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Abstract.  Monitoring of impact loads is a very important technique in the field of structural health 
monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need 
to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic 
system when the system output and the impulse response function are usually known. Generally this leads to 
a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop 
more suitable reconstruction strategies and to increase accuracy.  An impact event is characterized by a 
short time duration and a spatial concentration. Moreover the force time history of an impact has a specific 
shape, which also can be taken into account. In this contribution these properties of the external force are 
employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse 
recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit 
denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the 
magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility 
of reconstructing the impact based on a noisy output signal is first demonstrated with simulated 
measurements of a simple beam structure. Then an experimental investigation of a real beam is performed. 
 

Keywords:  impact identification; load reconstruction; ill-posed and inverse problem; sparse recovery; 

simultaneously impact localization and identification 

 
 
1. Introduction 
 

The knowledge of the external loads is of great interest in many fields of structural analysis, 

such as structural health monitoring (SHM), assessment of damage after extreme events or 

prediction of the remaining useful lifetime of the investigated structure. Impact loads are of 

particular concern as adverse impact events can cause degradation and breakdown of the structure 

or its components. For example, debris flying from the runway can cause damage of composite 

aeronautical structures (Abrate 2005) or a boat collision with offshore structures may harm the 

structural integrity (Li et al. 2014). The information of the size of an impact in combination with 

the impact location is useful to make a statement about a potential damage and its extent. However, 
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a direct measurement of external impacts might be difficult due to some physical or economical 

limitations. For instance, the impact location is unknown in general and debars an optimal sensor 

placement for direct measurement. In reality, impact loads are reconstructed by using measured 

structural responses induced by these impact excitations. Usually numerous sensors are employed 

to capture the dynamic behavior of the structure, such as acceleration, velocity or strain. The 

reconstruction process generally results in an inverse problem, where the structural properties and 

responses are known while the excitation needs to be determined. This inverse problem can be 

considered as mathematically ill-posed in most cases, which means that either the existence, the 

uniqueness or the stability of the solution is violated (Stevens 1987, Jacquelin et al. 2003, Inoue et 

al. 2001). If this inversion can be done, the structure itself becomes its own force sensor (Klinkov 

and Fritzen 2007). 

In order to overcome the ill-posed problem several studies have been carried out and a 

considerable amount of literature has been published on this topic. Generally, the reconstruction of 

an impact load by means of structural responses consists of two separate subsequent steps: 1) 

localization of the impact and 2) estimation of the impact size respectively of the impact force 

history. To locate the position where the impact is applied, the stress waves induced by an impact 

can be used in a joint time-frequency analysis, for instance (Gaul and Hurlebaus 1998). To 

estimate the force history, the most straightforward and various employed method is deconvolution, 

either in frequency domain or in time domain (Doyle 1984, Chang and Sun 1989). Diverse 

regularization and relaxation techniques have been used to solve the ill-posed problem of 

deconvolution, often involving a least squares optimization process. In this case, the relation 

between an impact force and structural responses needs to be determined by a structural model. 

Additionally the location of the impact force is assumed to be known in advance. In recent years, 

approaches using neural networks have shown the capability to identify simultaneously location 

and magnitude of an impact (Jones et al. 1997). These techniques require an intensive training of 

the network by collecting numerous impact test data sets. An alternative identification strategy 

based on system optimization theory also yield simultaneous estimation of location and force 

history (Park et al. 2009). Here, a filter algorithm which compares estimated outputs from system 

model with the measured ones is applied. Yan and Zhou (2009) proposed a genetic algorithm (GA) 

for impact detection, representing the impact load by a set of parameters, thus the identification 

problem becomes a parameter estimation problem (Yan and Zhou 2009). Torres-Arredondo and 

Fritzen (2012) convert the identification problem into a pattern recognition task. A combination of 

time-frequency analysis, auto-associative neural networks for data-driven system modeling and 

Gaussian processes are employed to automate the identification procedure. Ginsberg and Fritzen 

(2014) introduced a reconstruction methodology, which take the specific temporal and spatial 

properties of an impact load into account and is therefore capable of applying sparse recovery 

algorithms to the ill-posed problem. 

The present work may be regarded as direct extension of (Ginsberg and Fritzen 2014), here the 

specific force history shape of an impact is additionally considered. Thus, more precise and more 

robust solutions can be obtained. The proposed reconstruction strategy identifies the impact 

location and the impact force history, simultaneously. This contribution is structured as follows: 

Section 2 briefly discusses the general problem of impact reconstruction and explains how it can 

be transformed to a sparse identification problem. In Section 3, the applied approach for solving 

the sparse reconstruction problem is introduced. The capability of this methodology is 

demonstrated by means of a simulation study on a simple beam structure in Section 4, which also 

addresses the potential error sources and displays the corresponding reconstruction deviations. An 
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experimental investigation in Section 5 validates the proposed identification strategy. Finally, 

concluding remarks are presented in Section 6. 

 

 

2. Problem 
 

External forces acting on a structure will cause dynamic responses of this structure such as 

acceleration, velocity or strain. In general these responses can easily be measured by appropriate 

sensors. In cases where the system can be considered to be linear during the excitation process, the 

responses 
rRt )(y  of the system are linked to the external forces 

fRt )(u  in the time 

continuous case by the linear convolution integral 

τdττtt
t

)()()(
0

uhy                          (1)
 

where   frRt h  denotes a matrix containing the impulse response functions (IRF) jih , , 

r represents the number of measured responses and f the number of force input positions. It is 

assumed that 0yhu  )()()( ttt  for 0t . The IRF jih ,  describes the dynamic behaviour of 

the structure, more precisely the transmission of an external force applied at a discrete input 

position fj ,,2,1  , to the structural responses at output position ri ,,2,1   (e.g., compare 

input-output transmission in Fig. 4). In a discrete time domain ),,2,1,0(Δ nktkt  , the 

convolution integral becomes an convolution sum 





k

i
ikik

0

uhy

                          (2)
 

Here, fr
i R h , are the so-called Markov parameters. 

When the time history and the location of the external forces in addition to the IRF are known 

the system responses can simply be calculated by solving Eq. (1) or Eq. (2). However, generally 

the external force respectively the input to the system is unknown and the structural responses are 

determined by (noisy) measurements. 

 

 

Fig. 1 The problem of force/impact identification 
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Fig. 2 Force history of an impact, left: general representation, right: normalized experimental records from 

impacts with different hardness of the colliding bodies 

 

 

Then the problem of estimating the time history of the forces becomes a deconvolution problem. 

It is obvious that the IRF or the Markov parameters should be known as well. The general problem 

of force reconstruction is illustrated in Fig. 1. For a single impact event, if the input position is 

known in advance, the number of inputs f may be reduced to 1 and thus )(th  is of the dimension

1r , so the deconvolution problem is a bit more simplified. Since in practice the impact location 

is not known, all positions on the structure surface become potential input locations. Depending on 

the type of model, these locations are usually coinciding with the degrees of Freedom (DOF). For 

obvious reasons, the number of measurement sensors r is for real world applications normally less 

than the number of DOFs, so that fr   and the deconvolution problem becomes even more 

challenging. 

Nevertheless, in most practical applications the external loads are not arbitrary distributed in 

time and space. At least some characteristics about the acting forces are known a priori and should 

be taken into account in the estimation process. In case of an impact acting on a structure, it is 

known that the force input is characterized by a short time duration and a spatial concentration. 

The force history of an impact is mainly defined by the magnitude and the contact duration of the 

colliding bodies, the latter depends greatly on the stiffness of these bodies. The profile of the force 

history in the time domain looks approximately like the pulse function shown in Fig. 2. Assuming 

the shape function )(ˆ tu  of this pulse is known, then the force history of an impact depends only 

on the pulse width, indicated by the parameter  maxmin , www ttt  , the time  max,0 mm tt   at which 

the magnitude is reached and the magnitude value of this pulse Ra
wtmt
,  itself. Thus, the 

external force history can by described as function of these parameters: 
wtmtwm atttu ,),,(ˆ  . The 

shape function has been normalized so that the magnitude 
wtmt

a ,  becomes a scaling factor of the 

shape function. Shape functions may either be known from prior experimental investigations or 

approximated by appropriate impact models (e.g., sinusoidal, Gaussian). However, if the impact is 

intended to be reconstructed using measured structural responses the parameters are unknown and 

need to be identified. Additionally the location where the load is applied is unknown as well. 
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If all potential parameter combinations at an arbitrary force input location j are superimposed, 

then this equals the actual force input, if all magnitudes j

wtmt
a

,
 are zero, except the one which 

belongs to the actual parameter combination  
mw tt , . This can be expressed by means of the Dirac 

delta function 

    mw
j

wtmtmmww

mt wt

wt

wm
j

wm
j dtdtattδttδtttutttu

,

max

0

max

min
sup ),,(ˆ),,(ˆ    

         (3)

 

After discretisation, Eq. (3) becomes 

j
plll

q

p

m

l
pp

j
plk

j
plk auu ,*,

1 0
*,,,,,sup, ΔΔˆˆ  

 



                   (4)

 

Here ),,2,1,0(Δ mltltm   is discretized using the same step size t  as before in Eq. (2). 

The discretization of the interval  maxmin , ww tt  describing the range of potential impact durations 

can be thought of as a creation of a sample-force-dictionary which includes a collection of 

potential impact durations: ),,2,1(, qpt p
w  . Now ,Δ  denotes the Kronecker Delta and *p  

and *l  the indices corresponding to the actual parameter combination. 

Inserting this force input into the convolution sum Eq. (2) leads to 

 
  

 
k

i

m

l

q

p
plllppplikik

0 0 1
,*,*,,, ΔΔˆ auhy

                    (5)

 

Eq. (5) ff
plk R ,,û  is a square matrix containing the normalized force history for the all f 

potential impact locations, f
pl R,a  is the corresponding magnitude vector, which needs to have 

just one nonzero entry corresponding to the actual input location. 

Rewriting this in vector-matrix form leads to 




q

p
pp

1

ˆ AUHY

                         (6)

 

with the measurements nrR Y , the transfer matrix nfnrR H , the sample-force-dictionary 

matrix mfnf
p R Û  and the magnitude vector mf

p R A  
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Due to the properties of the Kronecker Delta and thus to ensure the equivalence of Eqs. (5) 

and (6), pA needs to be the zero vector for *pp  . In Addition *pA  must have just one 

nonzero element associated with the index *l . 

A further rearrangement of Eq. (6) results in 

    T

qq   


  


AU

AAAUUUHY

:

21

:

21
ˆˆˆ





            (8)

 

AUH                             (9) 

The matrix 
qmfnfR U  contains now all potential impact events in a normalized 

representation and qmfR A  the corresponding magnitudes in a discrete form. The matrix U 

may be regarded as entire impact sample-force-dictionary. By multiplying U with the transfer 

matrix H a new transition matrix qmfnrR H
~

 is obtained 

AHY 
~

 with UHH :
~

                     (10) 

Impact reconstruction becomes now a problem of solving Eq. (10) for A. However, it can be 

easily seen that H
~

 tends to have a lot more columns  qmfN :  than rows  nrM : . 

Hence the linear system of equations in Eq. (10) has a lot more unknowns than known and thus 

solving for A is in general not possible. But it is known that A has a very few or even just one 

nonzero entry and can be considered as sparse vector (see Fig. 3). The property of sparsity of the 

desired magnitude vector A is used in the following to obtain an optimal estimate of the impact. 

 

 

 

Fig. 3 By pre-multiplying an impact sample-force dictionary, identification becomes a sparse recovery 

problem 
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3. Sparse solution 
 

Finding a sparse solution for a high-dimensional underdetermined problem can be thought of 

an application of Occam ś Razor: in face of many possibilities, all of which are plausible, favour 

the simplest candidate solutions (Gill et al. 2011). Here, it can also been regarded as a problem of 

finding the columns in H
~

 which correlate the most with the measurement vector Y. 

The number of nonzero entries in a vector can be expressed by 

)supp(:0 AA 
                          (11)

 

where  0:)(supp  iAiA  denotes the support of A. 
0

  is frequently referred to as the 

l0-norm, although it is not even a quasi-norm (Fornasier and Rauhut 2011). The most 

straightforward way to obtain a sparse estimate Â  for the linear system in Eq. (10) is to 

minimize the l0-norm of the solution vector A 

0
minargˆ AA

A
NR

  subject to AHY
~

                  (12) 

This creates the sparsest solution vector which agrees with the measurements Y. However the 

minimization problem in Eq. (12) requires a combinatorial search, making it practically impossible 

to solve computationally (NP-hard problem). As shown in many other applications (e.g., Donoho 

(2003) and Donoho (2006)), under the assumption that the solution is sparse, using the l1-norm 

delivers almost the same solution as solving Eq. (12) 

1
minargˆ AA

A
NR

  subject to AHY
~

                 (13) 

The l1 -norm is defined as the sum of the absolute values of A 





N

i

iA
1

1
A                         (14) 

A solution for Eq. (13) can be obtained via linear programming techniques, since l1-regularized 

optimization is a convex problem. 

For a measured output vector ωY , the measurement data are usually polluted by some 

measurement noise ω , so Eq. (10) becomes 

ωAHY 
~

                           (15)
 

In the presence of noise Eq. (13) is in general not capable to deliver a proper estimate of A, so 

it needs to be modified to 

1

2

2
R

~
minargˆ AAHYA

A

λω
N


                  (16)

 

This problem is known as basis pursuit denoising (BPDN) (Chen et al. 1998), which is closely 

related to LASSO regression (Tibshirani 1996). Here, the least-squares minimization is combined 

with a l1-norm which penalizes solutions with numerous nonzero elements. The regularization 
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parameter   controls the trade-off between sparsity of the solution and congruence of ωY  and 

AH
~

.   can be adjusted according to the level of measurement noise ω  (Selesnick 2012). 
The feasibility of finding a sparse solution via l1-minimization has been shown in many 

applications in recent years. Particularly in the field of Compressive Sensing (CS) the usability of 

l1-minimization attracts a lot of attention (Candès and Wakin 2008, Donoho 2006). Hence, a 

number of algorithms have been developed to solve Eqs. (13) and (16) (e.g., Berg and Friedlander 

(2008) and Kim et al. (2007)). The one used in this article is the so called In-Crowd Algorithm 

developed by Gill et al. (2011). As discussed by Gill, the In-Corwd algorithm is one of the fastest 

solvers for very large sparse problems. The computational complexity of this iterative method is 

significantly reduced by partially insulating the algorithm from the global problem size and 

consulting the full dictionary only rarely. A detailed description of the In-Crowd Algorithm and its 

properties can be found in (Gill et al. 2011). The following In-Crowd optimization procedure has 

been adopted from there 

Step 0) Declare Â  to be 0, so that the residual AHYr ˆ~
 ω  becomes ωYr  . Additionally, 

declare the active support set I to be the empty set. 

Step 1) Calculate the “usefulness” C
jj ju IHr 

~
, , where ,  denotes the inner 

product and C
I the complement of I. 

Step 2) If on C
I  no λu j  , than terminate. 

Step 3) Otherwise, add the L components with the largest ju to I, but do not add any component 

for which λu j  . Depending on the specific problem, the choice of L will influence the 

speed of the algorithm, in this study 25L  is set. 

Step 4) Solve Eq. (16) exactly on the subspace spanned by all of the components in I. Use current 

values of Â  to warm-start the solver. This subproblem is expected to be dense. For this 

purpose, Matlab’s built-in quadprog function (MathWorks 2011), can be used. 

Step 5) Take any zero-valued members of the exact solution of Step 4) out of I. 

Step 6) Set all components of Â  to be 0 except for the components in I; set these to the value 

found by the exact solution of Step 4). 

Step 7) Update AHYr ˆ~
 ω . 

Step 8) Go to Step 1). 

 

The so obtained magnitude vector Â  has just a few nonzero elements and gives directly the 

information about the impact force history and the impact location. Considering the support of Â  

and its corresponding column in U the impact location is identified. Moreover, the shape function 

with the best fit to the actual impact force history is selected. The maximum impact force is stated 

by the value of the reconstructed nonzero component in Â . 

 

 

4. Simulation study 
 

The capability to reconstruct the amplitude and the location of an impact simultaneously from 

noisy measurements by solving the BPDN problem will be shown first by means of simulation 
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studies, additionally some properties of the proposed identification process are investigated. For 

illustration purposes, a uniform simply supported Euler-Bernoulli beam with the properties 

specified in Fig. 4 is investigated. The structural dynamics of the beam due to an external impact 

force are described by an analytical model. Throughout all studies (simulation and experiments) 

the employed structural responses for reconstruction are acceleration measurements. It should be 

explicitly noted that the shown impact detection method is also applicable for other types of 

structural models, e.g., finite element or modal models and other types of measurement data (e.g., 

strain). 
 

4.1 Analytical beam model 
 

In the following a small hint is given how the Markov parameters with appropriate system 

input positions are obtained for an Euler-Bernoulli beam. A more detailed description can be found 

in various textbooks. Starting from the equation of motion for a uniform Euler-Bernoulli beam 

),(
),(),(

2

2

4

4

txq
t

txw
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x

txw
EIZ 









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                  (17)
 

it is assumed that the lateral displacement can be separated in time and space: )()(),( txWtxw  . 

After a few calculation steps this results in the natural frequency n  and the analytical mode 

shape )(xWn  of the 
thn  mode, ,2,1n  

4

2)(
AL

EI
n Z

n


   and 



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


 x

L

πn
xWn sin)(               (18) 

which includes the boundary conditions of the simply supported beam 

0)()()0()0(  LWLWWW . The bending displacement can now be rewritten in modal 

coordinates )(t  as follows 
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
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             (19)

 

A state space representation can be obtained from Eqs. (17) and (19) 

)()()( ttt Buxx 
                      (20a)

 

)()()( ttt DuCxy                        (20b)
 

with the state equation Eq. (20(a)) and the output or measurement equation Eq. (20(b)). By adding 

proportional modal damping )(2 tnn    the state equation Eq. (20(a)) can be written for a finite 

number of modes kn ,,2,1   
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In Eq. (21), the external force is separated into m forces and in time and space: 

  


m

i

m

i iii tuxUtxqtxq
1 1

)()(),(),( . For a spatially concentrated force the space allocation 

)(xU i  can by expressed by means of Dirac's delta function )()(: ii sxxU  , where si 

denotes the points of applied force and mi ,,2,1   the number of concentrated forces. Moreover, 

Ω  and Z are the diagonal matrices of the natural frequencies and modal dampings. The individual 

terms of Eq. (21) can be assigned to the corresponding vectors or matrices of Eq. (20(a)). 

With the help of Eq. (19) as second time derivative  


k

n nn txWtxw
1

)()(),(  , the output 

equation Eq. (20(b)) for r accelerometers becomes 
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where xi represents the i
th
 sensor position along the beam and 








 iin s

L

πn

ALρ
p sin

2
 includes the 

projection of the spatial load distribution onto the n
th
 mode shape. The first two elements on the 

right hand side of Eq. (22) can be combined into the C matrix of Eq. (20(b)) and the last term is 

associated with the D matrix. Since, the impact location is unknown in advance some potential 

input positions along the beam need to be predefined (e.g., red dots in Fig. 4), in order to obtain 

appropriate matrices B and D. No input positions are predefined directly at the bearings, as an 

impact apllied at this location won’t case any beam vibration and is therefore undetectable for 

vibration based force reconstruction methods. 

For the simulation study as well as for the experimental investigation it is necessary to convert 

the continuous state space model of Eq. (20) into a discret-time state space system 

kDkDk uBxΦx 1                        (23a)
 

kkk DuCxy 
                        (23b)

 

The state space representation of the analytical beam allows us now to determine the Markov 

parameters (Smith 2007) as follows 

Dh 0   ,  D
n

Dn BΦCh
1)(                 (24)
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Fig. 4 Uniform simply supported beam 

 

 

4.2 Simulation results 
 
The vibrations of the simply supported beam due to an impact event are simulated with 

MATLAB® . Here the structural model from section 4.1 is used. In order to simulate an impact 

event as input to the simulation model, but also to create a sample-impact-dictionary, a shape 

function needs to be defined. The shape function of the impact force history is commonly 

modelled as half or quarter cycle-sine pulses (see e.g., Grady 1988 and Yan and Zhou 2009) 
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Fig. 5 Top: Simulated Impact applied at normalized beam position 0.6, Bottom: Simulated acceleration 

data at normalized beam position 0.5 

205



 

 

 

 

 

 

Daniel Ginsberg and Claus-Peter Fritzen 

 

As before, the impact duration is indicated by  , which in this case equals the contact 

duration of the colliding bodies and   is the time when the maximum force occurs. However, 

different shape functions are possible; e.g., Hann function, Gaussian function, but also various 

types of asymmetric shape functions. 

This so formed normalized impact force is multiplied by a certain magnitude atrue and applied at 

a position strue along the beam. White Gaussian noise with a standard deviation of three percent of 

the maximum measurement value is added to the simulated outputs to imitate real acceleration 

measurement data. For the first simulation three outputs are generated at the normalized beam 

length 0.4, 0.5 and 0.65 (in the remainder of this paper all beam positions will be given in 

normalized beam length). The influence of the sensor placement and measurement noise is 

discussed later. The structural model used for simulating the measurement data and for 

reconstructing the impact is identical. It consisted of the first four modes so that with the given 

properties, beam vibrations up to 600 Hz can be captured. The required force input positions of the 

reconstruction model are placed equidistantly along the beam with 05.0/  Lx . The maximum 

possible spatial resolution of these points depends greatly on the number of modes used in the 

structural model respectively the accuracy of the model used. The simulation result with and 

without measurement noise for acceleration output at point 5.0/ Lx  due to an impact at beam 

position 6.0/ Lx  can be seen in Fig. 5. 

For the first studies the width of the shape function true  is assumed to be known, as may be 

the case if specific information about the colliding bodies and their contact behaviour is available, 

e.g. from preliminary investigations. Therefore, the sample-impact-dictionary is composed of one 

type of pulse function ( 1q ). The reconstruction result of an impact applied on one of the 

predefined force input position at 6.0/ Lx  is shown in Fig. 6. On the right hand side the exact 

and the identified force history for the true impact location are shown. In order to take the effect of 

randomness of the measurement noise into account, one hundred simulations with identical 

simulation properties are performed. The mean magnitude estimation error is determined as 

1.6274% with a standard deviation of 0.0223%. The left plot displays spatial load distribution 

along the beam for the moment in time of maximum force. It can be seen that the impact location 

is detected as well. The mean localization error reads as 
4104.4  .  

 

 

Fig. 6 Impact reconstruction results (left: spatial load distribution, right: force time history 
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Fig. 7 Equivalent force reconstruction results (left: spatial load distribution, right: force time history) 

 

 

Even in cases when the impact is not located at one of the predefined force input positions, the 

location can be identified. A simulation result for an impact applied on beam position 

635.0/ Lx  (divergent form predefined positions) can be seen in Fig. 7. As shown, the total 

impact at the exact position strue is divided to the neighbouring force input positions si and si+1 of 

the employed reconstruction model. So the reconstruction algorithm identifies, as the sparsest 

solution to the minimization problem, forces at the model input positions next to the true one (red 

bars in Fig. 7). 

In order to identify the true impact location and magnitude, the reconstructed forces needs to be 

combined to an equivalent force. The magnitude of an equivalent force is simply the sum of the 

reconstructed magnitudes ii aaa  1true
ˆ  and by considering the equilibrium of moments for 

these magnitude values, the position of the equivalent force can be localized 

 ii

ii

i
i ss

aa

a
ss 


 



 1

1

1true
ˆ

                      (26)

 

The green graph in Fig. 7 illustrates the identified force history and the estimated impact location 

for the equivalent force. Here the mean magnitude estimation error is 3.02% and the mean 

localization error 
3104.2  . 

 

4.3 Sensitivity studies 
 
Now the question may arise, how the reconstruction accuracy varies, if no prior information 

about the shape function is available and none of the impact shapes in the sample-dictionary 

matches the true impact shape. Therefore, several simulation studies using deviating impact shapes 

are carried out. In each cases 1q  still applies. The deviation of the shape function is introduced 

by a variation of the impact durations. The actual impact duration is indicated by true  and the 

one used in the sample-dictionary by used . Fig. 8 displays the estimation error for deviation of 
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the shape function of %20 , on the right hand side the absolute localization error given in 

normalized beam length and on the left hand side the relative error of the force history and the 

estimated magnitude 

2

2true

2

2estimatedtrue

history :
u

uu
δ


  ;  

true

estimatedtrue
mag :

a

aa
δ




             (27)

 

Where utrue and uestimated are the exact and the estimated force history vectors for the true and the 

identified impact location, atrue and aestimated are the corresponding magnitude values. Small 

deviation of the assumed pulse width may lead to greater errors of the force history. However, for 

a lot of impact identification applications the maximum force occurring is the critical value and of 

more interest. As Fig. 8 indicates the estimate of impact magnitude and impact location are not 

sensitive to deviations of sample-impact dictionary and actual impact. Fig. 9 illustrates the force 

history estimation results for two different impulse duration dictionaries and explains the different 

error curves in the left plot of Fig. 8. 

 

 

 

Fig. 8 Effect of shape function deviation on the reconstruction accuracy (left: relative error of magnitude 

and time history estimation, right: deviation from actual normalized location) 

 

 

Fig. 9 Time history for reconstruction using deviating shape functions 
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Although the presented reconstruction methodology is able to compensate measurement noise, 

the level of noise may have an influence on the reconstruction accuracy. In addition, different 

sensor networks might affect the identification result. In the following these influences are 

investigated. 

So far, all studies are run with an added simulated measurement noise, the noise level is set by 

the standard deviation   of the Gaussian noise, which is chosen to be three percent of the 

maximum measurement value. As mentioned before the regularization parameter   has to be 

adjusted to this noise level. Setting   larger leads to a more regularized solution of Eq. (16) and 

makes the estimation less sensitive to noise, but this yields more attenuation of the reconstructed 

force history, contrariwise yields a smaller chosen   (less regularization) to more noise 

sensitivity but less attenuation (Gill et al. 2011). Because, the time history of the noise is not 

known, it is reasonable to use the statistical information of the noise to adjust  . In the simulation 

studies, it has turned out, that a proper way of setting   is according to the standard deviation: 

 10 . 

The effect of noise to the identification accuracy of impact size and impact location is shown in 

Fig. 10. The resulting error is displayed for a raising standard deviation of the measurement noise 

from 1 to 20 percent of the maximum measurement value. As expected, an increasing 

measurement noise leads to a larger deviation between true and estimated magnitude. However, 

the estimate of impact location is largely independent of the noise which implies that the support 

of A can be determined very reliably. 

The inaccuracies of the reconstruction result due to large measurement noise and deviations in 

the sample-impact-dictionary may be compensated by using a different sensor setup. In the 

following, several simulation studies are carried out, in order to determine the influence of the 

sensor setup. Therefore, the number of accelerometers is increased from just one sensor up to 10 

measurement positions along the beam. To isolate the influence of sensor setup and to ensure 

independence from other sources of interference, the sample-impact-dictionary contains the true 

impact and the level of noise is kept constant at a level of 3 percent of the maximal measurement 

value. By increasing the number of accelerometers the sensors are added at different beam 

positions in the following order: 

These positions are chosen considering the mode shapes identified in 4.1 and their vibration 

nodes to obtain optimum signal to noise ratio (SNR). Moreover, it is ensured that the sensors are 

not arranged symmetrically to avoid redundant information. The resulting errors for impact 

estimation magnitude and for localization for the different setups are shown in Fig. 11. It shows 

that with only two sensors satisfactory impact identification may be possible. However, even with 

just one sensor the proposed reconstruction algorithm is able to make a statement of the impact 

location. The deviation of impact magnitude is larger in this case, but a rough estimation of the 

force history can still be given. 

 

 
Table 1 Order of sensor placement, the position is described in normalized beam length 

Sensor 1 2 3 4 5 6 7 8 9 10 

Position 0.4 0.65 0.5 0.31 0.725 0.45 0.2 0.81 0.15 0.93 
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Fig. 10 Effect of measurement noise level on the reconstruction accuracy (left: relative error of magnitude 

estimation, right: deviation from actual normalized location) 

 

 

 

Fig. 11 Effect of the sensor number to the reconstruction accuracy (left: relative error of magnitude 

estimation, right: deviation from actual normalized location) 

 

 

5. Experiment 
 
For experimental validation of the presented impact identification strategy an experimental test 

bench similar to the simulation model is set up. A beam of 3L m length with the same 

properties specified in Fig. 4 is placed onto two support blocks (see Fig. 12(d)). These supports are 

rigidly attached to the floor in a guide rail. Five piezoelectric accelerometers (Fig. 12(a)) are 

mounted on the beam bottom side. The sensors are placed at positions 0.13, 0.36, 0.5, 0.73, 0.83 of 

the normalized beam length. The beam structure is excited by an impact with an impulse force 

hammer (Fig. 12(b)). The built-in force sensor is able to measure the force history applied by the 

hammer, which is used later to confirm the reconstructed impact load. The impulse hammer has a 

hard rubber tip to excite frequencies up to 500 Hz, which covers the first four natural frequencies 

of the beam. The sampling time for acquiring of measurement data throughout all experimental 

investigations is 0.1 ms.These data are filtered by a 100Hz analog low-pass filter (Fig. 12(c)). 
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(a) Accelerometer (b) Excitation hammer (c) Coupler / Filter 

 
(d) Experimental beam model 

Fig. 12 Experimental study on beam model 

 

 

The analogy of the test bench to the simulation model allows the use of the same structural 

model. The force application points defined in this model are set every 0.3 m, which equals a 

distance of 0.1 normalized beam length. The during the first investigations employed 

sample-impact-force-dictionary contains five sinus shaped impacts with different pulse widths, so 

that 5q  applies. In addition, only two of the five sensor signals (at positions 0.5 and 0.73) are 

used for the impact identification process. Fig. 13 shows the reconstruction results for an impact 

applied at 3/2/ Lx . The deviation of the calculated impact location amounts 0065.0/  Lx  

which corresponds to an absolute value of 1.94 cm. In assessing the localization accuracy, the 

hammer tip with a width of 2cm (see Fig. 12(b)) needs to be considered. The magnitude estimation 

error amounts in this case 8.26%. 

For a second experimental investigation several force time histories are recorded with the 

impulse force hammer in a preliminary study. Here three different hammer tips with varying 

stiffness are used. By means of the obtained data an improved sample-impact-dictionary is set up. 

In this dictionary each hammer tip corresponds to a certain pulse width or impact shape, thus 

3q  applies. Also in this case only the previous two accelerometers are employed. The 

reconstruction results are show in Fig. 14. Now the magnitude estimation error can be decreased to 

3.93%. The localization error slightly increases to 008.0/  Lx , which equals 2.4 cm 

respectively. With such kind of "trained" sample-dictionary, it is even possible to directly identify 

the properties of the colliding body, by just considering the supports of the reconstructed vector. 

Here this means, that the used hammer tip is identified, without requiring a subsequently 

frequency analyses of the estimated force history. 
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Fig. 13 Experimental reconstruction results for sinus shape sample-impact-dictionary 

 

 

The experimental investigations have shown furthermore that divergent from the analytical 

structural model the bearings are not perfectly rigid and some vibrations at the beam edges can be 

observed, which is not consistent with the assumption of a rigid support. By implication, impacts 

applied at the bearings will in this case also cause some vibrations, which is also not consistent 

with the employed structural beam model. This modelling error also has an influence on the 

detection accuracy of impact applied close to the ends of the beam. In these cases the impact 

locations are estimated closer to the beam middle area. 

 

 

6. Conclusions 
 

In this paper the problem of reconstructing an impact from structural responses is addressed. In 

order to overcome the ill-posed inverse problem of impact identification, the specific 

characteristics of an impact event are employed. Thus the reconstruction problem can be 

transformed in sparse recovery issue of the linear system of equations, which can be tackled by the 

so called basis pursuit denoising approach. 

 

 

Fig. 14 Experimental reconstruction results for experimentally determined sample-impact-dictionary 
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It has been shown that the proposed impact identification method is able to reconstruct the 

impact location and the impact force history, simultaneously. By means of simulations studies and 

experimental investigations it has been demonstrated that this method is capable to operate even in 

the presence of very noisy measurement data. Especially the estimation of the impact location and 

the impact magnitude turned out to be very robust, also against errors of the prior assumed impact 

force history shape functions and noise. 

The number of required sensors is significant less compared to other identification methods, 

which are able to estimate simultaneously the location the magnitude. For the investigated beam 

structure two accelerometers are sufficient to obtain satisfying estimates. Furthermore, the 

simulation study has shown that by employing very accurate models only a single accelerometer is 

required for impact detection, although the deviations are larger in this case. Even in the case of 

bigger differences of the structural model, a slight increase of the sensor number is able to 

compensate these deviations. 

The proposed sparse identification method opens up a lot of new opportunity in the field of 

load reconstruction. The idea of employing prior knowledge of the force characteristics to create a 

sparse problem is transferable to other load reconstruction tasks, e.g., identification of harmonic 

excitation. The discussed advantages make it interesting to extend this method to this end 

particularly with regard to reduce the number of required sensors. 
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