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Abstract.  Structural health monitoring and damage detection are essential for assessing, maintaining, and 

rehabilitating structures. Most of the existing damage detection approaches compare the current state structural 

response with the undamaged vibrational structural response, which is unsuitable for old and existing structures 

where undamaged vibrational responses are absent. One of the approaches for existing structures, numerical model 

updating/inverse modelling, available in the literature, is limited to numerical studies with high-end software. In this 

study, an attempt is made to study the effectiveness of the model updating technique, simplify modelling complexity, 

and economize its usability. The optimization-based detection problem is addressed by using programmable open-

sourced code, OpenSees® and a derivative-free optimization code, NOMAD®. Modal analysis is used for damage 

identification of beam-like structures with several damage scenarios. The performance of the proposed methodology 

is validated both numerically and experimentally. The proposed method performs satisfactorily in identifying both 

locations and intensity of damage in structures. 
 

Keywords:  damage detection; optimization; model updating; structural health monitoring; vibrational 

analysis 

 
 
1. Introduction 

 
Civil engineering structures undergo damage and deterioration during their life span, thereby 

reducing their service life. Since the high cost and time is involved in building these structures, it 

is necessary to monitor and maintain their integrity by employing efficient structural health 

monitoring (SHM) techniques (Inman et al. 2005, Moaveni et al. 2013, Nagarajaiah and Erazo 

2016). A few past case studies indicate that the old existing structures have led to catastrophic 

failure because of improper monitoring and maintenance (Som et al. 2019). The SHM involves 

creating an undamaged response model of the structure in its undamaged state and comparing the 

same response with the future response. This comparison can be made on the static as well as 

vibrational structural responses (Farrar et al. 2001, Wu and Smyth 2007). However, the collection 

of undamaged responses becomes a barrier for the SHM of existing structures as these structures 
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may have some pre-existing damages.  

In this study, a damage detection approach is presented for old and existing structures in which 

the initial design properties are used for damage detection. The approach consists of three steps; 

first, the collection of experimental modal parameters of the damaged structure, second, creation 

of a FE model of structures using its initial design properties, and third, tuning of FE model to 

match experimental response. The choice of optimization tool and objective functions have been 

presented here. The study involves both numerical and experimental validation of the approach. 

 

 

2. State-of-the-art review of literature on the damage detection technique 
 

Several methods are available in the literature to solve the damage detection problems in the 

absence of an undamaged state response. These include wave propagation (Qiao and Fan 2014), 

electrical resistance tomography (Smyl et al. 2018), the transmissibility of responses (Schallhorn 

and Rahmatalla 2015), and probabilistic approaches (Ching et al. 2006). However, these methods 

are useful for local damage detections. For global damage detection, the use of data-driven 

approaches such as machine learning techniques, and artificial neural networks (Nguyen et al. 

2018) are also prevalent in practice. However, these data-driven techniques require extensive data 

training, high computational efficiency and are dependent on data handling rather than actual 

structural behaviour. There are many probabilistic methods available for SHM (Beck 2010), 

including the Bayesian method of finite element model updating (Ching et al. 2006, Erazo and 

Nagarajaiah 2017, Sun and Büyüköztürk 2016, Behmanesh et al. 2015). This method uses Bay’s 

theorem of probability to update the parameters of the finite element model, and studies have been 

done to apply this method in large-scale civil engineering structures (Behmanesh and Moaveni 

2015, Erazo et al. 2019). The finite element (FE) model updating technique (Stubbs and Kim 1996, 

Moaveni et al. 2008, Jaiswal et al. 2020), also known as the inverse approach of modelling, 

overcomes the problems associated with other approaches in existing structures. This method 

involves updating the FE model iteratively to achieve a structural response that matches with the 

same collected experimentally. The complete model updating technique consists of three critical 

parts, i.e., the objective function (OF) to be minimized, the optimization tool, and the structural 

analysis tool, which are reviewed below.  

Amongst various objective functions, the modal response based objective functions are most 

widely used, as the cracks and damages alter the vibrational properties of the structure (Azim et al. 

2020, Razavi and Hadidi 2020). These objective functions can be written in the form of frequency 

(Khatir et al. 2018), mode shape (Mishra et al. 2020), strain energy (Meruane and Heylen 2011), 

modal strain energy (Arefi and Gholizad 2020), FRF (Mohan et al. 2013), and sometimes a 

combination of frequency and mode shapes (Moaveni et al. 2010, Jafarkhani and Masri 2011, 

Jaiswal et al. 2020). 

Several optimization algorithms are available in the literature to solve the inverse-based 

damage identification problem. For example, the Genetic Algorithm (Meruane and Heylen 2011), 

the Particle Swarm Optimization (PSO) (Mohan et al. 2013), the CMA-ES Optimization 

(Jafarkhani and Masri 2011), Ant Lion Optimization (ALO) (Mishra et al. 2019), the Teaching–

Learning-Based Optimization (TLBO) (Rao et al. 2011, 2012, Khatir et al. 2019), and many others 

for better convergence (Kaveh and Zolghadr 2017, Varma et al. 2020). Some comparative studies 

among these algorithms have also been performed (Fowler et al. 2008, Mishra et al. 2020).  

Stubbs and Kim (1996) presented a methodology for damage detection by creating a baseline 
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model in a FE software of a damaged structure. Two span continuous aluminium beam is 

considered as test specimen with increasing damage intensity at one location. Beam like structures 

have been a general structural configuration used in the literature to validate any proposed damage 

detection technique (Moaveni et al. 2008, Khatir et al. 2018, Mishra et al. 2019). These model 

updating techniques require programmable software for the iterative updating of the FE model 

(Dinh-cong et al. 2020). However, they rely on the use of costly commercial software for 

numerical modelling and optimization algorithm. Furthermore, some of the major limitations in 

the model updating techniques currently used are listed below: 

(i) Modelling full-scale complex structures using a computational program is not only 

challenging but also time-consuming. It also may not reflect the actual behaviour of the 

structures due to modelling simplifications (Jin and Jung 2016), such as; the nonlinearity of 

connections, soil-structure interaction, non-structural systems, hydrodynamic interactions, 

mass distribution in the structure, etc.” The entire damage detection process is dependent on 

the efficacy of the used optimization algorithm and the structural analysis software; such 

optimization algorithms and software are costly and require high computational efficiency. 

Furthermore, many of the optimization algorithms mentioned above prematurely converge to 

local minima and cannot identify damages. 

(ii) Literature has focused on the use of damage vectors for indicating damage in an element 

(Mishra et al. 2019, Dinh-cong et al. 2020). These vectors can identify a percentage decrease 

in the stiffness of an element. But in reality, damage not necessarily reduces the stiffness of a 

zone; it may increase the stiffness, as can be seen in bearings of bridges, blockage of 

expansion joints, additional patchwork, etc.  

(iii) Most of the past studies focused on numerical validations instead of experimental 

verifications. 

Therefore, the present study proposes a damage detection technique for existing structures 

using two open source codes. The effectiveness and robustness of the technique proposed are 

investigated through a cantilever beam and a fixed beam, both experimentally and numerically. 

Here, the focus is mainly on the proposed technique development and validation, as it is necessary 

to check its performance in a simple structure before applying it to large-scale real-life complex 

structures.  

 

 
3. Damage detection methodology 

 

The methodology in the current study involves a finite element (FE) model updating technique, 

popularly known as the inverse approach. The structural model is compared and updated in this 

method based on the recorded actual structural response (Zanardo et al. 2006). The methodology 

broadly contains two parts; the collection of actual structural responses through the experiment, 

and the numerical model updating (Fig. 1). The model updating consists of three major 

components, (a) the numerical analysis of the structure, (b) error calculation by using an objective 

function, and (c) optimization. In the present study, an open-source code OpenSees® 3.1.0 

(McKenna 2011), is used for numerical modelling the structure and updating. This code provides 

simple structural modelling, modification, model updating and simulations, and can be modified 

by the user as per the requirement. Furthermore, an open-source optimization tool, NOMAD® 3.9 

optimization (Audet and Dennis 2006), is used to update the damage parameter in the FE model 

created in OpenSees to minimize the objective function. NOMAD being a derivative-free  

65



 

 

 

 

 

 

Devesh K. Jaiswal, Goutam Mondal, Suresh R. Dash and Mayank Mishra 

 

Fig. 1 Flowchart of the damage detection methodology 

 

 

optimization method overcomes the limitations of the optimization algorithms mentioned above. 

NOMAD calls OpenSees and control the updating parameter iteratively, keeping a goal to 

minimize the objective function value. The methodology is applied to a cantilever beam and a 

fixed beam.    

The numerical model of the beam is prepared using two-noded, linear-elastic beam-column 

elements and divided into several finite elements. Since the presence of damage in an element 

alters the stiffness, and thus the structure's natural frequency, the stiffness can be assumed as a 

damage indicating parameter. Also, variation in mass after damage has opposite effects in the 

natural frequency. This can be captured by exclusively modelling the same. Hence, the depth of the 

beam is taken as the damage indicating parameters in the present study as it is directly related to 

the stiffness via the moment of inertia and the mass via density. Therefore, the depth of each 

element is considered as a variable keeping other structural properties constant. This can capture 

the changes in modal properties due to variation of stiffness as well as mass. Thus, the number of 

variables is the same as that of finite elements (FEs) in the model. During the updating process, the 

depth of each FE is provided as input by the optimization tool. The numerical model is updated 

and analyzed for a set of depths provided by the optimization tool to obtain the modal responses 

which are used to evaluate the objective function. 

The choice of the objective function is critical and affects the successful model updating 

process and, thus, damage detection. Amongst the various objective functions (OF) available in the 

literature, the frequency and mode shape-based OF are chosen here because these are the 

fundamental dynamic properties of a structure and are easy to extract. The natural frequencies are 

a global indicator of the structural state, whereas vibrational mode shapes provide more local data. 

Two objective functions, one considering natural frequency (Khatir et al. 2018), another a 
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combination of frequency and mode shape (Jafarkhani and Masri 2011) are chosen here (Jaiswal et 

al. 2020), as shown in Eqs. (1) and (2), respectively. The effect of mode shapes is represented by 

modal assurance criteria (MAC) value, as shown in Eq. (3), which is a simple and most widely 

acceptable parameter to compare mode shapes (Pastor et al. 2012). MAC is a scalar number that 

varies from 0 to 1, where a MAC value close to 1 represents more similarity between two mode 

shapes. 
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Where, nuf  and exf  are numerical and experimental frequency of the structure, respectively, 

N  is the number of modes considered, nu  and ex  are normalized numerical and experimental 

mode shapes, respectively. These objective functions represent the difference between numerical 

and experimental responses in the form of a scalar number. 

The basic parameters for NOMAD optimization are the number of variables, values of the 

variable (initial, upper bound, and lower bound), and the function evaluation limit. The number of 

variables is equal to the number of FEs considered in the numerical model in OpenSees. Values of 

variables can be decided based on the severity of damage and possible deviation from the mean 

initial depth. The function evaluation limit is decided based on the required degree of accuracy. 

Optimization starts with the given initial set of depths as variables. After the modal analysis of the 

numerical model, the OF value is evaluated for the set of variables. The evaluated value of OF 

becomes the final single output from the updating model, which is an input for the optimization 

tool. By observing the input OF value, the optimization tool creates a new set of depths for each 

element for the subsequent evaluation and updates the model. During each consecutive iterations, 

NOMAD updates the numerical model several times and tries to get a converged set of depth 

values for which the objective function evaluation is minimum. This complete process runs 

iteratively to minimize the OF value and achieve a best-converged solution. A representation of the 

proposed methodology is shown in Fig. 1. Once the numerical model is updated and optimized 

satisfactorily, it will replicate the depth/stiffness scenario of the actual structure. 

 
3.1 Optimization tool 
 

Nonlinear Optimization with Mesh Adaptive Direct-Search (NOMAD) algorithm is a derivate-

free method that uses direct search function evaluation in the space of variables and hence can deal 

with missing function values (Audet and Dennis 2006, Le 2011). In the present study, OpenSees is 

the blackbox program that uses input values from NOMAD to minimize the output function. 

NOMAD has been already used and found effective in several studies and optimization problems 

in many fields, such as mechanical design problems (Bahrami et al. 2016), radiation, and particle 
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Fig. 2 An optimization link between NOMAD and the blackbox problem 

 

 

 

Fig. 3 Cantilever beam model 

 

 

tracking problems (Dubé et al. 2014). Fig. 2 shows a general working principle of NOMAD or any 

direct search method. The NOMAD iteratively constructs a list of trial points that OpenSees 

evaluates. A more detailed study on the algorithm and working principle of NOMAD optimization 

can be found elsewhere (Zanardo et al. 2006, Audet and Dennis 2006, Audet and Hare 2017). 

 

 

4. Numerical modelling 
 

The proposed damage detection methodology is applied to a cantilever steel beam. For this 

purpose, a numerical FE model of the steel cantilever beam is prepared in OpenSees (Fig. 3). The 

dimensions of the beam are 0.6 m × 0.019 m × 0.0032 m, having a mass density of 7717.61 kg/m3 

and modulus of elasticity 207 GPa. The beam is initially modeled with twenty numbers of two-

noded, linear-elastic beam-column elements. Beam modelling is considered in 2-D space with 

three degrees of freedom (3 DOF) at each node. Here, the depth of each element is kept as a 

variable, as discussed in section 3. The dynamic responses, i.e., natural frequency and mode shape 

vector of the beam, are obtained using the eigenvalue solver command in OpenSees. It is to be 

noted that the experimental response is a constant parameter in the objective function, while the 

numerical response changes in each iteration based on the variables provided by the NOMAD. 

 
4.1 Selection of objective function 
 
Damage detection by optimization is greatly dependent on the choice of the objective function 

to be minimized. In this study, initially, the frequency-based objective function (Eq. (1)) proposed 

by Khatir et al. (2018) is used. These objective functions give higher weightage to fundamental  

NOMAD 
X n 

X 0 

X1,X2,X3,… 
OF(X1) 

OF(X2) 

OF(X3) 

… 
Black box 

Objective Function (OF) 

Iterations 

starting points 
solution 

trial points 
evaluated trial 

points 

600 mm 

19 mm 

3.2 mm 
18 19 20 1 2 3 

68



 

 

 

 

 

 

Damage detection technique in existing structures using vibration-based model updating 

Table 1 Numerical cases for objective function selection 

Objective function OF*1 
OF* 

Numerical cases Case 1 Case 2 

Number of elements 10 10 10 20 20 

Considered number of modes 10 9 8 10 6 

Depth of elements (mm) 3.2 3.2 3.2 3.2 3.2 

Initial depth (mm) 2.5 2.5 2.5 1 3 

Upper bound of depth (mm) 4 4 4 3.2 4.2 

Lower bound of depth (mm) 1 1 1 2.5 1.8 

Number of function evaluations 5000 5000 5000 10000 10000 

Obtained average error per element (%) 0.15 24 33 8.25 0.05 

 

 

 

Fig. 4 Optimization result with 10 number of elements considering OF*1 

 

 

frequencies when a higher power frequency term is present in the denominator. Initially, the 

numerical model of the cantilever beam is considered with ten elements and termed as case 1. The 

considered optimization parameters for this case are shown in Table 1. The first ten frequency 

responses are recorded and are used to update the undamaged state of the beam. The obtained 

optimized depth result after a total of 3351 function evaluations is shown in Fig. 4. The obtained 

average percentage error considering error in each element for frequency-based objective functions 

calculated from Eq. (4) is 0.15%.  
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Where Error refers to the average percentage error per element between actual and updated 

depth, AD refers to the actual depth, OD refers to the optimized depth, and n is the number of 

elements. Furthermore, reduction in the number of modes leads to increase in error. The objective 

function OF*1 given by Khatir et al. (2018) shows better results close to the actual depth of 3.2 

mm when higher modes are considered. 

The objective function OF*1 is again checked for efficiency by increasing the number of 

elements, changing the bound values with increased function evaluations limit, case 2 (Table 1). 

The obtained optimized depth result after 9480 function evaluations is shown in Fig. 5. The 

average percentage error in each element is found to be 8.25% (Eq. (4)). 

It is seen that, as the number of elements is increasing, the error in optimization results is  
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Fig. 5 Optimized depth result with 20 elements considering OF*1 and OF* 

 

 

increasing. Since the effect of individual elements in the global frequency response of the beam is 

decreased. Also, two structures with different stiffness configurations may have the same 

frequency of vibration. Hence, it is concluded that the natural frequency alone cannot be used to 

detect damage intensities, especially in the case of complex damage conditions with fewer modes. 

But it can be used for quick and broad identification of damage zones, considering higher modes 

in the optimization, although it is difficult to extract the higher modes of any structure 

experimentally.  

Therefore, an objective function OF* (Eq. (2)) proposed by Jafarkhani and Masri (2011) is used 

here. This objective function uses the effect of mode shapes, added in the form of MAC value and 

frequency. Optimization is performed on the beam with twenty elements considering only six 

modes (Table 1), and the obtained results are shown in Fig. 5. The result shows that the addition of 

the effect of mode shapes makes a unique configuration of the structure and significantly enhances 

the optimization results. Further, the performance of OF* is compared with that of the other 

available forms of combined frequency and mode shape-based objective function in section 6.2. It 

has been observed that the OF* performed better than other objective functions. 

 

4.2 Study on an adequate number of modes required for the inverse approach 
 

In this study, starting from 1st mode to up to the initial ten modes of responses is considered for 

optimization to know the minimum number of modes required for the adequate performance of the 

proposed method (modified from Jaiswal et al. 2020). Here, undamaged state (i.e., 3.2 mm 

uniform depth in all elements) numerical response of cantilever beam is collected, and the same is 

taken as reference response to obtain back the same uniform depth via the inverse approach of 

model updating. The optimization parameters considered are upper bound, lower bound, and initial 

depth as 4.2 mm, 1.8 mm, and 3 mm, respectively, assuming a 40% deviation from the mean value. 

The number of function evaluations is limited to 10000. 

Fig. 6 shows the average percentage error (Eq. (4)) obtained and function evaluations 

considered for the optimization with an increasing number of modes. The error is decreasing as the 

number of modes considered in the objective function increases, so the accuracy is increasing. 

Also, as the number of modes increases, the optimization is converging fast, taking fewer function 

evaluations, hence lesser computational time (here, the function evaluations limit is kept to 10000). 

The required number of modes can be fixed depending on the damage severity, structural 

importance, and accuracy of extracted experimental response. It is recommended to consider at 

least five modes to avoid the occurrence of false damage detection. In the current study, six modes 

are considered for the further damage detection process. 
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Fig. 6 Sensitivity analysis for the number of modes consideration in model updating 

 
Table 2 Numerical damage cases listed with reduced element depths 

Damage case Case 1  Case 2  Case 3  

Number of elements 20 20 30 

Damaged element number 10 6 14 6 14 21 26 

Depth of damaged element (mm) 2 2 2 2 1.5 2.2 1.8 

Depth of remaining element (mm) 3.2 3.2 3.2 

Initial depth (mm) 3.0 3.0 3.0 

Upper bound of depth (mm) 4.2 4.2 4.6 

Lower bound of depth (mm) 1.8 1.8 1.4 

Number of function evaluations 20000 20000 30000 

 

 

5. Numerical verification of the proposed scheme 
 

Three numerical damage cases have been considered in the form of a reduction in the depth of 

several elements, as shown in Table 2. The optimization parameters are shown in Table 2, where 

the bound values are considered assuming a 40% deviation of depth from the mean value in 

damage cases 1 and 2. And assuming a 60% deviation in damage case 3. Also, to increase the 

complexity of damage detection, the number of elements is increased from 20 elements to 30 

elements for the third damage case.  

Table 3 shows obtained natural frequency and mode shapes of the cantilever with these damage 

cases for up to the initial six modes. Here, the percentage change in frequency in the presence of 

damage is shown; here negative sign denotes a reduction in frequency value. These damaged beam 

responses are taken for optimization to identify the known damages for all three cases. The 

obtained optimized depths showing damage locations and intensities are shown in Figs. 7-9. It is 

observed that the proposed methodology can identify the damage location at the same time, the 

intensities very accurately. In case 3 (Fig. 9), with multiple damages with different intensities, the 

method can locate all these damages along with the intensities. For the first two damage cases, 

optimization converged at 10928 and 11319 function evaluations, respectively. Whereas, for case 

3, full 30000 function evaluations are exhausted, which indicates that there is further scope of 

refinement of optimized depth results to obtain more accurate value, if function evaluations limits 

are set to increase. 

In order to replicate a practical scenario where noise can be present in the recorded data, a 

small noise of 0.5% for frequency and 5% for mode shapes are considered in the present study  
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Fig. 7 Comparison of actual and optimized depths for different damage cases Case 1: Single damage 

 

 
Table 3 Obtained natural frequencies for different damage cases in the cantilever beam 

Mode 

Natural frequency (Hz) 

Undamage case  
Damage cases 

Case 1 % Change Case 2 % Change Case 3 % Change 

1st 7.43 7.15 -3.77 6.70 -9.83 6.41 -13.73 

2nd 46.52 42.02 -9.48 42.59 -8.25 38.08 -18.14 

3rd 130.11 129.19 -0.35 109.81 -15.30 112.88 -13.24 

4th 254.67 235.52 -7.05 239.48 -5.49 206.17 -19.04 

5th 420.50 412.09 -1.35 402.43 -3.66 331.82 -21.09 

6th 627.41 592.01 -4.87 568.85 -8.59 538.28 -14.21 

 

 

following Mishra et al. (2020) and Majumdar et al. (2014), given by Eqs. (5) and (6) The results 

found from the noise-free data are acceptable with reference to the results from noisy data, as can 

be seen in Fig. 9. Therefore the further numerical study is conducted using noise-free data.  
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5.1 Comparative study 
 

The efficiency of NOMAD optimization for the application of damage identification is 

compared with two of the commonly used damage detection algorithms, i.e., ALO (Mirjalili 2015) 

and TLBO (Rao et al. 2011, 2012). Multiple damage case as discussed in the above section is 

considered for the purpose of comparison. Using ALO, TLBO, and NOMAD, the best results with 

their minimal objective function value are obtained after 140000, 340000, and 30000 number of 

function evaluations (NOFs), respectively. The depth values obtained and the convergence curve  
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Fig. 8 Comparison of actual and optimized depths for Case 2: Double damage 

 

 
Fig. 9 Comparison of actual and optimized depths for Case 3: Multiple damages 

 

 

 

Fig. 10 Comparison of optimized depth obtained using different algorithms 

 

by using three algorithms are shown in Figs. 10 and 11, respectively. It is observed that by using 

ALO converged to a local minima, the optimized depth obtained is near to expected but still has 

chances of better results. The ultimate results of TLBO and NOMAD results are very similar and 

exact but, NOMAD requires less function evaluation than TLBO. From the results, it is concluded 

that the performance of NOMAD is consistent with commonly used optimization algorithms. For 

more comparative study and advantages of using NOMAD over other algorithms, the reader can 

refer to Fowler et al. (2008), Rios and Sahinidis (2010) and Le Digabel (2011). 

 
Fig. 9 Comparison of actual and optimized depths for Case 3: Multiple damages 

 

 
Fig. 10 Comparison of optimized depth obtained using different algorithms 
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Fig. 11 Convergence curve for multiple-damaged cantilever beam problem 

 

 
Table 4 Numerical minor damage cases listed with reduced element depths 

Parameters 

Damage cases 

Case A 

(5% damage in one 

element) 

Case B 

(5% damage in one element and 10% 

damage in another element) 

Number of elements 20 20 

Damaged element number 5 5 14 

Depth of damaged element (mm) 3.04 3.04 2.88 

Depth of remaining elements 3.2 3.2 

Initial depth 3.0 3.0 

Upper bound of depth 4.2 4.2 

Lower bound of depth 1.8 1.8 

Number of function evaluations 20000 20000 

 
 
5.2 Minor damage case 
 

In this section, small damages of 5% and 10% depth reduction have been considered 

numerically to see the effectiveness of the method to detect small damage. The damage cases, their 

intensities, and considered optimization parameters are tabulated in Table 4 and obtained damaged 

beam frequency response are shown in Table 5. The obtained optimization results are shown in Fig. 

12. From the obtained results of optimized depths, it is seen that even small damages of 5% and  

10% can be effectively identified, as shown in red bars in the plots. The actual damaged depth of 

elements 5 and 14 was 3.04 mm and 2,88 mm, respectively, and the same is obtained after 

optimization. The method can identify finer damages with their exact locations and intensities. 

 
 
6. Experimental verification of the proposed scheme 

 

An aluminum cantilever beam of cross-section 50 mm × 5 mm, length 80 cm, and the modulus  

 
Fig. 11 Convergence curve for multiple-damaged cantilever beam problem 
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Table 5 Obtained natural frequencies with minor damage cases 

Mode 

Frequency (Hz) 

Undamaged case 
Damaged cases 

Case A % Change Case B % Change 

1st 7.43 7.37 -0.81 7.39 -0.54 

2nd 46.52 46.45 -0.15 45.96 -1.20 

3rd 130.11 129.42 -0.53 127.55 -1.97 

4th 254.67 252.33 -0.92 251.91 -1.08 

5th 420.50 416.85 -0.87 414.73 -1.37 

6th 627.41 622.27 -0.82 615.58 -1.89 

 

 

  
(a) 5% damage case (b) 5% and 10% damage case 

Fig. 12 Optimized depth results for smaller damage intensity 

 

 

Fig. 13 Experimental setup of modal impact hammer test 

 

 

of elasticity 69 GPa is chosen to validate the approach proposed here experimentally. The beam's 

experimental natural frequency and mode shape are extracted using the modal impact hammer test 

(Fig. 13). The beam is divided into 30 elements, and a roving impact hammer test is performed,  
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Table 6 Experimental damage cases and optimization parameters 

Damage case Single damage Double damage 

Number of elements 30 30 

Damaged element number 21st 7th 21st 

Depth of damaged element (mm) 2.37 3.06 2.37 

Depth of remaining undamaged element (mm) 5 5 

Initial depth (mm) 5.0 5.0 

Upper bound of depth (mm) 8.0 8.0 

Lower bound of depth (mm) 2.0 2.0 

Number of function evaluations 30000 30000 

 

 

and the acceleration is recorded using an accelerometer attached at the free end. The frequency 

response function (FRF) of the force at all 31 nodes and response at the free endpoint, i.e., 31st 

node, is obtained using OROS Analyser (Fig. 13). No filter is applied for obtaining FRFs at each 

node.  

An FRF is a function which shows the structural response for an applied force, both in the 

frequency domain, as given by Eq. (7). 

 
 

 


A w
H w

F w
                              (7) 

Where H(w) the FRF, F(w) is the external force, and A(w) is acceleration response; all are in the 

frequency domain. After the collection of FRFs for all the 31 nodes, the FRF data block is 

imported into ME'Scope VES® v5.1, and curve fitting is carried out to obtain the natural frequency 

and mode shapes of the beam. This method is giving acceptable accuracy in obtaining frequency 

and mode shape in the current test specimen. 

 
6.1 Single damage cases 
 

Predefined damage cases are considered by reducing the depth of elements, as tabulated in 

Table 6. The damage in an element is made using an angle grinder and filing equipment, and 

reduced average depth is measured using a micrometer. The damage in the 21st element is shown 

in Fig. 14. A roving impact hammer test is conducted over the damaged beam with a soft hammer 

tip. As an example, Fig. 15 presents different plots obtained after each hammering. 

The experimentally obtained natural frequencies of the first six modes for case 1 are tabulated 

in Table 7 and the corresponding mode shapes are shown in Fig. 16. These mode shapes and 

natural frequencies (column D in Table 7) are taken for model updating with optimization 

parameters tabulated in Table 6. The result can be seen in Fig. 17, obtained for the optimized depth 

of each element after 16813 function evaluations and around 68 minutes of computational time. It 

can be seen from Fig. 17 that the proposed approach can adequately identify the damaged location 

and the intensity at the 21st element. There are some false depths identified because of the noise 

present in the experimental response. The calculated error between optimized and actual depth is 

found to be 13.25% (Eq. (4)). 
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Fig. 14 Single damage 50% depth reduction at 21st element 

 

  

 
Fig. 15 Plots showing the collected responses at 31st node, impact at 27th node 

 

 

 
 

  
(a) Weighted impulsive impact force (b) Weighted acceleration response 

  
(c) FFT of impulsive force (d) FFT of acceleration response 

 
(e) FRF curve 
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Fig. 16 Normalized experimental mode shapes of the aluminum cantilever beam 

 

 
Table 7 Single damage case: Comparison of natural frequencies (Hz), (Num – Numerical, Exp- 

Experimental) 

Modes 

Undamaged Damaged Percentage change 

Num Exp % Error Num Exp % Error Num Exp 

[A] [B] 
A

100B)(A 
 [C] [D] 

C

100D)(C 
 

A

100A)(C 
 

B

100B)(D 
 

1 6.28 6.06 3.50 6.27 5.96 4.94 -0.16 -1.65 

2 39.3 37.8 3.82 33.95 31.7 6.63 -13.61 -16.14 

3 109.93 107 2.67 93.38 90.4 3.19 -15.06 -15.51 

4 215.17 209 2.87 210.04 207 1.45 -2.38 -0.96 

5 355.27 358 -0.77 342.68 337 1.66 -3.54 -5.87 

6 530.07 531 -0.18 486.01 485 0.21 -8.31 -8.66 

 

 

The accelerometer attached at the free end of the cantilever beam and its thick supporting mold 

cause resistance to vibration and show comparatively higher stiffness in the end zone. Its weight is 

about 3% than that of the beam and about 86% than that of each element. Hence, the end elements 

are showing false damage. The self-weight of the accelerometer and mold is significant compared 

to the weight of each element. It is expected that the effects of instrument attachments will not be 

significant in stiffer and bigger structures.  

 
6.2 Comparison of different choices of objective functions 
 

The result obtained here using the objective function in Eq. (2) (Jafarkhani and Masri 2011) for 

the single damage case is compared further with other available objective functions in the 

literature, which considers both natural frequency and the mode shape. OF1 (Meruane and Heylen 

2011), OF2 (Barman et al. 2020), OF3 (Jin et al. 2014), OF4 (Mishra et al. 2019) and OF5 

(Modified Dong-Cong et al. 2020) are shown in the Eqs. (8)-(12). 

 
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Fig. 17 Optimized depth comparison for single damage case 

 

 

Fig. 18 Objective function comparison considering the case of the experimental response 
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The optimization parameters, i.e., lower bound, upper bound, initial depth, and function 

evaluations limit, are kept the same as 2 mm, 8 mm, 5 mm, and 30000, respectively. The plot 

showing the average percentage error in each element from each objective function is presented in 

Fig. 18. The average percentage error in each element is the least in the case of OF* and OF5. 

Additionally, OF* is taking the least computational time along with satisfactory results, as reported 

in Fig. 18. 
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Fig. 19 Cantilever beam with two damage cases at 21st and 7th element number 

 
 

Table 8 Double damage case: Comparison of natural frequencies (Hz), (Num – Numerical, Exp- 

Experimental) 

Modes 

Undamaged Double damage case Percentage change after damage 

Num Exp % Error Num Exp % Error Num Exp 

[A] [B] 
A

100B)(A   
[C] [D] 

C

100D)(C 
 

A

100A)(C 
 

B

100B)(D 
 

1 6.28 6.06 3.50 5.69 5.3 6.85 -9.39 -12.54 

2 39.3 37.8 3.82 33.97 32.4 4.62 -13.56 -14.29 

3 109.93 107 2.67 91.51 88.1 3.73 -16.76 -17.66 

4 215.17 209 2.87 197.75 191 3.41 -8.10 -8.61 

5 355.27 358 -0.77 334.78 337 -0.66 -5.77 -5.87 

6 530.07 531 -0.18 482.65 482 0.13 -8.95 -9.23 

 
 
6.3 Double damage case 
 

Another damage with a different damage intensity in the same cantilever beam with single 

damage is introduced on the 7th element. The average reduced depth is measured as 3.06 mm (Fig. 

19). Similar to the previous case, the modal impact hammer test is repeated on the beam to 

obtained experimental vibrational response. Frequencies and mode shapes obtained are then used 

for the optimization with the objective function OF* (Table 6). Table 8 presents the obtained 

experimental and numerical natural frequencies. Some deviations in the expected experimental 

response is because of noise and improper fixity at the beam end. The optimized depth result can 

be seen in Fig. 20. Both the damages are identified with their adequate locations at the 21st and the 

7th elements, as shown in red color bars in the graph. Similar to the first case, there are some false 

depths identified as the increased depth. The calculated average error per element, compared 

between optimized and actual depth here using Eq. (4), is 13.5%. It can be observed that the 

accuracy of identification will entirely depend on the accuracy and perfection of the extracted 

experimental response.  
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Fig. 20 Optimized depth comparison for double damage case 

 

 
Fig. 21 Fixed beam structure with 15 divisions and 16 nodes with the accelerometer attached at 

6th node 

 
 
6.4 Application on fixed-beam 
 

An experimental setup of a steel beam fixed at both ends is considered to observe the effect of 

the weight of the attached accelerometer (Fig. 21). The weight of the beam is kept much higher 

than that of the accelerometer. The fixity at the ends is provided by bolts and welding over the 

projected flange of a clit angle connected over a large-angle section. The steel beam has a cross-

section of 7.5 cm × 10 cm and a modulus of elasticity of 200 GPa. The cross-section of the 

projected angle is measured as 10 cm × 1 cm. The total clear span length of the beam left after 

connection with the projected angle is 55 cm. It is observed during initial trials that the effective 

length of beam contributing towards vibration also includes the length of the projected flanges also, 

observable from Fig. 21. Hence, the total end-to-end distance of 75 cm is considered for 

optimization. The test structure is divided into 15 equal elements consists of 16 nodes for 

hammering. The accelerometer is attached at the 6th node, as shown in Fig. 21.  

The roving impact hammer test is repeated at all the 16 nodes, and response is collected at the 

6th node. In this case, a hard hammer tip is used because of the high stiffness of the structure. The 

first six experimental frequencies and the mode shapes extracted are shown in Fig. 22. It is noted 

that due to some noise and experimental uncertainty while hammering, the second mode shape is 

showing unusual curvature. The numerical model is updated with the obtained experimental 

responses. The parameters used for optimization are 1 cm, 0.6 cm, 3.5 cm, and 30000 as the initial 

value, the upper bound, the lower bound, and the function evaluations limit, respectively. The 

upper bound of depth is kept high to incorporate the large depth due to the presence of flange, 

bolts, and welded connection. The optimized depth results are shown in Fig. 23. 
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(a) Mode 1-3 (b) Mode 4-6 

Fig. 22 Experimental mode shapes of the considered fixed beam 

 

 
 

Fig. 23 Optimized depth results of the considered fixed beam after model updating 

 

 

The optimized result shows that the end element on each of the side has slightly lesser depth, 

which is expected just after the end of the beam, i.e., the depth of flange only. The 2nd and 14th 

elements are showing large depth replicating higher stiffness in that location, which is due to the 

effect of connection of projected flange and beam and presence of large size bolt in that element. 

There is a sudden stiffness decrease shown in the 3rd and 13th elements, which is due to the end of 

the projected flanges connected with the beam. All other elements show almost equal depth with a 

small number of variations due to noises and errors in the extraction of experimental responses. It 

is observed that even with visible noise in the second mode, the method is able to identify the 

variation of stiffness over the structure, with reasonable accuracy in identifying damages. Also, it 

can be seen that there is some level of false detections, but the approach is efficient in identifying 

sudden changes of depth, thus the stiffness. 
 

 
7. Conclusions 

 

This study presents a SHM approach for old and existing structures. The damages are detected 

by numerical model updating technique via optimization using the initial designed structural 

properties as its undamaged state. The method uses structural engineering code OpenSees for 
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numerical modelling and NOMAD optimization code for model updating. The use of OpenSees 

makes the FE modelling of complex structures much simpler. Also, both the codes being open-

sourced makes the proposed approach economical. Modal analysis is used for damage 

identification. The studies presented here include the choice of effective modes, an adequate 

objective function, and a comparison between available frequency and mode shape-based 

objective functions. The effectiveness of NOMAD optimization is compared with ALO and TLBO 

algorithms. A cantilever beam is used with single and multiple damage cases to check the efficacy 

of the proposed method. Moreover, a more realistic damage scenario of decreased as well as 

increased stiffness are also considered in a fixed beam. Numerical and experimental validations 

via impact hammer test are performed and the following significant conclusions have been drawn: 

(i) Natural frequency alone can be used for broad and rough damage detection; however, if 

both the mode shapes along with the natural frequencies are incorporated in the objective 

function (OF*), it will add the local state of the structure and will enhance the optimization 

results.  The objective function OF* took lesser time for optimization and the least average 

error (14%) in each element than similar objective functions available in the literature.  

(ii) At least five modal responses are needed for optimization and damage detection with 

acceptable error and computational time.  

(iii) The approach proposed here was effective in identifying the locations of damage along with 

the intensities for all the numerical damage scenarios considered.  

(iv) The method also proved efficient in the identification of damage locations as well as the 

intensity of the damaged beam experimentally tested. The depth identification is with less 

than 2% error at damage location and 14% error globally.  

(v) In the tests on the fixed beam, the method can identify the increased stiffness at bolt 

locations via showing increased depth values. This case is the replica of the concept of 

stiffness variation over the structure presented here. Also, this is the best example of 

increased stiffness over a particular zone, and the method can locate the same. 

(vi) From the comparative study, it is observed that NOMAD takes lesser evaluations of the 

objective function and the ultimate results of optimization are consistent with the presently 

available optimization algorithms. 

Overall, the presented damage detection method is simple, economical, and user-friendly in 

numerical modelling and use. And can be used for the global identification of stiffness irregularity 

which will replicate the probable damage. It performed well in assessing damage location and 

damage severity for the studied problems, and further studies are needed for its applicability over 

real-time complex civil engineering structures. Efficiency of the method in getting minor damage 

has been examined numerically, and the same can be done experimentally with a wide range of 

damage levels in future. Furthermore, more studies are required to deal with the issue of 

inappropriate or incomplete measurements. 
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