

 

 

 

Fig. 6 Strain and stress distributions in the uncracked stage 

 

 

where a  is the stress in the steel and sE  is its elastic modulus. The latter is taken as 200 GPa. 

The variation of the bending stiffness for different prestressing forces is examined separately 

for the uncracked and the cracked stages. In the first case, the concrete contributes to the stiffness 

along the entire region. In the second case, the cracking that occurs in the concrete at discrete 

locations yields a reduction in the overall flexural stiffness. In the following, we will refer to a 

rectangular section with dimension B and H, an area of steel in tension SA  and an area of steel in 

compression 1S SA A   (Fig. 6). 

 

3.2.1 Uncracked stage 
In the uncracked stage of a PSC beam, two different distributions of stresses can occur: a 

distribution with only compression stresses (type A) and a distribution with both, compression and 

tensile stresses (type B) as depicted in Fig. 6. 
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A closed form expression for the internal bending stress distribution can be obtained for both 

types as a function of the curvature   and of the prestressing value P  

  R,A R,AM M ,P                        (15) 

  R,B R,BM M ,P                        (16) 

From these relationships it is possible to determine the bending stiffness of the cross section by 

means of the derivative of the bending moment with respect to the curvature  . The cross 

sectional flexural stiffnesses turn out to be function of the prestressing force P  and of the 

bending moment acting on the section RM  

 R,A
e,A

d M
k

d
        (17) 

 
 R,B

e,B

d M
k

d


                        
(18) 

As will be shown later in the case studies, it is interesting to note that in the uncracked stage the 

bending stiffness slightly increases with increasing values of the prestressing forces. This can be 

ascribed to the softening behaviour of the concrete that becomes more deformable for increasing 

compressive stresses. 

 

3.2.2 Cracked stage 
In the cracked stage the attainment of the concrete tensile strength divides the beam 

cross-sections into two parts (Fig. 7). The curvature II  that defines the shift from the uncracked 

stage to the cracked one is equal to. 

 
 

c,t ,max
II

H y


 


 (19) 

where c,t ,max  is the strain of the concrete corresponding to its tensile strength and y  is the 

height of the compressed part of the section from the most stressed fibre to the neutral axis (Fig. 7). 

By introducing Eq. (19) into Eq. (16) it is possible to obtain the relation between the cracking 

moment crM  and the prestressing force P 

 
II

cr R,BM M
 

                        (20) 

The behaviour of the cracked section is investigated up to the tensile yielding of the 

reinforcement since is of very little interest considering the case of yielded steel rebars. This 

means that the strain in the tensile steel is investigated up to the value (Fig. 5) 

yk
sn

s

f

E
  

                           (21) 
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and, correspondingly, the curvature is analyzed up to the value 

 
 

sn
sn

d y


 


                          (22) 

Also in this case a closed form formulation has been derived for the internal moment and for 

the flexural stiffness 

  R,II R,IIM M ,P  (23) 

 
 R,II

cr

d M
k

d
  (24) 

 

3.3 Evaluation of the flexural stiffness in the cracked part of the beam 
 

The length of the cracked part of the beam is designated by crl . In this region, the bending 

moment, which is larger than the cracking one, crM , yields tensile stresses that exceed the 

concrete tensile strength and trigger the formation of cracks (Fig. 8(a)). In this part of the beam, 

neither the flexural stiffness of the cracked stage nor that of the uncracked stage correctly 

represents the effective flexural stiffness. In fact, in a well-developed cracking pattern (see Fig. 

8(b)), there are parts of the beam where the stiffness is reduced while there are other parts located 

between every couple of consecutive cracks where the beam is almost undamaged. 

An evaluation of the flexural stiffness of the cracked region is carried out according to the 

relations proposed by Ghosh and Khuntia (2004a, b) on the basis of parametric studies on the 

moment of inertia of reinforced concrete columns and beams. In fact, if the prestressing action is 

significant, the cross sectional flexural stiffness of the PSC beam is similar to that of reinforced 

concrete column 

  (25) 

where tot  is the ratio of the total reinforcement area over the concrete cross section area, cE  is 

the elastic modulus of the concrete, I  is the moment of inertia of the cross section, the 

eccentricity e  is the ratio of the total bending moment M  and the prestressing force P , and 

uP  is the ultimate strength in compression of the concrete section without bending moments. 

Conversely, if the prestressing action is small, the flexural stiffness of the PSC beam is similar to 

that of reinforced concrete beam 

         (26) 

where B  and H  represent width and height of the section, respectively, and tensile  is the 

ratio of the tensile reinforcement area over the concrete cross section area. 
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Fig. 7 Strain and stress distributions in the cracked stage 

 

 

 
 (a) (b) 

Fig. 8 Finite length cracked zone of a PSC beam: a) bending moment and (b) cracking pattern. 

 

 

The relative rotation   between the two ends of a cracked region of the beam with length crl  

and flexural stiffness effk  under a uniform bending moment M  with *
crM M M   is 

equal to 

                          (27) 

where M  is the averaged bending moment along the cracked region and   can also be written 

as s d     (Fig. 8(b)). 

As discussed in the previous paragraphs, the assessment of the flexural stiffnesses of the 

cracked and the uncracked sections of a RC beam can be achieved using Eqs. (17), (18), (25), (26).  

Opposed to that, calculating the flexural stiffness of a finite length part of a cracked RC beam 

with length crl  is not so straightforward. It can however be taught of as the combination of two 

contributions: that of the cracked sections (sections type 1-1 in Fig. 8(b)) with a bending stiffness 

crk  that takes into account the concrete partialization and the nonlinear behaviour of the concrete 
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in compression, and that of the uncracked sections ek  (sections type 2-2 in Fig. 8(b)) that takes 

into account the nonlinear behaviour of the concrete in compression. Thus, it can be assumed that 

the overall relative rotation  effk  is the sum of the rotations occurring in two consecutive 

homogeneous finite length beams that correspond to the uncracked and the cracked parts, with 

cross sectional stiffnesses ek  and crk  

      eff e crk k k     (28) 

Assuming that within the length crl  the portion of the uncracked sections is equal to a  while 

the length of the cracked sections is equal to b  and that both parts are subjected to the same 

bending moment M , the following system of equations in the unknowns a  and b  can be 

written 

        (29) 

By using the values for effk  given in Eqs. (25) and (26), which depends on the bending 

moment M  and prestressing force P , the system of Eq. (29) can be solved for the following 

unknowns 

                         (30) 

 crb l a                            (31) 

The effective flexural stiffness used for the cracked portion of the beam can, thus, be rewritten 

as 

 cr e cr
eff

cr e

l k k
k

a k b k

 


  
                      (32) 

In the study of the dynamic behavior of the PSC beam, the assumption of concentrated 

plasticity lumps the effect of the cracked region to a point located at the inner support (point B in 

Fig. 4) and represented by the rotational spring. The stiffness of the rotational spring rK  is then 

equivalent to the stiffness of the cracked part of the beam 

 
eff

r
cr

k
K ( )

l
                         (33) 
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3.4 Eigenfrequencies and mode shapes 
 
Eigenfrequencies and mode shapes of the nonlinear two-span continuous beam are extracted 

from the structure by linearizing its behaviour in the neighborhood of the equilibrium point 

reached following the application of the permanent loads and of the investigated value of prestress 

force. The following procedure is coded in a Maple environment for the evaluation of the 

influence of the prestress force on the dynamic properties of a PSC beam: 

1. Definition of a set of values of the prestress force P  in the range between 0 and the initial 

prestress force 0P  for which the dynamic properties of the beam are evaluated; 

2. Calculation of the distributions of bending stresses produced by the external loads in 

service condition and by the different values of the prestressing forces; 

3. Determination of the rotational spring stiffness rK  equivalent to the portion of beam 

connecting the two spans for each value of the prestressing force P  (Eq. (31)); 

4. Implementation of the values rK  in the coefficients matrix M  and calculation of the 

values na  that nullify the determinant of the matrix for each value of P ; 

5. Determination of the unknowns  of the linear system in Eq. (6) and subsequent 

identification of the mode shapes for each value of P ; 

6. Determination of the eigenfrequencies (Eq. (7)) for each value of the prestressing force. 

Repeating steps 1-6 for the whole series of prestressing forces (defined here as a percentage of 

the initial reference force 0P  defines the link between the level of prestress and the frequencies 

of vibration. The inverse form of this link allows assessing the level of prestress based on 

measurement of the natural frequencies. 

It must be pointed out that, at the actual stage of research, the evaluation of the bending 

moment distributions mentioned at point 2) is carried out neglecting the variation of the flexural 

stiffness at point B consequent to the variation of the prestressing force. 

 

 

4. Case studies 
 

The procedure presented in the previous section is applied to three case studies of continuous 

PSC beams with two spans and a piecewise parabolic cable. The first and the third ones 

correspond to a beam with two equal length spans while the beam studied in the second case has 

two spans with different lengths. The geometrical features of the beams and of the cable layouts 

are summarized in Table 1 (see Fig. 2 for the notations). The dimension of the beams cross 

sections and the amount of reinforcements are listed in Table 2 with the notations of Fig. 6. The 

mechanical properties of the materials used for the three case studies are reported in Table 3. 

 

4.1 Case study I: continuous PSC beam with 2 equal spans and low level of live load 
 
The first case studies a 50 m long PSC beam with two 25 m long spans. The design loads 

include the beam’s self-weight, 1G =15 kN⁄m, the superimposed dead load, 2G =30 kN⁄m, and the 

live load, 1Q =15 kN⁄m. 

The minimum prestressing force for the section at the internal support can be preliminarily 

calculated neglecting the secondary moments by using the Magnel diagram (Magnel 1951) and  
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Table 1 Geometrical features of the beam and of the cable layout for the three case studies 

Case study L1 L2 l1 l2 l3 e1 e2 e3 e4 f1 f2 f3 

 (m) (m) (m) (m) (m) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

I 25 25 18.75 12.5 18.75 0 200 200 0 600 600 600 

II 30 15 22.5 15 7.5 0 200 200 0 600 600 600 

III 25 25 18.75 12.5 18.75 0 200 200 0 600 600 600 

 

 
Table 2 Dimension of the beams cross sections and amount of reinforcements for the three case studies 

Case study H B d AS AS1 AP 

 (mm) (mm) (mm) (mm
2
) (mm

2
) (mm

2
) 

I 1500 400 1350 1005 1005 4200 

II 1500 400 1350 1005 1005 4200 

III 1500 400 1350 1005 1005 4200 

 

 
Table 3 Physical and mechanical properties of materials 

Material Property Symbol Value u.m. 

Concrete 

Characteristic cylindrical compressive strength fck 35.0 MPa 

Mean tensile strength fctm 3.21 MPa 

Compressive strain at maximum stress 0 0.0020 -- 

Ultimate compressive strain cu 0.0035 -- 

Ultimate tensile strain ct 0.0001 -- 

Steel 

Characteristic tensile strength fyk 450 MPa 

Elastic modulus Es 200 GPa 

Characteristic yielding strain yk 0.00225 -- 

 

 

assuming the maximum practical eccentricity and the attainment of the concrete tensile strength at 

the extrados under the minimum (negative) bending moment 

 0
0

min ts t

b

M Z
P

e k








 (34) 

where minM  is the moment produced by the unfactored dead and live loads,   is a coefficient 

that introduces the prestress losses at a preliminary stage, ts  is the admissible concrete tensile 

stress, tZ  is the section modulus with respect to the top fiber, bk  is the distance from the 

centroid of the concrete section to the lower limit of the central kernel and 0e  is the eccentricity 

of the prestressing steel with respect to the centroid of the concrete section. For the sake of 

simplicity, an initial prestressing force 0P  equal to 4200 kN is assumed for each case study. 
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 (a) (b) 

Fig. 9 Case study I – Bending moments (solid lines) and cracking moments (dashed lines) for different 

values of the prestressing force in the uncracked stage (a) and in the cracked stage (b) 

 

 

To simulate the condition of a hypothetical dynamic test, the live load is not considered in the 

calculation of the bending moment distribution along the PSC beam and in the evaluation of the 

corresponding dynamic properties. The distributions of the bending moment for different values of 

the prestressing force are shown in Fig. 9. In this figure, the cases of the uncracked stages are 

shown in the left part while those of the cracked stages are shown in the right side. The diagrams 

of the bending moments are shown with solid curves while the cracking moments are shown with 

dashed lines. A different colour is used for each value of the prestress force. From the right figure, 

the length of the cracked portion that corresponds to each values of the prestress force can also be 

determined. These lengths are reported in Table 4. 

Based on the analyses described in the previous section, the relationship between the bending 

moment M  and the flexural stiffness K  for the uncracked and cracked section and for different 

values of the prestressing force is determined. These relationships are shown in Fig. 10. In the 

figure the solid circles designate the bending moments occurring in the nonlinear beam at the 

internal support (point B of Fig. 4) for different values of the prestress force. It can be observed 

that: 

1. a decrease in the prestress force yields an increase in the bending moment in the section at 

the internal support; 

2. the decrease of the prestress force combined with the increase of the bending moment in 

the uncracked stage produces a slight increase of the bending stiffness. This slight increase 

is associated with negligible variations of the dynamic properties of the prestressed beam. 

This result is similar to that found for simply supported beams by Hamed and Frostig 

(2004); 

3. the decrease of the prestress force combined with the increase of the bending moment in 

the cracked stage produces a significant reduction of the bending stiffness. This result is 

similar to that obtained by Hamed and Frostig (2006) who observed a significant 

reduction of the natural frequencies of simply supported PSC beams following the 

cracking induced by increasing external loads. 

In the uncracked stage, a prestress reduction of 20% produces an increase of section flexural 

stiffness of 4.0%. In the cracked stage, conversely, a decrease of prestress from 0.78 0P  to 0.68 
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0P  is responsible for a 40% reduction of the flexural stiffness. This flexural stiffness is used 

according to par. 3.3 to calculate the stiffness of the rotational spring for the eigenvalues analyses. 

The first four frequencies of vibration calculated for the investigated values of the prestress 

force are shown in Fig. 11 for the uncracked and cracked stage. In this figure, the variations of the 

eigenfrequencies if  (normalized with respect to the frequencies 
0i ,Pf  are plotted as a function 

of the relative reduction of the prestress force  0 0P P P ). It can be observed that the slight 

variation of the bending stiffness of the nonlinear portion is not sufficient to trigger significant 

variations in the dynamic properties of the PSC beam in the uncracked stage. Conversely, relevant 

variations of the 2
nd

 and the 4
th
 frequency of vibrations are foreseen in the cracked stage. As 

expected in this case, the 1
st
 and the 3

rd
 mode are not affected by the value of the prestress loss. 

This is due to the zero curvature of the cracked portion of the beam in those modes. The frequency 

of vibrations and the mode shapes in the cracked stage are reported in the Table 5 and in Fig. 12, 

respectively. Fig. 13 shows the relative variations between the normalized 2
nd

 and 4
th
 mode shapes 

corresponding to the initial value of the prestress force ( 0P ) and to a prestress force equal to 0.68 

0P . These values have been calculated for the i-th mode shape i  as follow 

 
   

 

0 0

0

0 68P P P . P
i i

P P
i

x x

x

 



 




 (35) 

Even if the relative variations of the mode shapes turned out to be not negligible in the present 

work, only the eigenfrequencies will be used to assess the prestress force for their higher reliability 

and ease of measurement. 

For the present case, dynamic tests can be considered of great utility since they are able to 

identify cracking and monitor the evolution of the prestress forces starting from a value of 0.78 

0P , which is roughly equal to that considered in the design process. This possibility is relevant 

since cracking produced by excessive prestress loss or by tendon rupture is not easily detectable in 

continuous PSC bridges by visual inspection occurring, generally, at the extrados under the asphalt 

layer. The use of a limited number of sensors with a continuous monitoring system would, instead, 

be able to detect this type of damage. 

 

 

   
 (a) (b) 

Fig. 10 Case study I - Variation of the flexural stiffness as a function of the bending moment and prestressing 

force in the uncracked stage (a) and in the cracked stage (b) 
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Table 4 Case study I - Length of cracked part of PSC beam for different values of prestressing force 

P/P0  P [kN] lcr [mm] Kr [kN m] 

0.78 3276 2 1.280 · 10
9
 

0.68 2856 1105 2.920 · 10
6
 

0.58 2436 2299 1.451 · 10
6
 

0.48 2016 3572 9.435 · 10
5
 

0.38
 

1596 4899 6.438 · 10
5
 

 

 
Table 5 Case study I - First 4 frequencies of vibration for different values of prestressing force (cracked 

stage) 

P/P0  [%] P [kN] f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

0.78 22 3276 2.2357 3.4975 8.9524 11.3304 

0.68 32 2856 2.2357 3.3457 8.9524 10.8751 

0.58 42 2436 2.2357 3.2255 8.9524 10.5557 

0.48 52 2016 2.2357 3.1243 8.9524 10.3122 

0.38 62
 

1596 2.2357 3.0168 8.9524 10.0813 

 

 

   
 a) b) 

Fig. 11 Case study I - Relative variations of the first 4 frequencies of vibration for decreasing values of the 

prestress force in the uncracked stage (a) and in the cracked stage (b) 

 

 

4.2 Case study II: continuous PSC beam with two unequal length spans 
 
The second case study deals with a PSC beam on three supports with an overall length of 45 m. 

The length of the first span equals 30 m while the other one equals 15 m forming an asymmetric 

structure. The path of the nonlinear cable is described by the data in Tab. 1. The geometrical and 

physical characteristics of the rectangular section are the same as the ones used in the previous 

case study (Tables and 3). The design loads include the beam’s self-weight, 1G =15 kN⁄m, the 

superimposed dead load 2G =20 kN⁄m and the live load 1Q =10 kN⁄m. Also in this case, the 
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resulting initial prestressing force 0P  equals 4200 kN. Fig. 14 shows the bending moments 

(continuous curves) and the cracking moment at the internal support (dashed lines) for different 

values of the prestressing force in the uncracked and in the cracked stages. The lengths of the 

cracked region of the PSC beam in the vicinity of the internal support are shown in Table 6 for the 

investigated values of effective prestress forces. In this case, cracking occurs at the internal 

support as a consequence of a prestress degradation of approximately 23%. The variation of the 

flexural stiffness as a function of the bending moment and prestressing force in the uncracked and 

in the cracked stages are shown in Fig. 15. Similarly to case study I, in the uncracked stage, a 

prestress force of 0.8 0P  yields an increase of the section’s flexural stiffness of 4.3% while in the 

cracked stage, an decrease of prestress force from 0.77 0P  to 0.66 0P  yields a 41% reduction of 

the flexural stiffness. In this case, the changes to the prestress force affect the first, third, and 

fourth eigenfrequencies (Table 7) in the cracked stage while its influence is negligible in the 

uncracked stage. The variations of the normalized frequencies of vibration if  as a function of 

prestress force, shown graphically in Fig. 16, reach a maximum value of 5% for the 3
rd

 mode for 

prestress decreasing from a value of 0.77 0P  to 0.67 0P . 

 

4.3 Case study III: continuous PSC beam with 2 equal spans and high live load 
 
The third case study uses the same geometry and the same total load of the first one, but with a 

higher level of live load: beam selfweight 1G =15 kN⁄m, superdead load 2G =20 kN⁄m and live 

load 1Q =25 kN⁄m. 
 

 
Table 6 Case study II - Length of cracked part of PSC beam for different values of prestressing force 

P/P0  P [kN] lcr [mm] Kr [kN m] 

0.77 3234 31 9.743 · 10
7
 

0.66 2772 1357 2.378 · 10
6
 

0.55 2310 2838 1.174 · 10
6
 

0.44 1848 4475 7.520 · 10
5
 

0.33 1386 6241 5.055 · 10
5
 

 

 
Table 7 Case study II - First 4 frequencies of vibration for different values of prestressing force (cracked 

stage) 

P/P0  [%] P [kN] f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

0.77 23 3234 2.2579 7.0487 9.8410 17.3103 

0.66 34 2772 2.1978 7.0487 9.3003 16.9213 

0.55 45 2310 2.1503 7.0487 8.9145 16.6842 

0.44 56 1848 2.1092 7.0487 8.6109 16.5166 

0.33 67 1386 2.0618 7.0487 8.3294 16.3743 
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 Mode 1 Mode 2 

 

   
 Mode 3 Mode 4 

Fig. 12 Case study I - First 4 mode shapes for decreasing values of the prestress force in the cracked stage 

 

 

 

   
 a) b) 
 

Fig. 13 Case study I - Relative variations between mode shapes corresponding to P = 0P  and P =0.68 0P   

for the 2
nd

 (a) and the 4
th

 mode shape (b) 
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 (a) (b) 

Fig. 14 Case study II – Bending moments (solid lines) and cracking moments (dashed lines) for different 

values of the prestressing force in the uncracked stage (a) and in the cracked stage (b) 

 

 

   
 (a) (b) 

Fig. 15 Case study II - Variation of the flexural stiffness as a function of the bending moment and 

prestressing force in the uncracked stage (a) and in the cracked stage (b) 

 

 

   
 (a) (b) 

Fig. 16 Case study II - Relative variations of the first 4 frequencies of vibration for decreasing values of the 

prestress force in the uncracked stage (a) and in the cracked stage (b) 
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Since the total load is the same as in the first case study, the same prestressing force of case I is 

used here as well. Nevertheless, as already mentioned, the determination of the dynamic properties 

is carried out assuming quasi-permanent conditions, thus neglecting the relevant live load. Under 

this condition, cracking at the intermediate support occurs for a prestress force of 0.58 0P  (Fig. 

17). This very high value indicates that a PSC beam designed for high live loads can undergo 

significant prestress reduction in service condition prior to cracking. The variation of the flexural 

stiffness as a function of the bending moment and prestressing force (Fig. 18) follows trends that 

are similar to those observed in the first case study, though for different values of the prestress 

force. Similar observations can be made, also, for the relative variations of the first 4 frequencies 

of vibration for decreasing values of the prestress force (Fig. 19). In this case the dynamic tests can 

be considered of little utility since they may detect cracking and monitor the evolution of the 

prestress forces only after a significant change of the prestress force. 

 
Table 8 Case study III - Length of cracked part of PSC beam for different values of prestressing force 

P/P0  P [kN] lcr [mm] Kr [kN m] 

0.56 2352 119 2.582 · 10
7
 

0.48 2016 1297 2.531 · 10
6
 

0.40 1680 2566 1.303 · 10
6
 

0.32 1344 3907 8.588 · 10
5
 

0.24 1008 5283 5.971 · 10
5
 

 
Table 9 Case study III - First 4 frequencies of vibration for different values of prestressing force (cracked 

stage) 

P/P0  [%] P [kN] f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

0.56 44 2352 2.5393 3.3836 10.1509 11.3842 

0.48 52 2016 2.5393 3.5101 10.1509 11.6372 

0.40 60 1680 2.5393 3.6050 10.1509 11.8902 

0.32 68 1344 2.5393 3.7631 10.1509 12.2696 

0.24 76 1008 2.5393 3.9528 10.1509 12.7756 

 

   
 (a) (b) 

Fig. 17 Case study III – Bending moments (solid lines) and cracking moments (dashed lines) for different 

values of the prestressing force in the uncracked stage (a) and in the cracked stage (b) 
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 (a) (b) 

Fig. 18 Case study III - Variation of the flexural stiffness as a function of the bending moment and 

prestressing force in the uncracked stage (a) and in the cracked stage (b) 

 

 

   
 (a) (b) 

Fig. 19 Case study III - Relative variations of the first 4 frequencies of vibration for decreasing values of the 

prestress force in the uncracked stage (a) and in the cracked stage (b) 

 

 

5. Conclusions 
 

The present paper describes a theoretical investigation carried out to evaluate the effect of 

prestress force on the dynamic properties of continuous PSC beams. In the theoretical 

consideration, it has been assumed that only the most stressed part of the structure located near the 

internal support behaves nonlinearly while the other parts of the structure have been considered in 

the linear elastic state. The nonlinear behaviour takes into account concrete cracking and the 

nonlinear constitutive law of the concrete in compression. The effect of the prestressing force has 

been considered twice: in the distribution of the flexural stiffness and in the determination of the 

moment-curvature relationship. The effective flexural stiffness of the cracked part of the beam has 

been considered in the evaluation of the dynamic properties (eigenfrequencies and mode shapes) 

of the continuous PSC beam. 

The proposed modelling technique has been applied to three continuous PSC beams case 

studies with two spans and parabolic strand layouts. Equal and unequal span lengths as well as 
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different permanent load / total load ratios have been considered to investigate the sensibility of 

the method. The results of the analysis show that in the uncracked stage, generally observable for 

small changes to the prestress force, the flexural stiffness of a generic cross section tends to 

increase with decreasing prestressing force. However, if only the most stressed section behaves 

nonlinearly while the remaining part of the structure behaves linearly, this phenomenon triggers 

very limited changes to the overall dynamic properties of the beam. 

Much more noticeable is the variation of the frequencies of vibrations detected in the cracked 

stage for higher changes to the prestress force. In this case, the frequencies of vibration can be 

reduced by 6% for a prestress reduction of 30%. On the other hand, also mode shapes are 

influenced by changes to the prestress force but the difficulty of obtaining reliable measures of 

these figures limits their exploitation. 

The results of the investigations also allowed to notice that dynamic techniques can be used to 

timely detect excessive prestress losses in bridges with high value of the ratio between dead load 

and total load as occurs, for instance in continuous box girder bridges. It is, also, important to note 

that this monitoring can be carried out with a limited number of sensors. Conversely, dynamic 

monitoring turned out to be less effective when dealing with PSC beams with small values of the 

ration between dead load and total load as happens, for instance, in short span bridges. 
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