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Abstract. Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of
engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves
are a popular means to DD owing to their sensitivity to small damages over a substantial length. This
typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a
transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures
using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop
a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed
approach performs damage detection, localization in beams. In addition, quantification is possible too
with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy
in detection and localization even with a signal to noise ratio of 25 dB.

Keywords: sparsity; lamb waves; damage detection; statistical learning

1. Introduction

Structural health monitoring (SHM) is a necessity for continuity of functionality of engineering
and infrastructure systems (Boller 2000, Ou and Li 2010). It typically entails deployment of an array
of sensors on a system of interest for continuous data acquisition, using which one may perform
damage detection, followed by estimation of remaining useful life (Farrar and Worden 2007). Rytter
(1993) classifies damage detection into four different levels, I through IV. Level I is the determination
of existence of damage, level II is damage localization, level III is quantification of damage and level
IV is associated to estimation of remaining useful life.

We may classify damage detection based on the approach as active or passive. As the names
suggest, active damage detection involves actuating a system of interest with an external load prior

*Corresponding author, Ph.D., E-mail: satish.nagarajaiah@rice.edu
aE-mail: debarshi.sen@rice.edu
bPh.D., E-mail: gopal@iisc.ernet.in

Copyright © 2017 Techno-Press. Ltd.
http://www.techno-press.org/?journal=smm&subpage=7 ISSN: 2288-6605(Print), 2288-6613(Online)

https://doi.org/10.12989/smm.2017.4.4.381
satish.nagarajaiah@rice.edu
debarshi.sen@rice.edu
gopal@iisc.ernet.in
http://www.techno-press.org/?journal=smm&subpage=7


382 D. Sen, S. Nagarajaiah and S. Gopalakrishnan

to data acquisition. Passive damage detection, on the other hand, involves data acquisition from
the system based on ambient excitations of the system itself. Another way of classifying damage
detection is the frequency content of time history signals that we acquire from a system. Signal
acquisition in the low frequency and high frequency regimes are called vibration-based (Farrar et al.
2001) and guided wave-based techniques (Rose 2004), respectively. In this paper we focus on guided
wave-based active damage detection in beams.

The increase in popularity of the use of guided waves for damage detection owes to their sensi-
tivity to small damages over a considerable distance (Raghavan and Cesnik 2007). Guided waves
are high frequency waves (frequency in the order of 100 to 1000 kHz), that propagate through a
continuous medium. Some of the most popular theoretical treatise of the subject can be found in
Graff (1991), Rose (1999) and Doyle (1997). Damage detection using such waves typically entails
the understanding of the signal features that a damage may induce (Alleyne et al. 1998, Demma et al.
2004).

Use of guided ultrasonic waves is prevalent in many structural and aerospace applications. They
are typically used for defect detection in plate (Yu et al. 2011, Giurgiutiu 2008, Lu et al. 2007) and
pipe (Lowe et al. 1998, Park et al. 1996, Na and Kundu 2002) structures. A summary of all such
applicationsmay be found in Liu andKleiner (2012). However, all thesemethods are typicallymodel-
based. This implies it requires construction of high fidelity models or development of theoretical
models for comparing with acquired data for the purposes of damage detection. Both high fidelity
models and theoretical models may fail to capture all the physics involved in system. In addition,
high-fidelity models are typically computationally prohibitive. For example, the application of finite
element methods require a large number of elements in order to obtain reliable response estimates
in the high frequency domain (Gopalakrishnan 2009). An alternative is to use signal-based or data-
driven techniques.

Data-driven techniques do not require assumptions about the system and captures all the physics
involved in the system. Such an approach typically constructs a parametric meta-model from data,
that does not necessarily mimic system behavior, but performs damage detection efficiently. This idea
has led to the applications of statistical/machine learning algorithms in SHM (Worden and Manson
2007, Nagarajaiah and Yang 2017). Statistical learning algorithms are a potent tool for development
of parametric models from data (Hastie et al. 2009). They are widely used for SHM and damage
detection applications. For example, Yang and Nagarajaiah (2014b) use independent component
analysis and sparse regression-based approaches (Yang and Nagarajaiah 2013, 2014a) to damage
detection involving vibration-based techniques. Recently, statistical learning algorithms have gained
popularity in the guided wave-based SHM and damage detection community too (Lu and Michaels
2008, Liu et al. 2015, Ying et al. 2013a, b, Tibaduiza et al. 2013, Tse andWang 2013, Eybpoosh et al.
2016).

In this paper we propose a statistical learning-based approach that harnesses the inherent sparsity in
a beam damage detection problem using guided-ultrasonic waves. We propose a sparse representation
framework for damage detection. We test the proposed approach for various scenarios that may be
encountered in the field. For demonstrating the efficacy of the proposed approach, we use a hybrid
spectral finite element method for simulations (Hu et al. 2007). This involves a combination of
the traditional finite element method (FEM) and the novel spectral finite element method (SFEM)
(Gopalakrishnan et al. 2007).
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2. Sparse representation framework for damage detection

In this section we propose the sparse representation (SR) framework for damage detection. The
key idea behind the SR framework is a dictionary matrix A, for a given beam. Each column of the
matrix A represents a signal retrieved from the beam due to presence of damage at a single location,
for a specific actuation signal. For each signal we perform baseline subtraction (subtraction of an a
priori acquired undamaged signal) in addition to time windowing, prior to inclusion in the dictionary.
The time windowing allows us to focus on damage signatures better. The choice of the time window
depends on the geometry of the structure and approximate estimates of group wave velocities in the
material.

For p damage locations and time-windowed signal length n, we have the dictionary matrix A ∈
Rn×p. This implies the first column of A, a1 ∈ Rn×1 is a signal acquired from the beam when there
is damage at location 1. Similarly the second column of A, a2 ∈ Rn×1 is a signal acquired from the
beam when there is a damage at location 2 and so on. Hence, A = [a1 a2 ... ap]. As discussed
earlier, the dictionary matrix is a representative of the beam in terms of its damaged and undamaged
states.

Now, let us assume we acquire a background subtracted and time-windowed signal, y ∈ Rn×1

from a case when there is damage at location m, where 1 ≤ m ≤ p. This signal can then be
represented as

y = Ax (1)

where x ∈ Rp×1 is a vector such that xi = 0 ∀ i ̸= m and xm = 1. A vector like x where
most of the elements are zero is referred to as a sparse vector. Mathematically, a vector of length n is
defined as k- sparse iff there are only k nonzero elements such that k ≪ n. Typically the number
of damage locations in a system is low, hence the vector x will typically be sparse. In addition, if y
is acquired from a undamaged case, it will be a vector of zeros, implying that x will also be a vector
of zeros. Equation 1 is the SR framework for damage detection in beams. Henceforth, we will refer
to the vector x as the damage pointer vector as it aids in localization. Hence, using equation 1 we
perform both level I and level II damage detection. If vector x has non-zero entries, we establish the
presence of damage. The location of the non-zero element helps carry out damage localization. For
multiple damages, there will be multiple nonzero elements in x. However, this assumption holds only
when the damages are small and the effects of multiple damages can be linearly combined (Levine
and Michaels 2013). In addition, the number of damages should be such that the sparsity condition
on vector x holds.

Given this framework, one needs to solve for x from the linear system of equations y = Ax, under
the assumption that x is sparse. This problem is formulated as an optimization problem as follows
(Candes and Romberg 2005)

minimize
x

∥x∥0 such that y = Ax, (2)

where ∥.∥0 is the ℓ0-norm that counts the number of nonzero elements in a vector. In addition to
being non-convex, Equation 2 is also numerically unstable and NP complete. Solving it entails enu-
meration of all

(
p
k

)
possible locations of nonzero entries of x, if x is k-sparse Baraniuk (2007). To
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overcome these issues, equation (2) is typically reformulated in a ℓ1-norm minimization framework
(also popularly referred to as the relaxation of ℓ0 norm to ℓ1 norm), generally referred to as a basis
pursuit problem (Candes and Romberg 2005)

minimize
x

∥x∥1 such that y = Ax, (3)

where ∥.∥1 is the ℓ1-norm defined as ∥x∥1 =
∑n

i=1 |xi| for any vector x ∈ Rn×1, where |.| computes
the absolute value of its argument. The computational complexity of the above problem isO(p3). To
take into account the effects of noise, equation 3 is further modified as:

minimize
x

∥x∥1 such that ∥y− Ax∥2 ≤ ϵ, (4)

where ϵ is a measure of the noise. This framework has been used earlier for various classes of prob-
lems over of awide spectrum of engineering fields like face recognition (Yang et al. 2010) andmedical
imaging (Kandel et al. 2013). As discussed earlier, the ℓ1 minimization framework has also been used
for vibration-based damage detection purposes earlier (Yang and Nagarajaiah 2013, 2014a, Hernan-
dez 2014). In this paper, we extend the application of this framework to high frequency ultrasonic
wave-based damage detection.

To obtain solutions to Eqs. 3 and 4 pursuit algorithms are typically used. Alternatively, one may
reformulate the problem as a sparse regression problem and use the LASSO (a regularized linear
regression technique used for sparse regression) (Hastie et al. 2009) technique as follows

minimize
x

∥y− Ax∥22 + λ∥x∥1 , λ > 0, (5)

where ∥.∥2 is the ℓ2-norm (for any vector x ∈ Rn×1, ∥x∥2 =
√∑n

i=1 |xi|2) and λ is the regularization
parameter governing the degree of sparsity in vector x. This can be looked at as a Lagrange multiplier
form of equation (4). A detailed description of the LASSO can be found in (Tibshirani 1996). In this
paper, we use the l1ls solver developed by (Kim et al. 2007) for LASSO implementation.

Based on the above discussion, it becomes clear that, for an effective implementation of the pro-
posed algorithm an inherent assumption about the system is made: the damage locations used for
dictionary construction are sufficient for effectively characterizing any damage to the system. Un-
der this assumption, we will numerically demonstrate the efficacy of the proposed algorithm when
the test vector y is obtained from scenarios of single damage but different extents to that used for
dictionary construction and multiple damages.

3. Simulations

In this work, we perform DD on a homogeneous and isotropic cantilever Timoshenko beam. We
perform simulations to demonstrate our sparsity-based approach. Multiple simulation techniques for
wave propagation problems are available in the literature. Traditional FEM is one of the most pop-
ular approaches owing to its ubiquity and ability of modeling complex systems. However, it has its
drawbacks when applied to this class of problems (Gopalakrishnan 2009). In order to obtain accurate
simulation results, the element size for a FEM simulation needs to be at least 10 times smaller than
the wavelength of the waves expected to propagate in the system. This makes FEM computationally
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inefficient. In addition to the traditional FEM, the Boundary Element Method (BEM) has also been
employed to tackle these problems (Rose 1999). The Spectral Element Method in time domain pro-
posed by Patera (1984) is another popular means of simulation. Extensions of this method have been
used for both two dimensional and three dimensional wave propagation simulations (Ostachowicz
et al. 2012). These techniques use a special class of shape functions belonging to the orthogonal Leg-
endre polynomials and use Gauss-Lobatto-Legendre points for numerical integration. Consequently,
this improves the computational efficiency compared to traditional FEM.

The class of Spectral Element Methods (SEM) developed by Doyle (1997), improves the compu-
tational efficiency further for a limited class of problems. The spectral finite element method (SFEM)
is an extension of the SEM developed by Doyle with improvements in terms of numerical computa-
tions involved for solving eigenvalue problems inherent in this method (Gopalakrishnan et al. 2007).
Other methods worthy of mention, used for solving these problems are the Finite Difference Method
(FDM) and the Local Interaction Simulation Approach (LISA). LISAwas developed for ease of com-
putation using supercomputers. Applications of LISA for solving Lamb wave propagation problems
are available in the literature using GPU-based systems (Packo et al. 2012).

SFEM however, has it’s own drawbacks. For example, using SFEM, damage can only be mod-
eled approximately, whereas in traditional FEM it can be captured much more accurately. Although,
Chakraborty and Gopalakrishnan (2006) and Kumar et al. (2004) model damages in beams and plates
using SFEM, without taking aid of traditional FEM, calibrations with traditional FEM is necessary
to characterize such approximate damages. SFEM also fails when it comes to modeling complex
geometries (Doyle 1997, Gopalakrishnan et al. 2007). A combination of traditional FEM and SFEM
can overcome such design issues with satisfactory results (Gopalakrishnan and Doyle 1995, Hu et al.
2007). We use this hybrid SFEM, which we will refer to as HFEM henceforth, for all simulations in
this work. Fig. 1 shows the idea behind HFEM. In this paper, we model the damage in a beam as a
rectangular notch crack.

The original SFEM utilizes a Fourier transform-based frequency domain analysis. A drawback of
Fourier transform-based SFEM is the fact that it suffers fromwrap around effect (Doyle 1997). Wrap
around is the phenomena that occurs when the time vector considered for the Fourier Transform is not
long enough and low frequency components wrap around the signal and corrupt the initial portion.
One way of overcoming this is to take longer time windows. However, that will only increase the
computational effort involved. The other issue involved with Fourier Transform based SFEM is
the fact that a fixed end (no displacement and rotations at the boundary) boundary condition cannot
be simulated (Doyle 1997, Gopalakrishnan et al. 1992). It is normally approximated by adding a
semi infinite element (also known as a throw off element) with very high stiffness (Gopalakrishnan

SFEM SFEM

FEM

Fig. 1 A schematic showing the ideology behind HFEM. Kinematic relationships are developed between the
nodes of SFEM and FEM elements.
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et al. 1992). Wavelet Transform based SFEM has been proposed to overcome the wrap around issue
(Gopalakrishnan and Mitra 2010), however the accuracy of the frequency domain is lost using the
wavelet based SFEM. A Laplace Transform based SFEM has been shown to be the most efficient in
overcoming all these (Igawa et al. 2004, Murthy et al. 2011) drawbacks, and hence has been used for
this work.

4. Numerical studies

4.1 Setup

For our simulations we consider a isotropic cantilever beamwith Young’smodulusE = 210GPa,
shear modulus G = 79.3 GPa, mass density ρ = 7860 kg/m3, span 2m and a square cross section
of side 20 mm. We model damage as cracks that are 5 mm deep and 2 mm wide. Throughout
this work, we treat the width of the crack as a constant. We vary damage extent by changing the
crack depth only. As discussed earlier, for modeling a damaged beam, we use a HFEM approach.
This involves modeling a FEM based crack system and incorporating it in the SFEM formulation,
as described in section 3. For the dictionary, we assume 9 possible locations for damage, they are
located at every 200 mm along the length of the beam, as shown in Fig. 2. The damage closest to
the fixed end is damage location 1 and the one closest to the free end is damage location 2. Fig. 2
shows all the possible damage locations used to construct the dictionary, A.

We assume that both the transmitter and the receiver are attached at the free end of the beam, as
shown in Fig. 2. We excite the beam using a 5 cycle modulated tone burst with a central frequency
of 50 kHz. Fig. 3 shows the time and frequency domain representation of this load. The central
frequency is chosen such that the frequency-thickness value is less than the cut-off value for shear
modes to be activated. This ensures that we have only one propagating wave mode in the system.

Fig. 4 shows a comparison between a damaged and an undamaged signal obtained from simula-
tion. The wave packet generated due to the presence of damage at location 8 is clearly visible. We
further enhance the clarity of this damage feature by performing background subtraction.

2 m

every 200 mm

20 mm

2
0

 m
m

Actuator Sensor Possible damage location (DL)

DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9

Fig. 2 A schematic of the simulated beam. The red lines are the possible damage locations. We use signals
from these locations to construct the dictionary A from Eq. 1
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Fig. 3 The time and frequency domain representation of the actuation load we use in this study. This is a 5
cycle tone burst with a central frequency of 50 kHz
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Fig. 4 A comparison of damaged and undamaged signals. We show a time windowed version of the simulated
signals. The second figure shows the background subtracted signal, that enhances the damage feature

4.2 Results: Noise free

The first step is to create a dictionary of signals containing information of various damage sig-
natures. We construct a dictionary with a damage size of 2 mm depth. Fig. 5 shows the acquired
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signals from the grid locations, namely damage locations 1 through 9.
Fig. 5 shows the signals acquired at the grid locations defined earlier. The image at the top

shows the full time history. The first wave packet at around 0.001 sec is the incident signal. The
subsequent wave packets are the reflections from the fixed end. The lower image shows a time-
windowed magnified version of the full time history. This allows us to observe the damage signatures
for each of the nine grid locations. These damage signatures are crucial for the functioning of the
proposed algorithm.

As discussed earlier, we use background subtracted signals for the dictionary. This helps enhance
the damage features. Fig. 6 shows the dictionary elements after background subtraction. Clearly we
observe that the damage features are two orders of magnitude smaller than the incident signal. We
will use this fact later when dealing with multiple damages.

4.2.1 Case 1: Test signals have the same damage extent as in the dictionary
In this case, we assume that the test signal is from a scenario where the damage extent is the same

as that used to construct the dictionary. The purpose of this case is to demonstrate the working of the
proposed approach.

Fig. 7 shows the absolute values of the elements of the damage pointer vector, x. Fig. 7(a) shows
the results when the test signal is acquired from a scenario where there is a damage at location 8. So
for a single damage scenario the vector x is 1-sparse. Fig. 7(b) shows the results when the test signal
is from an undamaged scenario. As expected, all the elements of the vector x are zeros. Fig. 8 shows
the absolute values of the vector x for all possible damage locations. We observe that the proposed
approach accurately points to the damage location.
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Fig. 5 The time signals acquired at the various grid locations for the dictionary. DL: Damage location
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Fig. 7 Absolute values of the elements of the vector x. As discussed earlier, they point to the location of the
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4.2.2 Case 2: Test signals have multiple damages
In this case study we demonstrate the performance of the proposed algorithm when the test signals

are acquired from a scenario when there are multiple damages. For this case, we assume that the
effects of multiple damage may be linearly combined. This implies, if damage at locations 1 and 2
yields the background subtracted signals a1 and a1, respectively, then the background subtracted test
signal, y, maybe approximated as y ≈ a1 + a2. This only holds for small damages. This assumption
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Fig. 8 The absolute value of each element of x for all the 9 damage cases. Clearly, we retrieve the correct
damage locations in all the cases

implies that we neglect the scattering of scattered waves from damages. For larger damage, such
scattering will have significant energy. As discussed earlier, based on Fig. 5, the damage feature wave
packet amplitudes are two orders of magnitude below the incident wave packet. By extrapolating this
idea, we conclude that the scattering of the scattered will be at least another order of magnitude lower
compared to damage feature wave packet. Typically, such low amplitudes will be shrouded by noise
and hence we can neglect it.

Fig. 9(a) shows a comparison of a test signal acquired from a case when the beam is damaged at
locations 8 and 9 and the dictionary elements a8 and a9. Fig. 9(b) shows the damage pointer vector, x,
for this case. Clearly, the assumption of linearity holds, and the proposed approach localizes damage
accurately.

4.2.3 Case 3: Test signals with single damage of different extents
In this case study we demonstrate the efficacy of the proposed approach when the test signals

are acquired from scenarios when the damage extent is different from the one used for dictionary
construction. Fig. 11(a) compares the damage features for different damage extents at location 7
with that of the dictionary element and the undamaged signal. We observe that the wave packet has
very similar characteristics with the only difference being the amplitude. Hence, we expect higher
magnitudes associated with the corresponding element of the damage pointer vector, x. Fig. 11(b)
demonstrates this. With an increase in the damage extent the magnitude of element 7 of vector x also
increases. The expected magnitude of the damage pointer vector may be calibrated to damage extent
for successful damage quantification.



Harnessing sparsity in lamb wave-based damage detection for beams 391

1.2 1.4 1.6 1.8 2 2.2

Time (s) 10-3

-6

-4

-2

0

2

4

6

R
es

po
ns

e

10-6

DE8
DE9
Test signal with DL 8 and 9

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|x
|

2 4 6 8

Damage location

(b)

Fig. 9 (a) A comparison of the test signal acquired from a scenario where the beam is damaged at locations 8
and 9 with the dictionary elements 8 and 9. DE: Dictionary element, DL: Damage location (b) Absolute value
of the vector x for the test signal shown in (a). Clearly the damage pointer vector points to locations 8 and 9

4.3 Impact of noise

In the previous subsection we demonstrate the power of harnessing the inherent sparsity of the
damage detection problem. In this section, we study the impact of noise on the proposed approach,
hence, showcasing the robustness. To do this, we add Gaussian white noise to the signals in the
following manner

s̃ = s+ σnoiseε (6)

where s̃ and s are noisy and noise-free signals. ε is a Gaussian white noise process with each time
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The crack depth captures the variation in damage intensity. The dictionary has a crack depth of 5 mm. DE7:
Dictionary element 7, (b) The elements of the damage pointer vector x for the signals shown in (a)

element being a Gaussian random variable with zero mean and unit variance. σnoise is the intensity
of noise corrupting the signal. We measure the noise intensity in terms of SNRdB
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SNRdB = 20 log10
(
sRMS
εRMS

)
(7)

where sRMS is the root mean square (RMS) value of the noise-free signal. εRMS is the RMS value of
the added noise. For a zero mean stationary Gaussian process εRMS = σnoise.

Fig. 12 shows the effect of noise on each case defined earlier. For cases 1,2 and 3 we have 9, 36
and 45 test signals respectively. For each SNRdB level we solve the sparse representation problem
50 times. For each trial, we count the number of correct localizations. We define accuracy as the
ratio of number of correct classifications to the total number of test signals for the case. This ensures
accuracy is between 0 and 1. Taking all the 50 trials we estimate the mean and standard deviation of
the accuracies. The standard deviations for case 1 is greater than that in cases 2 and 3 because of the
lower number of test signals. In general, we observe very high accuracy beyond a noise level of 25
dB in all cases.
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Fig. 12 Impact of noise on the performance of the proposed algorithm for (a) Case 1, (b) Case 2, (c) Case 3
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5. Conclusions

In this paper we propose an approach that harnesses the inherent sparsity in the damage detection
problem in beams using Lamb waves. We formulate the damage detection problem in a sparse rep-
resentation framework. This involves the construction of a dictionary consisting of signals acquired
from various damaged scenarios of the beam, that characterizes the damaged behavior. Subsequently,
we use this dictionary for performing damage detection and localization for a signal acquired from
an unknown damaged scenario, by solving a sparse regression problem. We conduct numerical sim-
ulations to demonstrate the ubiquity of the proposed framework in dealing with scenarios of multiple
damage as well as various damage extents. In addition, we show that the proposed approach achieves
accuracy even with noisy signals of SNRdB of 25 dB.
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