
 
 
 
 
 
 
 

Structural Monitoring and Maintenance, Vol. 2, No. 1 (2015) 19-34 
DOI: http://dx.doi.org/10.12989/smm.2015.2.1.019                                                 19 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=smm&subpage=7        ISSN: 2288-6605 (Print), 2288-6613 (Online) 
 
 

 

 
 
 
 

Delamination and concrete quality assessment of concrete 
bridge decks using a fully autonomous RABIT platform 

 

Nenad Gucunski1, Seong-Hoon Kee2a, Hung La3b, Basily Basily1c and Ali Maher4d 
 

1Department of Civil and Environmental Engineering, Rutgers University, Piscataway,  
New Jersey 08854, USA  

2Department of Architectural Engineering, Dong-A University, Busan, 604-714, Korea  
3Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA 

4Center for Advanced Infrastructure and Transportation, Rutgers University, USA 
 

(Received January 15, 2015, Revised March 3, 2015, Accepted March 5, 2015) 

 
Abstract.    One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in 
bridge deck assessment is the speed of data collection and analysis. The paper describes development and 
implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple 
NDE technologies. The system is designed to characterize three most common deterioration types in 
concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE 
technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic 
surface waves (USW) method. The technologies are used in a complementary way to enhance the 
interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. 
Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE 
equipment. The robotic system is complemented by an advanced data interpretation. The associated platform 
for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, 
fusion, and deterioration and defect visualization. This paper concentrates on the validation and field 
implementation of two NDE technologies. The first one is IE used in the delamination detection and 
characterization, while the second one is the USW method used in the assessment of concrete quality. The 
validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated 
bridge structure with numerous artificial defects embedded in the deck 
 

Keywords:    concrete; bridge decks; delamination; modulus; NDT; impact echo; surface wave testing; 
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1. Introduction 
 

Concrete bridge decks deteriorate faster than other bridge components. The primary reason is 
their direct exposure to traffic and environmental loads, and consequently to maintenance 
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procedures, like salt spreading in winter months. In addition, the inspection practices of the most 
State Departments of Transportation (DOTs) in the United States, and other bridge owners, detect 
problems only once those have reached their last stage of progression. Because of the mentioned 
reasons, State DOTs are using between 50 and 80 percent of their budgets for maintenance, 
rehabilitation, and replacement of bridges on concrete bridge decks.  

The performance of concrete bridge decks was identified as the most important bridge 
performance issue by the Federal Highway Administration's (FHWA's) Long Term Bridge 
Performance (LTBP) Program. To create knowledge about the performance of bridge decks, it is 
envisioned that hundreds of bridges will be evaluated and monitored in the next phase of the LTBP 
Program. To make this challenging task feasible, the FHWA initiated in 2011 the development of a 
robotic system for NDE of concrete bridge decks named RABIT (Robotics Assisted Bridge 
Inspection Tool). The main goal of the development was to improve both the speed and automation 
of data collection and data analysis components.  

The following sections describe RABIT's components, operation and typical results. The 
specific objective of the paper is to describe the use of acoustic methods implemented in RABIT in 
concrete quality and delamination assessment, and present results related to the validation of their 
performance. 

 
 

2. Deck Inspection using rabit 
 
Effective bridge management requires strategies in the assessment of bridge decks that would 

enable capturing deterioration at all stages of its development. This can be achieved, among others, 
by a proper selection and implementation of NDE technologies. The most common types of bridge 
deck deterioration include corrosion, delamination, vertical cracking and overall concrete quality 
degradation. For example, in cases where deterioration is primarily caused by corrosion, the 
process can be described as the one initiated by the development of corrosive environment 
(Papadakis 2013). One of the ways to detect and characterize corrosive environment is by 
electrical resistivity (ER) measurements (Whiting and Nagi, 2003), and to some extent by ground 
penetrating radar (GPR) surveys (White 2014). As the corrosive environment becomes more 
severe, it will initiate corrosion activity in rebars. Furthermore, rebar corrosion will cause micro 
and macro cracking of concrete. These changes will be reflected through reduction of concrete 
elastic properties, which can be measured using the ultrasonic surface waves (USW) method 
(Nazarian et al., 1993). As the deterioration progresses, it is manifested in deck delamination, 
which can be detected and characterized using impact echo (IE) (Sansalone et al. 1993), and often 
by GPR. Bridge decks with cementitious overlays, like Latex modified concrete (LMC), can be 
surveyed. However, for bridge decks with asphalt overlays, ER cannot provide meaningful results, 
and IE and USW measurements should be conducted at temperatures below 10 degrees Celsius.  

 
2.1 Description of RABIT components 
 
The RABIT system utilizes four NDE technologies: IE., USW, ER and GPR, and high 

resolution imaging of the deck surface and test point surrounding to inspect bridge decks. The 
main RABIT components on the front end are shown in Fig. 1. There are two acoustic arrays. Each 
of the arrays has multiple sources and receivers that enable multiple IE and USW testing, as will 
be discussed and illustrated later. The manual NDE technology equivalents for IE and USW testing 
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for concrete bridge decks. The bridge consists of a concrete deck and three supporting steel beams 
with steel bracing. The bridge is supported by two concrete abutments, as shown in Figs. 6 and 7. 
The concrete deck is 9 m long, 3.6 m wide (30 ft by 12 ft), and 203 mm (8 in.) thick. Therefore, it 
is large enough to simulate an actual reinforced concrete bridge deck. The concrete deck was built 
with two mats of uncoated reinforcing steel at 50 mm (2 in.) and 165 mm (6.5 in.) depths, 
respectively. Each of the reinforcing mats consists of 13 mm (#4) steel bars spaced at 165 mm (6.5 
in.) in the longitudinal direction and 16 mm (#5) steel bars spaced at 177 mm (7 in.) in the 
transverse direction. The concrete mixture was designed to have a minimum 28-day compressive 
strength of 34.37 MPa (5000 psi), and the average 28-day compressive strength tested according to 
ASTM C39 was 64.53 MPa (9360 psi). The P-wave velocity measured by a direct method 
described in ASTM C1383 was 4530 m/s. The top surface of the slab was lightly broom finished 
for a rough surface, and water cured for 7 days after casting. The reinforcing steel used in the 
validation slab was grade 60 according to AASHTO M31. 

 
 

Fig. 6 Reinforced concrete validation bridge deck: (a) plan view of the specimen showing location of 
defects, (b) section view of A-A of the specimen, and (c) section view of B-B of the specimen. 
(Note: the locations of defects shown do not represent actual locations.)
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covers a 180 cm (6 ft) wide strip of a bridge deck by unfolding two acoustic arrays on the deck 
surface. In this study only two scanning lines (see Fig. 8) were needed to cover the whole width of 
the concrete bridge deck. The RABIT automatically stopped every 30 cm (1ft) and performed IE 
and USW tests using the two acoustic arrays. At each test location, a single acoustic array took 16 
time-records from 4 groups accelerometers (4 accelerometers in each group) and 4 impact sources. 
Consequently, a total of 1920 time signals (16x2x60) were taken and stored. To collect the data at 
a single tets point, which is composed of (i) stopping at the test point, (ii) data collection, and (iii) 
moving to the next point, took about 15 seconds. Therefore, the total time for scanning of the deck 
3.6 by 9 m (12 by 30 ft) was about 20 minutes. This is a significantly reduced time, for a much 
larger volume of data, compared to conventional manual testing. Moreover, only two operators, 
one in the command van and the other on the concrete deck, were needed to conduct the data 
collection process. 

 
3.3 IE and USW analyses 
 
There are different ways of interpreting the severity of the delamination in a concrete deck with 

the IE method. One of the ways used in this study is shown in Fig. 8. The deck is described as 
solid or intact, if the dominant frequency corresponds to the thickness stretch modes (Lamb waves) 
family. In that case, the frequency of the fundamental thickness stretch mode (the 
zero-group-velocity frequency of the first symmetric (S1) Lamb mode, or also called the IE 
frequency (fIE). The frequency can be related to the thickness of a plate H for a known P-wave 
velocity Cp of concrete by  

1 / 2p IEH C f                       (1) 

 
 

Fig. 8 Trajectory of the RABIT movement during the acoustic scanning 
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The frequency spectra corresponding to the time signals shown in Fig. 10 are presented in Figs. 
11(a)-11(c), respectively. The frequency response from the solid or intact regions shows a 
dominant peak frequency around 11 kHz, which matches well the full-thickness IE mode 
frequency calculated using Eq. (1). Shallow delaminations generate a low-frequency response, 
which in this case had a dominant frequency about 4.5 kHz as a result of flexural vibrations. 
Intermediate delaminations generate both flexural and thickness stretch modes, the second 
corresponding to the delamination depth. In contrast, deep delaminations at a 16 cm (6.5 in.) depth 
correspond to the thickness mode of about 13 kHz. 

For the USW test, a pair of accelerometers (near and far receivers) was used to measure the 
surface wave velocity in the region between the two receivers. Typical time signals recorded by 
near and far receivers are shown in Fig. 12(a). A Hann window was applied to the raw time signals 
to extract the surface wave components, again the first high amplitude portions of the signal. 
Similarly to IE, a zero vector of a length of 1024 is added to increase the frequency resolution to 
about 244 Hz. The phase velocity of the surface waves were calculated using Eq. (2), and 
illustrated in Fig. 12(c). The phase difference (angle) shown in Fig. 12(b) is obtained from the 
phase of a cross-power spectrum of the two signals. More details on the calculation of the phase 
angle and development of the dispersion curve are provided in Nazarian et al. (1983). The elastic 
modulus based on the simplified procedure is shown in Fig. 12(d). 

 
 

 

Fig. 10 Typical time records from the acoustic array for three deck locations: (a) (X,Y) = (6,G), (b) (11,J), 
and (c) (9,B) 
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Fig. 11 Typical spectra obtained from the fast Fourier transform (amplitude) of the time signals shown in 
Fig. 10: (a) (X,Y) = (6,G), (b) (11,J), and (c) (9,B) 

 
 
3.4 Condition maps 
 
Fig. 13(a) is the delamination map based on the procedure illustrated in Fig. 8. The resulting 

condition map confirms that impact echo is effective in detecting and characterizing the most of 
the delaminations in the concrete deck. The locations of shallow delaminations (DL4, DL5, DL7 
and DL11) shown as red spots or areas, indicating “serious condition” in the delamination map. 
Deep and intermediate delaminations are shown as green to yellow areas, indicating “fair to poor 
condition,” respectively. However, the lower spatial resolution in the x direction hinders the ability 
to detect delaminations of short length in the x direction (e.g., DL10). In summary, the ability of 
the RABIT's IE array to detect and characterize delamination was demonstrated. 

In addition, the locations of the areas with a reduced concrete modulus and with hollow or 
partially grouted ducts are also shown in the IE condition map. It can be seen that some of the 
artificial defects were missed in the condition map, primarily due to the lower spatial resolution. 
For the accelerated corrosion test region, the condition is marked as green to yellow, or “fair to 
poor” condition. The peak frequencies obtained in those regions are only slightly lower than IE 
frequency for the solid or intact regions. It can be physically interpreted that there is higher 
porosity and/or that micro cracks in concrete are developing due to corrosion activity in the salt 
contaminated test region, but have not caused delamination yet. 
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Fig. 12 USW procedure for calcualting elastic modulus of concrete: (a) typical time signals, (b) the phase 

angle versus frequency, (c) the dispersion curve (phase velocity versus wavelength), and (d) 
approximate elastic modulus of concrete versus depth 

 
 
Fig. 13(b) is the concrete quality (modulus) map based on the USW method procedure 

illustrated in Fig. 9. The resulting modulus in the whole concrete deck ranges between 7.0 to 52.2 
GPa with an average of 38.04 GPa and standard deviation of 8.46 GPa. Thus the coefficient of 
variation (COV) was about 22%. The COV of the USW on the validation slab appears to be little 
bit higher compared to the one by manual USW tests in the field, which is typically on the order of 
10 to 20%. However, this variability more likely due to higher density of artificial defects in the 
validation slab than actual bridge decks.   

The USW does not point to the locations of artificial defects for two reasons. The first reason is 
the physical principle of the USW measurement. The second reason is a lower spatial resolution of 
the USW test setup than of the IE test setup, as it was illustrated in Fig. 2. However, the USW 
condition map provides a reasonably good correlation to the IE condition map in the accelerated 
corrosion test region. As the corrosion activity has influenced the P-wave velocity and, thus, the 
dominant frequency response in the IE test, it has reduced the velocity of surface waves in the 
USW test. Therefore, the fusion of the IE and USW would result in more complete condition 
assessment of concrete under corrosion activity. 
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(a) 

 
(b) 

Fig. 13 Concrete condition maps from: (a) the IE and (b) USW tests using the RABIT's acoustic arrays 
 

 
4. Conclusions 

 
The RABIT system for data collection using multiple NDE technologies to characterize 

corrosion, delamination, and concrete degradation. The acoustic arrays play an especially important 
role, since they provide assessment with respect to delamination and concrete quality, or concrete 
degradation. The performance of two technologies used for that purpose: impact echo (IE) and 
ultrasonic surface waves (USW), was validated on a 9 m long and 3.6 m wide fabricated bridge 
structure with numerous artificial defects embedded in the deck. The resulting condition map 
confirms that impact echo is effective in detecting and characterizing the most of the delaminations 
in the fabricated concrete deck. Omission of two delaminations is attributed to the lower spatial 
resolution in the direction of the RABIT movement. The concrete modulus of the deck, as measured 
by the USW test, is in the expected range and the data dispersion corresponds to a typically 
observed modulus dispersion on actual bridges measured by manual NDE devices. The USW 
clearly identified a decrease in concrete modulus in the deck area undergoing accelerated corrosion. 
Since the decrease of wave velocities was observed in both the IE and USW tests, the fusion of the 
two would result in more reliable detection of concrete areas undergoing corrosion.  
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Even on this small bridge structure the high speed of RABIT's data collection was demonstrated. 
However, real benefits with respect to the speed of data collection are achieved on real bridges. 
From the RABIT deployment on a number of actual bridges, an average production rate with respect 
to data collection is estimated to be 350 m2 of bridge deck area per hour. This speed of data 
collection opens opportunities for periodical data collection on a large number of bridges, or with 
multiple RABITs on a network level. Implementation of the RABIT within the LTBP Program will 
also enable comprehensive validation of the performance of embedded NDE technologies on actual 
bridges. This will be achieved through physical sampling, like coring and chloride concentration 
profiling, and comparisons with the results from a range of manual NDE technologies.  
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