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Abstract.    This study has been motivated to examine the performance of a wireless sensor system under 
the typhoons as well as to analyze the effect of the typhoons on the bridge’s vibration responses and the 
variation of cable forces. During the long-term field experiment on a real cable-stayed bridge in years 
2011-2012, the bridge had experienced two consecutive typhoons, Bolaven and Tembin, and the wireless 
sensor system had recorded data of wind speeds and vibration responses from a few survived sensor nodes. 
In this paper, the wireless structural health monitoring of stay cables under the two consecutive typhoons is 
presented. Firstly, the wireless monitoring system for cable-stayed bridge is described. Multi-scale vibration 
sensor nodes are utilized to measure both acceleration and PZT dynamic strain from stay cables. Also, cable 
forces are estimated by a tension force monitoring software based on vibration properties. Secondly, the 
cable-stayed bridge with the wireless monitoring system is described and its wireless monitoring capacities 
for deck and cables are evaluated. Finally, the structural health monitoring of stay cables under the attack of 
the two typhoons is described. Wind-induced deck vibration, cable vibration and cable force variation are 
examined based on the field measurements in the cable-stayed bridge under the two consecutive typhoons. 
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1. Introduction 
 

For a cable-stayed bridge, critical damage may be occurred in main structural components such 
as deck, cable, and pylon due to stiffness-loss, crack growth, and concrete degradation. Around the 
world, many researchers have attempted to develop structural health monitoring (SHM) systems 
for cable stayed bridges (Ko and Ni 2005, Rice and Spencer 2009, Cho et al. 2010a, Jang et al. 
2010, Spencer and Cho 2011, Ho et al. 2012a). For the cable stayed bridge, the loss of cable force 
is a severe damage type which may lead to the instability in the cable-anchorage subsystem and 
eventually the failure of the bridge system unless appropriately treated. Therefore, the cable forces 
should be secured by a suitable monitoring system that can identify the loss of cable force and 
assess its effect on the serviceability of the bridge system. 
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For health monitoring of stay cables, vibration-based techniques have been widely adopted; 
that is because these approaches are simple and reliable. Many researchers have proposed methods 
to estimate cable forces by using cable vibration responses. Zui et al. (1996), Kim and Park (2007) 
successfully evaluated cable forces in lab-scaled cables as well as full-scale cables. Up to date, 
most of the researchers have utilized acceleration features to estimate cable forces. Only a few 
studies have considered strain responses for monitoring cable forces. Li et al. (2009) utilized 
optical fiber Bragg grating (FBG) strain sensors to monitor cable tension force based on a direct 
method. Ma and Wang (2009) used dynamic strain of cables measured by FBG strain sensors or 
strain gauges for cable force monitoring. However, the data acquisition systems associated with 
those kinds of sensors are expensive, complicated and heavy, which are not very suitable for the 
implementation into real structural cables.  

As an alternative sensing approach, piezoelectric materials have been widely utilized for SHM 
applications (Park et al. 2003). The piezoelectric materials are commonly used for active 
monitoring of critical structural members (Liang et al. 1996, Park et al. 2001, Bhalla and Soh 2003, 
Nguyen and Kim 2012). Although the materials generate only dynamic signals, which hinder their 
representation on static structural responses, they are still capable for strain sensing with high 
sensitivity. Moreover, those materials can be useful tools for vibration-based cable health 
monitoring since it needs only dynamic parameters. One of the advantages is that the piezoelectric 
strain sensor is very simple to handle for measuring the voltage-induced structural deformation.  
Also, the piezoelectric strain sensor does not need power supply and it is very cheap (about $1), 
which are beneficial for the wireless application. 

During the last decade, a few research groups have attempted to develop wireless smart sensors 
for efficient SHM systems.  Wireless sensor systems have many advantages over conventional 
systems as discussed by Spencer et al. (2004), Lynch and Loh (2006), Nagayama et al. (2007), 
Park (2009), Meyer et al. (2010), Kim et al. (2011), Spencer and Cho (2011), Zhang and Lynch 
(2013). For stay cables, the cost associated with wiring the conventional system can be greatly 
reduced by the adoption of the wireless sensor system. Furthermore, the autonomous operation 
enabled by on-board computation units allows the long-term health monitoring without off-line 
interference of experts (Cho et al. 2010b). 

A research team at Pukyong National University, Korea, has developed wireless vibration 
sensor systems which measures acceleration and PZT strain signals (Ho et al. 2012b, Nguyen et al. 
2013a). During the field experiments on a real cable-stayed bridge (Hwamyung Bridge, Busan, 
Korea), the long-term performance of the wireless sensor system has been evaluated with 
regarding to the measurement of vibration responses, the communication between wireless sensors, 
the solar-powered battery supply dependent on weather conditions, and the survivability of sensors 
with respect to usage period (Ho et al. 2012a, Kim et al. 2013). In years 2011-2012, the bridge had 
experienced two consecutive typhoons, Bolaven and Tembin, as shown in Fig. 1 (Typhoon 
Warning Center 2012). During the events, the wireless sensor system had recorded data of wind 
speeds and vibration responses from a few survived sensor nodes. The authors have been 
motivated to examine the performance of the wireless sensor system under the typhoons as well as 
to analyze the effect of the typhoons on the bridge’s vibration responses and the variation of cable 
forces. The influence of wind velocity on dynamic characteristics of the bridge deck was 
extensively studied by Siringoringo and Fujino (2008), Fujino and Siringoringo (2013). For 
cable-stayed bridges, the deck responses are consistently associated with the cable forces and the 
loss of the cable forces may lead to the reduction of the deck’s bending stiffness.
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employing solar panel and rechargeable battery. Fig. 2(b) shows a prototype of the multi-scale 
sensor node which consists of four layers as 1) X-bow battery board, 2) Imote2 sensor platform, 
and 3) SHM-H board or SHM-A (AS) board. 

The Imote2 platform is built with 13-416 MHz PXA271 XScale processor (Memsic Co. 2010).  
This processor integrates with 256 kB SRAM, 32 MB flash memory and 32 MB SDRAM. It also 
integrates with many I/O options such as 3UART, I2C, 2SPI, SDIO, I2S, AC97, USB host, 
Camera I/F, GPIO.  Therefore, Imote2 platform is very flexible in supporting different sensor 
types, ADC chips and radio options. A 2.4 GHz surface mount antenna which has a 
communication range of about 30 m is equipped for each Imote2 platform.  

For deck’s acceleration measurement, the SHM-H sensor board is adopted to employ a SD1221 
accelerometer for high-sensitivity channel, the input range  2 g, the sensitivity 2 V/g and the 
output noise 5 g/Hz. For cable’s acceleration measurement, the SHM-A sensor board is adopted 
to employ the tri-axial LIS344ALH accelerometer of which its sensitivity is relatively lower and 
output noise is relatively higher than the SHM-H. For cable’s PZT dynamic strain measurement, 
the modified SHM-AS is utilized to acquire piezoelectric voltage responses by hooking up the 
PZT sensor to its external channel, as shown in Fig. 3. Dynamic strain signal from a PZT sensor is 
passed through a signal conditioner circuit to produce an analog signal of 0~3.3 V. Its core 
component is the digital filter QF4A512 ADC for signal conditioning with customizable sampling 
rates. It is interfaced with the Imote2 sensor platform via SPI protocol that transmits the measured 
signal to the main CPU. The modified sensor board SHM-AS is capable of measuring both 3-D 
accelerations and PZT dynamic strains. Temperature and humidity can be also measured by the 
embedded sensor SHT11 on the SHM-AS. 
 
 
 
 

 

(a) Schematic of sensor node (b) Sensor prototype 

Fig. 2 Design of wireless multi-scale sensor node (Nguyen et al. 2013a) 
 

Battery Board

Imote2 Platform

SHM-H/SHM-A (AS) Board
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sensor nodes are embedded with the ChargerControl component to harvest environmental 
energies such as wind energy or solar energy. The AutoMonitor component is embedded to the 
gateway node to periodically wake up the sensor system and let the sensor nodes measure 
structural responses (Rice and Spencer 2009, Miller et al. 2010) 

Once vibration signal and temperature are recorded, cable tension is estimated by the 
CableMonitor component of the SSeL-SHM Tools (Sim et al. 2011). The procedure of cable force 
estimation is performed in the following three major tasks: (1) power spectral density (PSD) 
calculation, (2) natural frequency calculation, and (3) tension force estimation. 

Firstly, the recorded signal is transformed into the PSD according to Bartlett’s procedure as 
follows (Bendat and Piersol 1993) 

2

1

1
( ) ( , )

dn

xx i
id

S f X f T
n T 

                (3) 

where Xi is the dynamic response transformed into the frequency domain (FFT transform); nd is the 
number of divided segments in the time history response; and T is the data length of a divided 
segment.  

Secondly, natural frequencies are obtained from the automated peak-picking algorithm. The 
basic concept of the algorithm is to search the local maxima of the PSD curve, which represent 
natural frequencies. Assuming that natural frequencies of the cable are periodic and the allowable 
loss of tension force is as maximal as 80% of the design force, the size of frequency band (df) is 
selected as 

  2
1 2020

/(4 )df f F mL             (4) 

where 1 20( )f  is the fundamental frequency corresponding to 20% of the design force ( 20F ).  

The entire frequency range is divided into N number of sub-frequency ranges. By examining each 
sub-frequency range, the natural frequency is picked if its magnitude is the largest in the range and 
at least 5 times greater than the magnitude mean. 

Thirdly, the cable tension force is estimated from measured natural frequencies using the 
practical formulas proposed by Zui et al. (1996). Among several vibration methods for estimation 
of cable tension (Shimada 1995, Zui et al. 1996), it considers effects of both flexural rigidity and 
cable-sag on cable force estimation. For a stay cable with small sag ( 3  ), the tension force can 
be estimated using the practical formulas as follows 
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(a) Vertical modes (b) Lateral modes 

Fig. 10 Mode shapes extracted by SSI method (Ho et al. 2012a) 
 

 
Wireless cable monitoring 
Among the 72 cables, a short cable C3 (BLC02) at the span toward Gimhae side was selected 

to evaluate the feasibility of the proposed cable tension monitoring system. The selected cable is 
comprised of 49 stainless steel 1x7 strands with 44.89 m in length; its nominal area, moment of 
inertia and unit mass are respectively 7350 mm2, 4.3x106 mm4, and 67.54 kg/m; tensile strength 
and elastic modulus are 13671 kN and 195 GPa, respectively. The cable is covered by a 
high-density polyethylene (HDPE) duct with the diameter of 200 mm (Fig. 8(a)). 

Fig. 11 shows the dynamic strain and acceleration responses of the cable measured in the 
period before the pavement event of the Hwamyung Bridge on February 2012. The corresponding 
PSDs of the signals are shown in Fig. 12. Sharp peaks indicating resonant responses of the cable 
can be clearly seen from the PSDs of both strain and acceleration signals. Natural frequencies of 
the cable were extracted by the automated peak-picking process as described previously. The 
fundamental natural frequency corresponding to 20% of the design force (F20 = 966 kN) is 
approximated as 1.33 Hz. For picking natural frequencies, eight (8) sub-frequency ranges with 
1.25 Hz uniform intervals were made from the original one. Natural frequencies measured by the 
PZT sensor and the MEMs accelerometer systems are listed in Table 2. It is observed that the 
natural frequencies measured by the PZT sensor are almost same as those measured by the 
accelerometer.  

Using the measured natural frequencies, cable forces were estimated by the cable force 
estimation model as described previously. The cable forces estimated by the accelerometer and the 
PZT sensor systems are listed in Table 2. It is found that the estimated cable forces using the two 
sensor types show good agreement each other. This indicates the applicability of the wireless 
piezoelectric strain sensors for cable force monitoring. In Table 2, also the estimated tension force 
is compared with the corresponding one obtained from the lift-off test which was carried out 
during the construction. The difference in tension force between those two tests is about 4.8%. 
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(a) 1st frequency 

(b) 2nd frequency 

(c) 3rd frequency 

Fig. 14 Relationship between natural frequencies of deck D2 and wind velocities during two consecutive 
typoons: Bolaven and Tembin 
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Wind speeds versus natural frequencies 
The cable’s natural frequencies during the attack of Bolaven and Tembin were extracted, 

respectively, for the acceleration signals and the PZT strain signals by using the automated 
peak-picking algorithm. As shown in Fig. 17, the relationships between the wind speeds and the 
natural frequencies were analyzed for the first two modes. For the acceleration signals, the first 
and second modes show linear functions with respect to the variation of wind speeds. For the PZT 
strain signals, the first mode shows a linear relationship but the second mode shows rather a 
quadratic function with respect to the wind-speed changes. As evident by the slopes of the linear 
trends, the values of the natural frequencies extracted from two types of signals are quite matched 
for the first mode (-0.0012 vs -0.0009) and not matched for the second mode (-0.0006 vs 0.0005).  
In spite of variations of natural frequencies, there seems to be clear trends between the cable 
frequencies and the wind velocities. Generally, results reveal that the natural frequencies decrease 
as the wind speeds increase. The decrement and increment of natural frequencies are more 
apparent in the low-order mode as indicated by the linear trends’ gradients. 

 
 

 

(a) 1st natural frequency 

 
(b) 2nd natural frequency 

Fig. 17 Relationship between natural frequencies of cable C3 (extracted from accelerations and PZT 
strains) and wind velocities during two consecutive typoons: Bolaven and Tembin 
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Fig. 18 Relationship between tension forces of cable C3 and wind velocities during two consecutive 
typoons: Bolaven and Tembin 

 
 
Wind speed versus cable force 
The tension forces of the cable C3 were estimated using the natural frequencies of the first 

mode measured during the two consecutive typhoons. The relationships between the cable forces 
and the wind velocities were analyzed for both acceleration and PZT strain signals, as shown in 
Fig. 18. As observed in the figure, the cable forces show almost linear functions with respect to the 
variation of wind speeds for those two signal types. The linear and quadratic functions are 
consistently matched each other.  Results demonstrate a clear trend of the cable forces due to the 
wind speeds: that is cable tension-loss during high wind velocity. As reported by Fujino and 
Siringoringo (2013), the bridge’s stiffness decreases as the result of increasing the structural 
flexibility when the wind velocity increases. Consequently, the cable is expected to be relaxed with 
the loss of its force, which is represented by the decrement of the cable’s natural frequencies, as 
the wind velocity increases and the bridge deck’s flexibility increases. 

 
 

5. Conclusions 
 
In this paper, the wireless structural health monitoring of stay cables under the two consecutive 

typhoons was presented. Firstly, the wireless monitoring system for stay cables was described.  
Multi-scale vibration sensor nodes were utilized to measure both acceleration and PZT dynamic 
strain from stay cables. Also, cable forces were estimated by a tension force monitoring software 
based on vibration properties. Secondly, the cable-stayed bridge with the wireless monitoring 
system was described and its wireless deck and cable monitoring capacities were evaluated.  
Finally, the structural health monitoring of stay cables under the two typhoons was described.  
Wind-induced deck vibration, cable vibration and cable force variation were examined based on 
the field measurement of the cable-stayed bridge under the two consecutive typhoons. 

As the study motivated by the performance evaluation of a wireless sensor system under the 
typhoons, a series of field experiments had been carried out on a real cable-stayed bridge 
(Hwamung Bridge, Busan, Korea) in years 2011-2012. During the test period, the bridge had 
experienced two consecutive typhoons, Bolaven and Tembin, and the wireless sensor system had 
recorded data of wind speeds and vibration responses from a few sensor nodes. The maximum 
wind speeds recorded on-site by the ultrasonic wind meter in the middle of the bridge were about 
20 m/s during the attack of the typhoons. The experimental results reveal that the deck’s natural 
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frequencies decreased as the increment of wind speeds. Due to the same aerodynamic effect, the 
bridge deck’s stiffness decreased as the result of the increment in the deck’s flexibility when the 
wind velocity increased.  Also, the cable’s natural frequencies decreased as the wind speeds 
increased.  Consequently, the cable was expected to be relaxed with the tension-loss, which was 
represented by the decrement of the cable’s natural frequencies, as the wind velocity increased and 
the bridge deck’s flexibility increased. 
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