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Abstract.    Structural Health Monitoring (SHM) is an effective alternative to conventional inspections 
which are time-consuming and subjective. SHM can detect damage early and reduce maintenance cost and 
thereby help reduce the likelihood of catastrophic structural events to infrastructure such as bridges. After 
reviewing the Damage Index Method (DIM), an Iterative Damage Index Method (IDIM) is proposed to 
improve the accuracy of damage detection. These two damage detection techniques are compared based on 
damage on two structures, a simply supported beam and a pedestrian bridge. Compared to the traditional 
damage detection algorithm, the proposed IDIM is shown to be less arbitrary and more accurate. 
 

Keywords:    vibration-based damage identification method; damage index method; damage detection 
algorithm; structural health monitoring 

 
 
1. Introduction 
 

Recently, effective inspection and maintenance for infrastructure are placing great importance 
because infrastructures are deteriorating after construction due to fatigue and corrosion. The 
Bureau of Transportation Statistics (2008) reported that nearly 26 percent of the bridges in the U.S. 
are substandard. Traditional inspection procedures for bridges generally rely on subjective and 
irregular visual examination. As such, there are variations in the inspection results even for the 
same structure because of the differences in inspectors’ experience and judgment. Visual checking 
is also apt to be a schedule-based inspection process. Discrete inspection processes can fail to 
detect hidden effects of poor design or maintenance that can be the source of sudden and 
dangerous events such as a bridge collapse. Between 1989 and 2000, out of 65 bridge failures 
(caused by design, detailing, construction, maintenance, or material problems), 43 failures were 
attributed to poor maintenance (Wardhana and Hadipriono 2003). As an alternative to periodic 
inspections, structural health monitoring (SHM) is a continuous process (Hurlebaus and Gaul 2006) 
that can detect damage early, reduce the cost of repair and rehabilitation, and help reduce the 
chance of catastrophic events with the structures. 

A number of studies have sought to improve the accuracy of damage detection using SHM.  
Several researchers (Lenzen 2005, Kim and Kawatani 2007, Kim et al. 2008, Mizuno et al. 2008, 
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Park et al. 2009, Kim et al. 2013) have developed damage identification methods using the 
analysis of dynamic responses of a structure. However, the damage can be estimated where the 
dynamic responses are recorded. On the other hand, many studies took advantages of the 
development of instrumentation using sensors that facilitates observation of the dynamic 
characteristics of a structure, such as frequencies and modeshapes. For example, Pandey et al. 
(1991) proposed to track the changes in modeshapes curvature while Pandey and Biswas (1994) 
used flexibility changes. Zhang and Aktan (1995) combined the two methods proposed by Pandey 
et al. (1991) and Pandey and Biswas (1994), and developed a method using the changes in 
flexibility curvature. Shi et al. (2000) introduced the correlation between the measured 
modeshapes change for the undamaged and damaged and the analytical modeshapes change for the 
undamaged and damaged. If the correlation between the measured modeshapes and analytical 
changes is unity, the damage is estimated correctly. Despite those efforts, the methods are not 
practical in infrastructure such as bridges and buildings. This is often the case because small 
changes in physical properties do not alter frequencies and modeshapes enough to allow their 
detection. In other case, it is difficult to obtain as many modes as these methods need from these 
complicated structures. To overcome the limitations, Stubbs and Kim (1996) suggested a Damage 
Index Method (DIM) using modal strain energy to detect damage. 

This paper refers to the measured points on a structure as recording points. Interpolation 
between selected recording points is then used to make the modeshapes a smooth line. In this 
paper, the points used in interpolating the modeshapes are called spline points. Note the number of 
spline points, Ns, is always equal to or greater than the number of recording points, Nr and a cubic 
spline interpolation function is chosen in this study to avoid Runge’s phenomenon which can be 
occurred when using polynomial interpolation method. 

Several researchers (Stubbs and Kim 1996, Stubbs and Park 1996, Kim and Stubbs 2002, Kim 
et al. 2003) verified the accuracy of the DIM with numerical simulation models, while others 
confirmed its usefulness with experimental evaluation (Park et al. 2001, Kim and Stubbs 2003, 
Kim et al. 2007, Choi et al. 2008). Moreover, Huang et al. (2009) applied the DIM to find the 
probabilistic capacity and fragility of reinforced concrete columns. Compared with commonly 
used vibration-based damage detection methods, the DIM is the most accurate (Alvandi and 
Cremona 2006, Humar et al. 2006). 

The DIM relies on the calculation of the modal strain energy by measuring the modeshapes of a 
structure to detect damage. However, the current DIM has two limitations with regard to this 
calculation. First, the selection of a fixed threshold to determine whether there is enough change in 
the measurable physical properties to indicate damage in a structure is arbitrary. Second, the 
damage detection with any fixed threshold is affected by the number of spline points selected. 

The purpose of the work described in this paper is to develop a less arbitrary and more accurate 
vibration-based damage detection method for SHM. A modified DIM, referred to as the Iterative 
Damage Index Method (IDIM), is proposed. The proposed IDIM does not require defining an 
arbitrary threshold to identify damage and it is independent of Ns. Thus, the proposed 
method .promises a generally better and reliable detection of damage. 

The remaining of this paper consists of four sections. The technical background is described in 
the following section. After a brief review of the algorithms used by the current DIM, the proposed 
IDIM is described. Then, the accuracy of damage prediction using the DIM and the IDIM for a 
simply supported beam and a pedestrian bridge are compared using numerical and experimental 
data. Finally, the last section summarizes the findings of this paper and suggests some future work.
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2. Damage detection algorithm 
 
First, the quantification of the accuracy of predicted damage by damage identification methods 

is presented. After that, two damage detection algorithms are explained: DIM and IDIM. 
 
2.1 Damage index method 
 
This section reviews the DIM proposed by Stubbs and Kim (1996). Assuming a structural 

element can be considered as a Euler-Bernoulli beam (see Fig. 1), the modal strain energy 
associated to the ith mode of undamaged beam, iK , can be calculated as 

   
2

0

L

i iK EI x x dx 
                            (1) 

where L is the length of the beam, EI  is the flexural rigidity, and i  is the curvature of the ith 

modeshape. Dividing the beam into n segments, the modal strain energy contribution from the jth 
segment to the ith mode, ijk , is given by  

  
2

 

b

i j j ia
k EI x dx 

 
                         

 (2) 

where the jth segment is between x a  and b. As such, the fraction of the jth segment’s 
contribution to the total modal strain energy, i jF , can be expressed as 

 
i j

i j
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k
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K
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Fig. 1 Structural element with n segmetns 
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Similarly, for the corresponding damaged element, we have 

    
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0

Ld d d
i iK EI x x dx 

 
                        

(4) 
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where the superscript ‘d’ denotes ‘damaged’. Assuming that the fraction of the jth element’s 
contribution to the ith modal strain energy in the undamaged and damaged structure remains 

constant (i.e.,   
d

i j i jF F ), the ratio of the jth segment flexural rigidity in the undamaged and 

damaged structure is given by 
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where j  is the damage index for the jth segment. For multiple modes, j  is expressed as 
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(8) 

where mn  is the number of modes. Accordingly, the normalized damage index (damage 

indicator), jZ , is obtained as 

 j
jZ



 



                               (9) 

where  and  are the mean and the standard deviation of the damage index, respectively. For a 

chosen threshold, thresholdZ , if thresholdjZ Z , it is indicated that the jth segment is damaged. In 

this paper, thresholdZ  is chosen to be one, meaning that the confidence level for damage detection 

is 84.1% (Park et al. 2001). A flowchart shown in Fig. 2 depicts the entire procedure of the current 
DIM. 

As mentioned in the previous section, there are two crucial restrictions in the use of the DIM.  
First, the choice of a fixed threshold is arbitrary. Because the particular fixed threshold chosen 
drives the damage detection results, the selection of the threshold is critical in the DIM. If the 
selected threshold is smaller than the limit at which actual damage occurs, damage size would be 
overestimated. In contrast, damage size would be underestimated if the selected threshold is set too 
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high. As an illustration, in Fig. 3(a) is an appropriate threshold, (b) is a smaller threshold, and (c) is 
a larger threshold. Although the DIM has this problem with the selection of a fixed threshold to 
detect damage, various thresholds have been selected.  For instance, the threshold was chosen to 
be one by some researchers (Park et al. 2001, Kim and Stubbs 2003, Kim et al. 2007, Choi et al. 
2008, Huang et al. 2009) while other researchers selected thresholds of two (Stubbs and Kim 1996, 
Stubbs and 2002) and three (Kim and Stubbs 2003, Kim et al. 2007).  

 

 

Fig. 2 Flow chart of the Damage Index Method 
 

 

j=0
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Fig. 3 Damage detection with (a) appropriate threshold, (b) smaller threshold and (c) larger threshold 
 
 

(a) 

 
(b) 

Fig. 4 Damage detection results with (a) Nr recording points and Ns-1 spline points and (b) Nr recording 
points and Ns-2 spline points (Ns-1<Ns-2) 
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4 illustrates the problem by showing two predicted damage cases with the same Nr but different Ns.  
Although the damage in the two cases is identical, the damage detection results by the same fixed 
threshold are different. The extent of damage is detected correctly in Fig. 4(a) while the damage is 
overestimated in Fig. 4(b). 
 

2.2 Proposed iterative damage index method 
 
The IDIM proposed in this paper overcomes these limitations by relying on the idea that the 

ratioZ  for the same Nr remains constant when different Ns are used. The ratioZ  is given by 

1
ratio

1

=

a

i

p

j

n

A
i
n

p
j

Z
Z

Z








                                

(10) 

where an  is the number of damage indicators in an actual damage location, Z
iA  is the ith 

damage indicator in an actual damage location, pn  is the number of the positive damage 

indicators, and Z
jp  is the jth positive damage indicator. By plotting of Nr and the ratioZ , a fitting 

function, cu , is formulated as 

 1 exp  r
c

N
u


    

                              
(11) 

where  is a parameter that needs to be estimated.  Unfortunately,   varies with different 
damage sizes. To solve the problem, we introduce a new parameter, C, that remains constant over 
different damage sizes and is defined as 

 C                                    (12) 

where   is the damage size. In this paper, it is assumed that C is unchanged corresponding to the 
change in damage size. 

Fig. 5 gives a flowchart for the IDIM.  The first four steps of the proposed method are the 
same as those of the current DIM (see Figs. 2 and 5).  The sum of the positive damage indicators, 

sumZ , is given by 

 sum
1

j

np

p
j

Z Z


 
                             

(13) 

After numbering the positive damage indicators in descending order (i.e. 1pZ = maximum of 

the pjZ ), the sum of the first k positive damage indicator(s), sumZ  , can be calculated as 

 sum
1

k

pj
j

Z Z


   (0) 
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where k is the iteration number. Thus, the ratio of the sum of the positive damage indicators to the 
sum of the first k positive damage indicator(s), ratioZ , is expressed as 

 sum
ratio

sum

Z
Z

Z




                            
(15) 

 

 

 

 

Continued- 
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Fig. 5 Flow chart of the proposed Iterative Damage Index Method 
 
 
For a structural element with a total length of L, the predicted damage size, p , is given by 
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Next, the fitting function for the predicted damage size, 
pcu , is given by 
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 1 exp    where 
p

r
c p

p p

N C
u 


 

    
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(17) 

The ratio,  , is given by 

 
ratio

pcu

Z
 

                                
(18) 

If 1    , where   is the desired tolerance, the iterative processes stop. Based on a 
parametric study, we suggest to use effC L , where effL  is the effective length. For example, 

effL  for a pinned-pinned boundary condition is equal to L, while effL  for a fixed-free boundary 
condition is twice as long as L. Additional details can be found in You (2009). 

 
2.3 Quantification of the accuracy of predicted damage 
 
To quantify the accuracy of the predicted damage, two measures are introduced: e  and ∆.  

The first measure is referring as the ratio between the actual damage size, s , and the predicted 
damage size, ŝ  divided by the s  

 
ˆ-

e
s s

s


                                  
(19) 

The second measure is referring as the difference between the centers of the actual and the 
predicted damages divided by the total length of the structure, L 

 
ˆc c

L




                                  
(20) 

where c  is the center of the actual damage, and ĉ  is the center of the predicted damage. The 
smaller the absolute values of both e and ∆ are, the more accurate the damage detection is. If e and 
∆ are zero, then the damage is detected exactly. Note that e and ∆ can be calculated for each 
damage detection model, where the damage detection model is specified Nr and Ns for the damage 
detection. 

To generalize and compare the accuracy in the damage prediction for different damage cases, 
the damage detection percentage, γ, is calculated. For each damage detection model, γ is calculated 
as 

 100 (%)c

t

n

n
  

                            
(21) 

where nt is the number of total damage detection models and nc is the number of correct damage 
predictions (i.e., e  = 0 and ∆ = 0) among the nt cases. In addition, γ can be also calculated by 
applying various e  and ∆ to consider the error of predicted damage. Because various Nr cannot 
be used in experimental tests, the average of the e  and ∆ are calculated for the damage detection 
models with the only change of Ns. The average of the e  and ∆ will be used to compare how the 
damage detection methods perform in the experimental tests. 
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3. Validation using numerical data 
 
This section refers two numerical examples to validate the proposed IDIM. FE model of a 

simply supported beam with hollow square section 0.05×0.05×0.01 m (2×2×½ in) and a FE model 
of a pedestrian bridge on the Texas A&M Golf Course at Texas A&M University, College Station, 
TX. 

 
3.1 Simply supported beam 
 
Table 1 summarizes the material and geometric properties for the simply supported beam. For 

the numerical simulation, the simply supported beam is constructed in ABAQUS (2004), including 
280 beam elements with an equal width of 0.013 meters. From the modal analysis, the first three 
modeshapes are extracted and used in the DIM and IDIM. The first three eigenfrequencies are 
11.205, 44.760, and 100.490 Hz. 

Fourteen damage cases are studied to investigate the effect of various damage sizes, severities, 
and locations, as shown in Table 2. Note that the term of severity is defined as change in flexural 
rigidity. Cases 1, 2, and 3 are chosen to investigate the effect of damage size, while Cases 1, 4, 5, 6, 
and 7 are selected to investigate the effect of damage severity. Finally, Cases 8, 9, and 10 are 
selected to investigate the influence of different damage locations. The last four damage cases are 
selected to investigate the effect of multiple damage locations. Damage is simulated by reducing 
the modulus of elasticity of the appropriate elements. 

The modeshapes can be obtained more accurately by increasing Nr which promises more 
reliable damage detection. However, it is necessary to decide on the minimum Nr for correct 
damage detection because one cannot use an unlimited Nr. Table 3 shows the minimum Nr to 
detect damage correctly (i.e., Δ = 0 and e  = 0) for all damage cases. It is apparent that a smaller 
Nr is needed for the IDIM than for the IDIM for most of damage cases. Therefore, the IDIM is 
generally more economical than the DIM in the simply supported beam. 
The damage detection percentages for the simply supported beam are calculated by considering 
about ten thousand damage detection models (i.e., nt ≈ 10,000) with various Nr and Ns. Nr varies 
from five to 281 with the interval of four, while Ns changes from five to 449 with the interval of 
four. Table 4 summarizes those percentages for six of the fourteen damage cases. The results for 
the rest of the cases are similar. Five main observations can be made. First, the IDIM is typically 
more accurate than the DIM because the damage detection percentages of the IDIM are higher in 
most of the damage cases. Second, comparison of the Cases 1 and 2 shows that the IDIM is more 
efficient in estimating smaller damage associated with Case 1. Third, as shown in Cases 1 and 5, 
the more severe damage associated with Case 5 is estimated more accurately by the IDIM.  
Fourth, the similarity between Cases 1 and 9 implies that the damage location does not affect the 
relative accuracy of damage predictions. Finally, Cases 12 and 14 show that the IDIM is more 
accurate than the DIM in identifying the multiple locations of damage. 
Cases 12 and 14 have two locations of damage, where the left location of damage is called ‘left 
damage’ and the right location of damage is referred as ‘right damage’ here. The Case 12 has 
different severities of damage while the severities of damage are same in the Case 14. Tables 5 to 6 
show the values of γ for the two damage cases. From these tables, it is certain that the value of γ to 
detect the multiple damage is calculated by combining the value of γ to estimate the left damage 
with the value of γ to identify the right damage. Note that the value of γ to detect either the left 
damage or the right damage is higher than the value of γ to identify the multiple damage. 
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Table 1 Properties for a simply supported beam 

Properties Values 
Length, L 3.56 m 

Cross section area, A 974.19 mm² 
Young’s modulus, E 2.0×105 MPa 

Poisson’s ratio, ν 0.3
Second moment of cross-sectional inertia, I 3.11×105 mm4 

Density, ρ 7.85×103 kg/m³ 
 
Table 2 Damage scenarios of a simply supported beam 

Damage 
Case 

Damage 
size 

Location 
Severity† Damage 

size 
Location 

Severitya

From To From To 
Undamaged 0.00 m - - - - - - - 

1 0.13 m 0.76 m 0.89 m −20 - - - - 
2 0.25 m 0.76 m 1.02 m −20 - - - - 
3 0.51 m 0.51 m 1.02 m −20 - - - - 
4 0.13 m 0.76 m 0.89 m −1 - - - - 
5 0.13 m 0.76 m 0.89 m −10 - - - - 
6 0.13 m 0.76 m 0.89 m −40 - - - - 
7 0.13 m 0.76 m 0.89 m −60 - - - - 
8 0.13 m 0.00 m 0.13 m −20 - - - - 
9 0.13 m 0.51 m 0.64 m −20 - - - - 

10 0.13 m 1.65 m 1.78 m −20 - - - - 
11 0.13 m 0.76 m 0.89 m −20 0.13 m 2.54 m 2.67 m −20 
12 0.13 m 0.76 m 0.89 m −20 0.13 m 2.54 m 2.67 m −50 
13 0.13 m 0.76 m 0.89 m −50 0.13 m 2.54 m 2.67 m −20 
14 0.13 m 0.76 m 0.89 m −50 0.13 m 2.54 m 2.67 m −50 

aSeverity is defined as the change in flexural rigidity, expressed as Severity (%)=(EId−EI)/EI×100 where EI 
and EId are the flexural rigidities for the undamaged and damaged element, respectively 

 
Table 3 The minimum number of recording points (Nr) and the minimum number of spline points (Ns) to 

detect damage accurately (Δ=0 and e =0) 

Damage Case 
Minimum Nr (Ns) 

DIM IDIM 
1 59 (113) 21 (29) 
2 13 (29) 12 (15) 
3 9 (15) 12 (15) 
4 64 (85) 17 (29) 
5 64 (113) 17(29) 
6 40 (85) 10 (29) 
7 40 (57) 14 (29) 
8 22 (113) 74 (85) 
9 N/A 12 (29) 

10 58 (85) 5 (29) 
11 78 (99) 29 (50) 
12 N/A 50 99) 
13 N/A 50 (99) 
14 71 (99) 29 (50) 

N/A: Damage cannot be detected 
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Table 4 Damage detection percentages with ∆=0 (unit is %) 

Damage 
case 

 
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0

Case 1 
DIM 0.81 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4
IDIM 5.35 67.5 79.4 82.9 84.6 86.7 95.5 95.6 95.7 96.4 99.6

Case 2 
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1
IDIM 5.42 80.5 85.9 87.3 89.4 91.1 99.6 99.9 99.9 100 100

Case 5 
DIM 0.17 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8
IDIM 1.47 25.7 72.4 83.3 85.3 87.9 95.5 95.6 95.8 96.3 99.6

Case 9 
DIM 0.00 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9
IDIM 3.12 53.2 75.9 82.5 83.9 84.4 91.1 91.9 93.8 93.9 95.8

Case 12 
DIM 0.00 0.00 0.00 1.38 12.3 22.3 67.0 67.0 67.0 67.0 67.0
IDIM 8.39 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8

Case 14 
DIM 8.96 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9
IDIM 9.64 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9

 
 
 
 

Table 5  Damage detection percentage Case 12 to detect (a) multiple damage, (b) left damage and (c) right 
damage (unit is %) 

  (a) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 0.00 0.00 0.00 1.38 12.3 22.3 67.0 67.0 67.0 67.0 67.0
IDIM 8.39 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8

 
  (b) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 0.00 0.00 0.00 1.38 12.3 22.3 67.0 67.0 67.0 67.0 67.0 
IDIM 9.20 64.6 72.3 76.5 78.9 82.0 89.8 90.5 95.8 95.9 95.9 

 
  (c) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 3.67 33.0 62.5 75.2 80.0 81.1 87.3 92.0 93.0 93.1 93.1 
IDIM 9.58 65.8 76.3 79.4 81.3 83.8 91.8 92.6 95.8 97.7 97.8 
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Table 6  Damage detection percentage Case 14 to detect (a) multiple damage, (b) left damage and (c) right 

damage (unit is %) 

  (a) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 8.96 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9 
IDIM 9.64 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9 

 
  (b) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 8.96 63.8 78.3 81.4 82.5 83.7 92.7 95.6 95.8 95.9 95.9 
IDIM 9.78 65.3 75.3 80.1 83.6 85.1 94.2 95.9 97.5 99.9 99.9 

 
  (c) 

∆  
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

0 
DIM 9.31 66.3 79.0 81.5 82.6 83.8 92.8 95.7 97.7 97.9 97.9 
IDIM 9.78 65.3 74.9 78.9 81.9 84.6 93.7 93.8 95.5 97.9 97.9 

 
 
3.1 Pedestrian bridge 
 
The pedestrian bridge, shown in Fig. 6, has a length of 9.04 meters, consists of two arched 

frames, a deck and bracings and other properties as summarized in Table 7. For the numerical 
validation, this pedestrian bridge is modeled in ABAQUS (2004) (see Fig. 7). A total of 2,674 
beam elements are used to model the bridge with eight longitudinal beams. From the modal 
analysis, the first three bending modeshapes of the fourth longitudinal beam are extracted and used 
in the DIM and IDIM. The first three bending eigenfrequencies are 16.936, 24.310, and 33.499 Hz. 
We investigate ten damage cases analogous to those used for the previous numerical example.  
Table 8 summarizes those. 

 
 

Table 7 Properties for a pedestrian bridge 

Properties Values 

Length, L 9.04 m 

Young’s modulus, E 2.0×105 MPa 

Poisson’s ratio, ν 0.3 

Density, ρ 10.13×103 kg/m³ 
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Fig. 6 Pedestrian bridge in Texas A&M Golf Course at Texas A&M University, College Station, TX 
 
 

Table 8 Damage scenarios for a pedestrian bridge 

Damage 
Case 

Damage size 
Location 

Severitya 
From To 

Undamaged 0.000 m - - - 
1 0.078 m 2.47 m 2.55 m −50 
2 0.156 m 2.47 m 2.63 m −50 
3 0.311 m 2.47 m 2.78 m −50 
4 0.078 m 2.47 m 2.55 m −10 
5 0.078 m 2.47 m 2.55 m −20 
6 0.078 m 2.47 m 2.55 m −70 
7 0.078 m 2.55 m 2.63 m −50 
8 0.078 m 2.70 m 2.78 m −50 
9 0.078 m 3.02 m 3.09 m −50 

10 0.078 m 3.56 m 3.64 m −50 
aSeverity is defined as the change in flexural rigidity, expressed as Severity (%)=(EId−EI)/EI×100 where EI 
and EId are the flexural rigidities for the undamaged and damaged element, respectively 

 
 
Because the damage scenarios cannot be detected accurately (i.e., Δ = 0 and e  = 0) by the two 

methods, Δ = 0.01 and e  = 0.1 are used to determine the minimum Nr for all damage cases (see 
Table 9). Smaller Nr is required in the IDIM for all of the damage cases to achieve equivalent 
accuracy even with this less precise standard. Consequently, the IDIM also proves to be more 
economical than the DIM with the pedestrian bridge. The values of γ for the pedestrian bridge are 
calculated by considering about ten thousand damage detection models (i.e., nt ≈ 10,000) with 
various Nr and Ns. Nr varies from five to 449 with the interval of four, while Ns changes from five 
to 449 with the interval of four. Because the value of γ with Δ = 0 are equal to zero, the error in 
estimating damage is considered (i.e., Δ = 0.01). Table 10 summarizes those percentages for four 
damage cases among the ten cases, again because the results for the rest of the cases are not 
significantly different. The findings from those tables for the bridge are even more compelling 
than those for the beam. In particular, the damage detection percentages for the IDIM are higher 
across all damage cases. 

103



 
 
 
 
 
 

Taesun You, Paolo Gardoni and Stefan Hurlebaus 

 

 

 
(a) top view 

(b) side view 

Fig. 7 Pedestrian bridge generated in ABAQUS (2004) 
 
 
 

Table 10 Damage detection percentage with ∆=0.01 (unit is %) 

Damage 
case 

 
e

0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0

Case 1 
DIM 0.00 0.00 0.00 0.00 0.00 0.00 3.39 26.3 52.2 62.2 67.3
IDIM 0.00 4.50 7.88 13.0 17.3 21.9 37.5 49.1 59.6 68.7 76.1

Case 2 
DIM 0.00 0.00 1.34 11.2 23.6 36.2 64.0 77.0 83.9 85.9 87.0
IDIM 0.00 14.3 27.1 39.1 47.6 53.6 70.7 76.2 83.1 90.0 92.4

Case 5 
DIM 0.00 0.00 0.00 0.00 0.00 0.00 2.08 19.2 49.2 61.7 67.2
IDIM 0.00 3.97 7.21 11.5 15.5 18.9 36.2 49.7 56.6 63.8 72.3

Case 8 
DIM 0.00 0.00 0.00 0.00 0.00 0.00 3.9 24.8 48.7 61.3 66.7
IDIM 0.00 3.23 5.80 9.02 11.7 14.2 29.8 42.4 52.0 61.5 68.6

 
 
 

4th longitudinal beam

L=9.04 m

f=0.22 m
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4. Validation using experimental data 
 
The proposed method is also validated using experimental data with from real structures: a 

simply supported beam and a pedestrian bridge in the Texas A&M golf course, on the Texas A&M 
University campus in College Station, TX. The test data are obtained by a wireless monitoring 
system. Because a structure gradually deteriorates after its construction, the baseline of the beam 
and bridge (i.e., modeshapes for an undamaged structure) are obtained from the current structure. 

 
4.1 Simply supported beam 
 
The geometric and material properties of the beam are the same as those of the beam of 

considered in Section 3.1. The accelerations of the simply supported beam in the laboratory are 
measured from ten recording points from the left end of beam to the right one. The ten recording 
points are located with equal spacing (0.40 meters) on the beam. A steel plate with the weight of 
0.6 kg (2.11% of the total mass of the beam) is placed between 0.787 meters and 0.889 meters 
from the left end of the beam to simulate a mass damage instead of a stiffness damage. 

The experimental setup consists of a Wireless Sensor Network (WSN) (Reyer 2007) composed 
of a base station MIB510, MICA 2 motes and MTS310 sensor board. The beam is excited by an 
input hammer at 0.76 meters from the left end of the beam and the acceleration data are recorded 
with 250 Hz of sampling rate using the WSN. The first three modeshapes, shown in Fig. 8, are 
extracted from the measured accelerations by the Time Domain Decomposition (TDD) method, 
proposed by Kim et al. (2005). 

For the limited number of MICA2 motes, three measuring sets (Set I, II, and III) and one 
reference point are used (see Fig. 9). The modes shapes obtained from the three sets are 
recalculated to match the reference point of each set. Note that the impact points in the three sets 
are identical. Fig. 10 shows a test set up for the Set I with five MICA 2 motes, the base station, and 
a lap-top computer. 

 
 

 

Fig. 8 The first three modeshapes for the simply supported beam (solid lines indicate the undamaged and 
dashed lines indicate the damaged) 
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Fig. 9 Three measuring sets and a reference point for the simply supported beam 
 
 

Fig. 10 Test set-up for the simply supported beam including MICA 2 motes, base station, and a lap-top 
computer 

 
 

The average values of e and ∆ are summarized in Table 11. From Table 11, we observe that the 
averages of ∆ (the accuracy of pinpointing the location of damage) for the current DIM are 
practically the same as those of the proposed IDIM. However, the averages of the e  for the 
proposed IDIM are around −3 while those of the current DIM are around −5. That means that the 
IDIM is 10% more accurate predicting the damage size than the DIM. Note that measurement 
noise was considered as acceleration data from actual measurements were used in this study. 

 
 
 

 

Mote 

Mote with the role 
of reference point

Set I 

Set II 

Set III 

 

    

 

MICA 2 mote

Base station
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Table 11 Average of e  and ∆ for a simply supported beam 

 
Range of Ns 

10–100 101–200 201–300 301–400 401–500 501–1000 

Average of ∆ 
DIM 0.037 0.037 0.037 0.037 0.037 0.037 

IDIM 0.042 0.045 0.045 0.045 0.045 0.045 

Average of e  
DIM −4.88 −4.89 −4.89 −4.89 −4.89 −4.89 

IDIM −2.99 −2.54 −2.48 −2.46 −2.45 −2.43 

 
 
4.1 Pedestrian bridge 
 
The geometric and material properties of the pedestrian bridge are the same as those of the 

pedestrian bridge considered in Section 3.2. The accelerations of the pedestrian bridge are 
measured at nine recording points. One point is located on the center of the 4th longitudinal beam 
of the bridge and eight other points are equally spaced (1.29 meters apart) on the 4th longitudinal 
beam of the bridge. To simulate a mass damage instead of a stiffness damage, three concrete 
blocks (81.66 kg or 2.46% of the total mass of the bridge) are added between 2.778 meters and 
3.277 meters from one end of the bridge. The concrete blocks are located on the flat wood deck.  
The first three modeshapes, shown in Fig. 11, are obtained by the TDD. Because of the limited 
number of sensors, two measuring sets (Set A and B) and one reference point are also operated 
(see Fig. 12). 

Table 12 summarizes the average of the e  and ∆ for the pedestrian bridge. From Table 12, it is 
found that the averages of ∆ for the current DIM are practically the same as those of the proposed 
IDIM. However, the averages of e  for the proposed IDIM are about −0.5 with only one being 
around −1, while those of the current DIM are all about −2. That means that the IDIM is 33% 
more accurate in estimating the damage size than the DIM. 

 
 

Table 12 Average of e  and ∆ for a pedestrian bridge 

 
Range of Ns 

10–100 101–200 201–300 301–400 401–500 501–1000 

Average of ∆ 
DIM −0.001 −0.002 −0.002 −0.002 −0.002 −0.002 

IDIM 0.012 0.015 0.015 0.015 0.015 0.015 

Average of e  
DIM −2.27 −2.25 −2.25 −2.25 −2.25 −2.25 

IDIM −0.92 −0.50 −0.47 −0.46 −0.45 −0.44 
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Fig. 11 The first three modeshapes for the pedestrian bridge (solid lines indicate the undamaged and 
dashed lines indicate the damaged) 

 
 

 
Fig. 12 Two measuring sets and one reference point for the pedestrain bridge 

 
 

4. Conclusions 
 
The proposed IDIM has both theoretical and practical advantages over the current DIM. It is a 

less arbitrary and more accurate vibration-based damage detection technique than the current DIM. 
Also, the proposed IDIM does not depend on a threshold, as required in the current DIM. Finally, 
the proposed IDIM is not affected by selected Ns. 

Simulation and experimental comparisons demonstrate the superior performance of IDIM.  
Two parameters, e  and ∆, are used to quantify the accuracy of predicted damage. Two example 
cases are studied to compare the DIM and the proposed IDIM: a simply supported beam and a 
pedestrian bridge at the Texas A&M golf course. 

From simulation results with numerical models, five major findings emerge. First, the proposed 
IDIM is more economical than the DIM. Second, the proposed method is more accurate across 
various damage cases. Third, the proposed method is more efficient in identifying low magnitude 

 

Mote 

Mote with the role 
of reference point

Set A 

Set B 
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damage, which is rarely detected in practice. Fourth, the size of more severe damage is detected 
more correctly while the location of damage does not influence the accuracy of damage detection.  
Finally, the IDIM is more accurate than the DIM in estimating the multiple locations of damage. 

The modeshapes are extracted from the two real structures by the TDD. Experimental tests with 
a simply supported beam and a pedestrian bridge show that the proposed IDIM is more accurate 
than the current DIM and that the proposed method can be applied successfully for structural 
health monitoring. 

 
 

Acknowledgements 
 
This work was supported partially by the Association of American Railroads (AAR).  

Opinions and findings presented are those of the authors and do not necessarily reflect the views of 
the sponsor. 
 
 
References 
 
ABAQUS (2004), Version 6.5 User Manual, Hibbit, Karlsson & Sorensen, Inc., Rhode Island, USA. 
Alvandi, A. and Cremona, C. (2006), “Assessment of vibration-based damage identification techniques”, J. 

Sound Vib., 292(1-2), 179-202. 
Bureau of Transportation Statistics (2008), National transportation statistics, U.S. Department of 

Transportation, Washington, DC, USA. 
Choi, F., Li, J., Samali, B. and Crews, K. (2008), “Application of the modified damage index method to 

timber beams”, Eng. Struct., 30(4), 1124-1145. 
Huang, Q., Gardoni, P. and Hurlebaus, S. (2009), “Probabilistic capacity models and fragility estimates for 

reinforced concrete columns incorporating NDT data”, J. Eng. Mech. - ASCE, 135(12), 1384-1392. 
Humar, J., Bagchi, A. and Xu, H. (2006), “Performance of vibration-based techniques for the identification 

of structural damage”, Struct. Health Monit., 5(3), 215-241. 
Hurlebaus, S. and Gaul, L. (2006), “Smart structure dynamics”, Mech. Syst. Signal Pr., 20(2), 255-281. 
Kim, B., Stubbs, N. and Park, T. (2005), “A new method to extract modal parameters using output-only 

responses”, J. Sound Vib., 282, 215-230. 
Kim, C. and Kawatani, M. (2007), “Application of total squares algorithm for damage identification of 

bridges under a moving vehicle”, Proceedings of the 10th International Conference on Application of 
Statistics and Probability in Civil Engineering, Tokyo, Japan, July. 

Kim, J.T., Park, J.H. and Lee, B. (2007), “Vibration-based damage monitoring in model plate-girder bridges 
under uncertain temperature conditions”, Eng. Struct., 29(7), 1354-1365. 

Kim, J.T., Ryu, Y., Cho, H. and Stubbs, N. (2003), “Damage identification in beam-type structures: 
frequency-based method vs mode-shape-based method”, Eng. Struct., 25(1), 57-67. 

Kim, J.T. and Stubbs, N. (2002), “Improved damage identification method based on modal information”, J. 
Sound Vib., 252(2), 223-238. 

Kim, J.T. and Stubbs, N. (2003), “Nondestructive crack detection algorithm for full-scale bridges”, J. Struct. 
Eng. - ASCE, 129(10), 1358-1366. 

Kim, J.T., Na, W., Ryu, Y., Park, J.H., Lee, J. and Lee, S. (2008), “Virbration-based damage monitoring 
algorithms for prestress-loss in PSC girder bridges”, Proceeding of SPIE, 6932, 69322C. 

Kim, Y., Chong, J. and Kim, J. (2013), “Wavelet-based AR-SVM for health monitoring of smart structures”, 
Smart Mater. Struct., 22(1), 15003. 

Lenzen, A. (2005), “Monitoring and damage assessment of mechanical systems by vibration analysis”, 
Proceedings of the 9th International Conference on Structural Safety and Reliability, Rome, Italy, June. 

109



 
 
 
 
 
 

Taesun You, Paolo Gardoni and Stefan Hurlebaus 

 

Mizuno, Y., Monroig, E. and Fujino, Y. (2008), “Wavelet decomposition-based approach for fast damage 
detection of civil structures”, J. Infrastruct. Syst., 14(1), 27-32. 

Pandey, A.K., Biswas, M. and Samman, M.M. (1991), “Damage detection from changes in curvature mode 
shapes”, J. Sound Vib., 145(2), 321-332. 

Pandey, A.K. and Biswas, M. (1994), “Damage detection in structures using changes in flexibility”, J. Sound 
Vib., 169(1), 3-17. 

Park, J.H., Ho, D., Kim, J.T., Ryu, Y. and Yun, C. (2009), “Damage detection algorithm-embedded smart 
sensor node system for bridge structural health monitoring”, Proceeding of SPIE, 7292, 72922T. 

Park, S., Stubbs, N., Bolton, R., Choi, S. and Sikorsky, C. (2001), “Field verification of the damage index 
method in a concrete box-girder bridge via visual inspection”, Comput. Aided Civil Infrastruct. Eng., 16, 
58-70. 

Reyer, M. (2007), Design of a wireless sensor network for structural health monitoring of bridges, 
Diplomarbeit, Institut für Angewandte und Experimentelle Mechanik, Universität Stuttgart, Stuttgart, 
Germany. 

Shi, Z., Law, S. and Zhang, L. (2000), “Optimum sensor placement for structural damage detection”, J. Eng.  
Mech. - ASCE, 126(11), 1173-1179. 

Stubbs, N. and Kim, J.H. (1996), “Damage localization in structures without baseline modal parameters”, 
Am. Inst. Aeronaut. J., 34(8), 1644-1649. 

Stubbs, N. and Park, S. (1996), “Optimal sensor placement for mode shapes via Shannon’s sampling 
theorem”, Microcomput. Civil Eng., 11(6), 411-419. 

Wardhanam K. and Hadipriono, F.C. (2003), “Analysis of recent bridge failures in the United States”, J. 
Perform. Constr. Fac., 17(3), 144-150. 

You, T. (2009), Iterative damage index method for structural health monitoring, Master thesis, Texas A&M 
University, College Station, Texas. 

Zhang, Z. and Aktan, A.E. (1995), “The damage indices for constructed facilities”, Proceedings of the 13th 
International Modal Analysis Conference, Nashville, Tennessee, February. 

 
 

110




