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1. Introduction 
 

Beam structures not only exist in nature, but have been 

widely used in many fields of engineering such as 

mechanical, marine, civil, and aerospace engineering. After 

the advent of the finite element method (FEM), FEM has 

been mainly used for the analysis of beam structures (Yoon 

and Lee 2014a, Batoz and Dhatt 1990, Vlasov 1961, 

Timoshenko and Goodier 1970, Gjelsvik 1981, Hughes 

2000, Bathe 1996, Kim et al. 2020, Kim et al. 2021, 

Dvorkin et al. 1989, Pacoste and Eriksson 1997, 

Ibrahimbegović 1995, Ibrahimbegović 1997, Lee and 

McClure 2006, Cardona and Geradin 1988). It is well 

known that warping must be considered to accurately 

predict three-dimensional (3D) bending, stretching, and 

twisting behaviors and their couplings in beams (Gruttmann 

et al. 1999, Wagner and Gruttmann 2001, Wagner and 

Gruttmann 2002, Iesan 2008). The development of 3D 

beam finite elements that consider warping has long been 

an important research topic (Benscoter 1954, Yoon et al. 

2012, Yoon and Lee 2014b, Yoon et al. 2015, Yoon et al. 

2017a, b, El Fatmi 2007a, b, El Fatmi and Ghazouani 

2011a, b, Sapountzakis and Mokos 2003, Sapountzakis and 

Mokos 2004, Petrov and Géradin 1998a, b, Genoese et al. 

2013, Genoese et al. 2014, Mancusi and Feo 2013, Qureshi 

and Ganga 2014, Barretta et al. 2015, Pi and Bradford 2005, 

GonÇalves et al. 2010, Carrera et al. 2010, Battini and 

Pacoste 2002, Alsafadie et al. 2011). 
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To consider the warping effect accurately, it is essential 

to obtain an appropriate warping function for a given beam 

cross-section. The well-known Saint Venant torsion theory 

(Batoz and Dhatt 1990, Iesan 2008) has been employed to 

calculate free warping functions, which are frequently used 

as basis functions to represent the entire warping 

displacement field along with warping degrees of freedom 

(DOFs) in beam finite element analysis (Benscoter 1954, 

Yoon et al. 2012, Yoon and Lee 2014b, Yoon et al. 2015, 

Yoon et al. 2017a, b, El Fatmi 2007a, b, El Fatmi and 

Ghazouani 2011a, b, Sapountzakis and Mokos 2003, 

Sapountzakis and Mokos 2004). Then, general twisting 

kinematics can be formulated under various geometries, 

boundary conditions and loadings (Yoon and Lee 2014a, 

Yoon et al. 2012). Linear and nonlinear analysis is also 

available for composite cross-sections (Petrov and Géradin 

1998a, b, Genoese et al. 2013, Genoese et al. 2014, 

Mancusi and Feo 2013, Qureshi and Ganga 2014, Barretta 

et al. 2015, Pi and Bradford 2005, GonÇalves et al. 2010, 

Carrera et al. 2010, Battini and Pacoste 2002, Alsafadie et 

al. 2011). 

Most existing studies have focused on beams with 

constant or continuously varying cross-sections. Recently, 

Yoon and Lee (2014a) proposed a method to model warping 

displacement fields of discontinuously varying arbitrary 

cross-section beams. Adopting Lagrangian multipliers, the 

study introduced the calculation of interface warping 

functions to model warping at an interface where 

longitudinal geometric discontinuity occurs. However, since 

the interface warping functions are not complete by 

themselves, two free warping functions calculated from 

adjacent cross-sections of the given interface need to be 

additionally utilized along with degrees of freedom. This  
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complexity makes it difficult to extend the numerical 

procedure for nonlinear analysis. 

In this study, we develop a new formulation for 

calculating interface warping functions for beams with 

geometric and material discontinuities in the longitudinal 

direction. To represent the sudden change of twisting at an 

interface cross-section where discontinuity occurs, an 

interface warping function should be obtained considering 

both adjacent cross-sectional geometries and material 

properties. We extend the classical Saint Venant torsion 

theory to a 3D domain by considering the longitudinal 

direction. The newly proposed interface warping can 

consider geometries and material properties of both 

adjacent cross-sections of a given interface. Of course, for 

cross-sections without longitudinal discontinuity, the 

proposed torsion theory provides free warping functions 

obtained by solving the classical Saint Venant torsion 

theory. Using the finite element method, the proposed 

torsion theory is discretized to numerically calculate the 

interface warping functions. Unlike the method proposed by 

Yoon and Lee (2014a), Lagrangian multipliers are not 

needed. 

In this study, we employ the interface warping functions 

in the formulation of continuum-mechanics based beams. 

To represent the entire warping displacement in the beam 

element, free and interface warping functions are adopted in 

continuous cross-sections and discontinuous interfaces, 

respectively. The developed beam finite element can predict 

complicated behaviors of beams with geometric and 

material discontinuities in the longitudinal direction. The 

compatibility of warping displacement is completely 

satisfied at the interface cross-section where longitudinal 

discontinuity occurs. Furthermore, partially constrained 

boundary conditions can be modeled utilizing the interface 

warping functions. Unlike the previous work by Yoon and 

Lee (2014a), no additional DOFs are required to model 

warping for discontinuous interface, and geometric 

nonlinear formulation can be directly obtained. That is, only 

7 DOFs per node are utilized in the beam element. 

Nevertheless, more accurate solutions are obtained. 

In the following sections, we first extend the classical 

 

 

Saint Venant torsion theory to obtain the new interface 

warping functions. Then, the finite element discretization 

scheme is introduced to numerically calculate the warping 

functions. The continuum-mechanics based beam element 

equipped with new interface warping functions is explained. 

Finally, the performance of the beam finite element is 

demonstrated through several numerical examples 

considering both linear and nonlinear analysis. 

 

 

2. Interface warping functions 
 

Fig. 1 shows an example of a beam with cross-sectional 

discontinuity and its warping functions. The beam has three 

different cross-sections: ①, ②, and an interface cross-

section between them. The classical Saint Venant torsion 

theory provides free warping functions for continuous 

cross-sections, as shown in Fig. 1(b). However, it is difficult 

to calculate the warping functions at an interface cross-

section where discontinuity occurs. The main reason is that 

the cross-sections adjacent to the interface can have 

different geometric and material properties, but the classical 

Saint Venant theory can only handle continuous cross-

sections. 
Here, we present a new method to calculate the interface 

warping functions. Considering the longitudinal direction, 
the classical Saint Venant torsion theory given in the 2D 
domain is extended to a 3D domain. The governing 
equations in strong and weak forms are derived and finite 
element discretization is used to numerically calculate the 
interface warping functions. 

 
2.1 Governing equations 
 

Let us consider a straight infinite beam subjected to 

torsion. The beam can have both material and geometric 

discontinuities in the middle; thus, its twisting center can 

vary. Fig. 2(a) shows the finite beam domain Ω near the 

discontinuity, and the global Cartesian coordinate system is 

defined where the x-direction and the yz-plane are normal 

and parallel to the cross-sections, respectively. Assume that  

  

(a) Cross-sections ① and ②, and the interface cross-

section between them 

(b) Free warping functions of cross-sections ① and ②, and 

the interface warping function at the interface cross-section 

Fig. 1 Beam with a discontinuously varying cross-section 
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cross-sectional warping is allowed, but cross-sectional in-

plane distortion is neglected. 

Let us consider a cross-section rigidly rotating around 

its twisting center (𝜆𝑦 , 𝜆𝑧), as shown in Fig. 2(b). The 

corresponding displacements u, v, and w are defined with 

the following relations 

𝑢 = 𝑓𝛼, (1a) 

𝜕𝑣

𝜕𝑥
= −�̄�𝛼, (1b) 

𝜕𝑤

𝜕𝑥
= �̄�𝛼, (1c) 

where �̄� = 𝑦 − 𝜆𝑦(𝑥) , �̄� = 𝑧 − 𝜆𝑧(𝑥) , and 𝑓(𝑥, 𝑦, 𝑧)  is 

the warping function, and 𝛼(𝑥) = 𝜕𝜃𝑥/𝜕𝑥 is the twist rate 

which is the angle of twist per unit length along the x-

direction (Batoz and Dhatt 1990, Iesan 2008). 

Without body force, the equilibrium equation of beam 

domain Ω is written as 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑥

𝜕𝑦
+

𝜕𝜎𝑧𝑥

𝜕𝑧
= 0 in Ω, (2) 

where 𝜎𝑥𝑥, 𝜎𝑦𝑥, and 𝜎𝑧𝑥 are non-zero stress components. 

The boundary Γ of beam domain Ω can be divided 

into two boundaries (Γ1 and Γ2 in Fig. 2(a)). The cross-

sectional boundaries Γ1 (gray colored), positioned at both 

ends of the domain, are normal to the x-axis and exposed to 

a torsional moment 𝑀𝑥. Although discontinuity exists in 

the middle, for a ‘sufficiently (or infinitely)’ long domain 

Ω, Saint Venant’s principle guarantees that the x-directional 

component of traction (𝑇𝑥 ) becomes zero on the cross-

sectional boundaries Γ1. On the lateral boundaries Γ2, the 

x-directional component of traction (𝑇𝑥) is zero since no 

external force is applied. As a result, on all boundaries 

𝑇𝑥 = 𝜎𝑥𝑥𝑛𝑥 + 𝜎𝑦𝑥𝑛𝑦 + 𝜎𝑧𝑥𝑛𝑧 = 0 on Γ, (3) 

in which 𝑛𝑥 , 𝑛𝑦 , and 𝑛𝑧  are components of the unit 

vector (𝒏 = 𝑛𝑥𝐞𝑥 + 𝑛𝑦𝐞𝑦 + 𝑛𝑧𝐞𝑧) normal to the boundary 

Γ. 

Considering the linear elastic isotropic material law and 

the strain-displacement relation, the following equations are 

 

 

obtained 

𝜎𝑥𝑥 = 𝐸휀𝑥𝑥 = 𝐸
𝜕𝑢

𝜕𝑥
, (4a) 

𝜎𝑦𝑥 = 2𝐺휀𝑦𝑥 = 𝐺 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
), (4b) 

𝜎𝑧𝑥 = 2𝐺휀𝑧𝑥 = 𝐺 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
), (4c) 

where G is the shear modulus, E is Young’s modulus, and 

휀𝑥𝑥, 휀𝑦𝑥, and 휀𝑧𝑥 are strain components. 

By incorporating Eq. (1a)-(1c) and Eqs. (4a)-(4c) into 

Eq. (2) and Eq. (3), we obtain 

𝐸
𝜕2𝑢

𝜕𝑥2 + 𝐺
𝜕2𝑢

𝜕𝑦2 + 𝐺
𝜕2𝑢

𝜕𝑧2 = 0 in Ω, (5a) 

𝐺 (
𝐸

𝐺

𝜕𝑢

𝜕𝑥
𝑛𝑥 +

𝜕𝑢

𝜕𝑦
𝑛𝑦 +

𝜕𝑢

𝜕𝑧
𝑛𝑧)  

= −𝐺 (
𝜕𝑣

𝜕𝑥
𝑛𝑦 +

𝜕𝑤

𝜕𝑥
𝑛𝑧) on Γ. 

(5b) 

Note that the twisting center (𝜆𝑦 , 𝜆𝑧) can vary along 

the x-direction inside the domain Ω, as shown in Fig. 2(a).  

Unlike the classical Saint Venant torsion theory, the 

longitudinal displacement u becomes a function of x, and 

𝜕𝑢/𝜕𝑥 is no longer zero near the discontinuity. However, 

for a ‘sufficiently (or infinitely)’ long domain Ω, Eq. (3) 

and Eq. (4a) show 𝜕𝑢/𝜕𝑥 = 0  on the cross-sectional 

boundaries where 𝑛𝑥  is not zero. Therefore, using a 

coordinate transformation, Eqs. (5a)-(5b) can be rearranged 

into Laplace’s equation with the Neumann boundary 

condition as follows 

𝐺 (
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕�̂�2 +
𝜕2𝑢

𝜕�̂�2) = 0 in Ω̂, (6a) 

𝐺 (
𝜕𝑢

𝜕𝑥
�̂�𝑥 +

𝜕𝑢

𝜕�̂�
�̂�𝑦 +

𝜕𝑢

𝜕�̂�
�̂�𝑧)  

= −𝐺√
𝐺

𝐸
(

𝜕𝑣

𝜕𝑥
�̂�𝑦 +

𝜕𝑤

𝜕𝑥
�̂�𝑧) on Γ̂, 

(6b) 

in which �̂� = √
𝐺

𝐸
𝑥 , �̂� = 𝑦 , and �̂� = 𝑧  are new 

coordinates, and Ω̂  and Γ̂  denote the corresponding 

  

(a) Global coordinate system and varying twisting center (b) Cross-section with twisting center 

Fig. 2 Illustration of a straight beam with discontinuity 
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transformed domain and its boundary, respectively. 

The weak form of Eqs. (6a)-(6b) is derived with the 

virtual warping displacement field 𝛿𝑢 

∫ 𝐺�̂�𝑢 ⋅ �̂�𝛿𝑢
Ω̂

𝑑Ω̂ = −∫ 𝐺√
𝐺

𝐸
(

𝜕𝑣

𝜕𝑥
�̂�𝑦 +

𝜕𝑤

𝜕𝑥
�̂�𝑧) 𝛿𝑢

Γ̂
𝑑Γ̂, (7) 

where �̂� =
𝜕

𝜕𝑥
𝐞𝑥 +

𝜕

𝜕�̂�
𝐞𝑦 +

𝜕

𝜕�̂�
𝐞𝑧 is the del operator of the 

transformed coordinate. 

Substituting Eq. (1) into Eq. (7), the variational form of 

the 3D Saint Venant equation is obtained in the original 

coordinate system 

∫ 𝐺 (
𝐸

𝐺

𝜕(𝑓𝛼)

𝜕𝑥

𝜕𝛿𝑢

𝜕𝑥
+

𝜕(𝑓𝛼)

𝜕𝑦

𝜕𝛿𝑢

𝜕𝑦
+

𝜕(𝑓𝛼)

𝜕𝑧

𝜕𝛿𝑢

𝜕𝑧
)

Ω
𝑑Ω =

∫ 𝐺(𝛼𝜆𝑦𝑛𝑧 − 𝛼𝜆𝑧𝑛𝑦)𝛿𝑢
Γ

𝑑Γ + ∫ 𝐺𝛼(𝑧𝑛𝑦 − 𝑦𝑛𝑧)𝛿𝑢
Γ

𝑑Γ. 
(8) 

The warping function f of Eq. (8) also contains 

stretching and bending modes. To extract only the warping 

mode, the following orthogonality conditions are applied 

∫ 𝐸(1𝐞𝑥) ⋅ (𝑓𝐞𝑥)𝑑𝐴
𝐴

= 0, (9a) 

∫ 𝐸(𝑦𝐞𝑥) ⋅ (𝑓𝐞𝑥)𝑑𝐴
𝐴

= 0, (9b) 

∫ 𝐸(𝑧𝐞𝑥) ⋅ (𝑓𝐞𝑥)𝑑𝐴
𝐴

= 0, (9c) 

in which A is the area of the cross-section, perpendicular to 

the beam. 

Resultant forces can be calculated on the cross-section 

𝐹𝑦 = ∫ 𝜎𝑦𝑥𝑑𝐴
𝐴

= 0, (10a) 

𝐹𝑧 = ∫ 𝜎𝑧𝑥𝑑𝐴
𝐴

= 0, (10b) 

𝑀𝑥 = ∫ (�̄�𝜎𝑧𝑥 − �̄�𝜎𝑦𝑥)𝑑𝐴
𝐴

  

= ∫ (𝑦𝜎𝑧𝑥 − 𝑧𝜎𝑦𝑥)𝑑𝐴
𝐴

− 𝜆𝑦 ∫ 𝜎𝑧𝑥𝑑𝐴
𝐴

+ 𝜆𝑧 ∫ 𝜎𝑦𝑥𝑑𝐴
𝐴

, 
(10c) 

in which 𝐹𝑦  and 𝐹𝑧  are shear forces in the y- and z-

directions, and 𝑀𝑥 is the torsional moment about twisting 

center acting on cross-sectional area A. 

Substituting Eqs. (10a) and (10b) into Eq. (10c), the 

following equation is obtained 

𝑀𝑥 = ∫ (𝑦𝜎𝑧𝑥 − 𝑧𝜎𝑦𝑥)𝑑𝐴
𝐴

, (11) 

and using Eq. (1) and Eqs. (4b)-(4c) in Eq. (11) gives 

𝑀𝑥 = ∫ 𝐺 (𝑦
𝜕(𝑓𝛼)

𝜕𝑧
− 𝑧

𝜕(𝑓𝛼)

𝜕𝑦
) 𝑑𝐴

𝐴
  

−𝛼𝜆𝑦 ∫ 𝐺𝑦𝑑𝐴
𝐴

− 𝛼𝜆𝑧 ∫ 𝐺𝑧𝑑𝐴
𝐴

+ 𝛼 ∫ 𝐺(𝑦2 + 𝑧2)𝑑𝐴
𝐴

. 
(12) 

 

2.2 Finite element discretization 
 

To numerically calculate the interface warping function, 

here we present the finite element discretization of Eq. (8), 

Eqs. (9a)-(9c), and Eq. (12). 

Let us introduce three unknown variables: �̃�𝑦 = 𝛼𝜆𝑦, 

�̃�𝑧 = 𝛼𝜆𝑧 , and the warping displacement field 𝑢 = 𝑓𝛼 . 

Then, Eq. (8), Eqs. (9a)-(9c), and Eq. (12) become  

∫ 𝐺 (
𝐸

𝐺

𝜕𝑢

𝜕𝑥

𝜕𝛿𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦

𝜕𝛿𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑧

𝜕𝛿𝑢

𝜕𝑧
)

Ω
𝑑Ω  

= ∫ 𝐺(�̃�𝑦𝑛𝑧 − �̃�𝑧𝑛𝑦)𝛿𝑢
Γ

𝑑Γ  

+∫ 𝐺𝛼(𝑧𝑛𝑦 − 𝑦𝑛𝑧)𝛿𝑢
Γ

𝑑Γ, 

(13a) 

∫ 𝐸(1𝐞𝑥) ⋅ (𝑢𝐞𝑥)𝑑𝐴
𝐴

= 0, (13b) 

∫ 𝐸(𝑦𝐞𝑥) ⋅ (𝑢𝐞𝑥)𝑑𝐴
𝐴

= 0, (13c) 

∫ 𝐸(𝑧𝐞𝑥) ⋅ (𝑢𝐞𝑥)𝑑𝐴
𝐴

= 0, (13d) 

𝑀𝑥 = ∫ 𝐺 (𝑦
𝜕𝑢

𝜕𝑧
− 𝑧

𝜕𝑢

𝜕𝑦
) 𝑑𝐴

𝐴
  

−�̃�𝑦 ∫ 𝐺𝑦𝑑𝐴
𝐴

− �̃�𝑧 ∫ 𝐺𝑧𝑑𝐴
𝐴

+ 𝛼 ∫ 𝐺(𝑦2 + 𝑧2)𝑑𝐴
𝐴

. 

(13e) 

The 3D beam domain Ω  in Fig. 2(a) is discretized 

using a 3D finite element model, as shown in Fig. 3(a) 

Ω = ⋃ Ω(𝑒)𝑑
𝑒=1 , (14) 

in which Ω(𝑒) denotes the 3D finite element domains and d 

is the number of finite elements used. Different material 

properties can be assigned in each finite element domain to 

model composite beams. 

Each domain Ω(𝑒) consists of a p-node solid element. 

The displacement function 𝑢(𝑒)  in the finite element 

domain Ω(𝑒) is interpolated as 

𝑢(𝑒)(𝑥, 𝑦, 𝑧) = 𝐇(𝑒)𝐔(𝑒) (15) 

with 

𝐔(𝑒) = [𝑢1
(𝑒)

, ⋯ , 𝑢𝑖
(𝑒)

, ⋯ , 𝑢𝑝
(𝑒)

]
𝑇
, (16a) 

𝐇(𝑒) = [𝐻1(𝑥, 𝑦, 𝑧),⋯ , 𝐻𝑖(𝑥, 𝑦, 𝑧),⋯ , 𝐻𝑝(𝑥, 𝑦, 𝑧)], (16b) 

where 𝑢𝑖
(𝑒)

 is the nodal warping displacement value at 

node i, 𝐔(𝑒) is the vector containing the nodal warping 

displacement values, 𝐻𝑖(𝑥, 𝑦, 𝑧) is the 3D shape functions 

corresponding to node i, and 𝐇(𝑒) is the matrix containing 

the shape functions. 

Similarly, the virtual warping displacement field 𝛿𝑢(𝑒) 

is interpolated as 

𝛿𝑢(𝑒)(𝑥, 𝑦, 𝑧) = 𝐇(𝑒)𝛿𝐔(𝑒) (17) 

with 

𝛿𝐔(𝑒) = [𝛿𝑢1
(𝑒)

, ⋯ , 𝛿𝑢𝑖
(𝑒)

, ⋯ , 𝛿𝑢𝑝
(𝑒)

]
𝑇
, (18) 

where 𝛿𝐔(𝑒)  is the vector containing the virtual nodal 

warping displacement values, 𝛿𝑢𝑖
(𝑒)

. 

Fig. 3(b) illustrates the internal and external boundaries 

of the finite element domain Ω(𝑒): Γ(𝑒) = Γint
(𝑒)

∪ Γext
(𝑒)

 with 

internal boundary Γint
(𝑒)

 (colored in blue) and external 

boundary Γext

(𝑒)
 (colored in red). The boundary of the entire 

domain Ω is denoted by 

Γ = ⋃ Γext

(𝑒)𝑑
𝑒=1 . (19) 

Each cross-sectional plane of sub-beam e rotates around 

its twisting center, as shown in Fig. 3(c). The variables 

(�̃�𝑦 , �̃�𝑧) are interpolated as 

�̃�𝑦(𝑥) = 𝐡(𝑒)�̃�𝑦
(𝑒)

, �̃�𝑧(𝑥) = 𝐡(𝑒)�̃�𝑧
(𝑒)

, (20) 

with 

�̃�𝑦
(𝑒)

= [ �̃�𝑦
(𝑒)1 , ⋯ , �̃�𝑦

(𝑒)𝑙 , ⋯ , �̃�𝑦
(𝑒)𝑞

]
𝑇
, (21a) 
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�̃�𝑧
(𝑒)

= [ �̃�𝑧
(𝑒)1 , ⋯ , �̃�𝑧

(𝑒)𝑙 , ⋯ , �̃�𝑧
(𝑒)𝑞

]
𝑇
, (21b) 

𝐡(𝑒) = [ℎ1(𝑥), ⋯ , ℎ𝑙(𝑥), ⋯ , ℎ𝑞(𝑥)], (21c) 

 where q is the number of the cross-sectional planes of sub-

beam e, (𝑙�̃�𝑦
(𝑒)

, �̃�𝑧
(𝑒)𝑙 )  denotes the variables (�̃�𝑦, �̃�𝑧)  of 

the lth cross-sectional plane of sub-beam e, �̃�𝑦
(𝑒)

 and �̃�𝑧
(𝑒)

 

are the vectors containing �̃�𝑦
(𝑒)𝑙  and �̃�𝑧

(𝑒)𝑙 , respectively, 

and 𝐡(𝑒)  is the matrix containing 1D shape functions, 

ℎ𝑙(𝑥), corresponding to cross-sectional plane l. 

Similarly, the twist rate 𝛼  is interpolated using the 

same 1D shape function 

𝛼(𝑥) = 𝐡(𝑒)𝐀(𝑒), (22) 

with 

𝐀(𝑒) = [ 𝛼(𝑒)1 , ⋯ , 𝛼(𝑒)𝑙 , ⋯ , 𝛼(𝑒)𝑞
]
𝑇
, (23) 

where 𝛼(𝑒)𝑙  denotes the twist rate of the lth cross-

sectional plane of sub-beam e. 

Using Eqs. (14)-(23) in Eq. (13a), the following finite 

element discretization is obtained  

 

 

𝛿𝐔𝑇 A [∫ 𝐺(𝑒) (
𝐸(𝑒)

𝐺(𝑒)

𝜕𝐇(𝑒)𝑇

𝜕𝑥

𝜕𝐇(𝑒)

𝜕𝑥Ω(𝑒)
𝑑
𝑒=1   

+
𝜕𝐇(𝑒)𝑇

𝜕𝑦

𝜕𝐇(𝑒)

𝜕𝑦
+

𝜕𝐇(𝑒)𝑇

𝜕𝑧

𝜕𝐇(𝑒)

𝜕𝑧
) 𝑑Ω] 𝐔  

−𝛿𝐔𝑇 A [∫ 𝐺(𝑒)𝐇(𝑒)𝑇𝐡(𝑒)𝑛𝑧Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 �̃�𝑦 

+𝛿𝐔𝑇 A [∫ 𝐺(𝑒)𝐇(𝑒)𝑇𝐡(𝑒)𝑛𝑦Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 �̃�𝑧 

+𝛿𝐔𝑇 A [∫ 𝐺(𝑒)(−𝑧𝑛𝑦 + 𝑦𝑛𝑧)Γext
(𝑒) 𝐇(𝑒)𝑇𝐡(𝑒)𝑑Γ]𝑑

𝑒=1 𝐀 

= 𝟎  

(24) 

where 𝐔, δ𝐔, �̃�𝑦, �̃�𝑧, and 𝐀 are the vectors containing 

𝐔(𝑒) , 𝛿𝐔(𝑒) , �̃�𝑦
(𝑒)

, �̃�𝑧
(𝑒)

, and 𝐀(𝑒)  of all finite element 

domains, respectively, and A  is the assembly operator 

(Hughes 2000). 

For an infinitely long domain, the change of warping 

displacements along the x-direction is negligible compared 

to the change along the y- and z-directions: 
𝜕𝐇

𝜕𝑥
≪

𝜕𝐇

𝜕𝑦
 and 

𝜕𝐇

𝜕𝑥
≪

𝜕𝐇

𝜕𝑧
  

  
(a) Discretization of interface cross-section and its adjacent cross-

sections 

(b) Internal and external boundary of the 

finite element domain Ω(𝑒) 

 
(c) Discretized cross-section at beam node k 

Fig. 3 Discretization of the beam domain Ω for interface warping calculation 
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𝛿𝐔𝑇 A [∫ 𝐺(𝑒) (
𝜕𝐇(𝑒)𝑇

𝜕𝑦

𝜕𝐇(𝑒)

𝜕𝑦
+

𝜕𝐇(𝑒)𝑇

𝜕𝑧

𝜕𝐇(𝑒)

𝜕𝑧
)

Ω(𝑒) 𝑑Ω]𝑑
𝑒=1 𝐔  

−𝐔𝑇 A [∫ 𝐺(𝑒)𝐇(𝑒)𝑇𝐡(𝑒)𝑛𝑧Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 �̃�𝑦  

+𝛿𝐔𝑇 A [∫ 𝐺(𝑒)𝐇(𝑒)𝑇𝐡(𝑒)𝑛𝑦Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 �̃�𝑧  

+𝛿𝐔𝑇 A [∫ 𝐺(𝑒)(−𝑧𝑛𝑦 + 𝑦𝑛𝑧)Γext
(𝑒) 𝐇(𝑒)𝑇𝐡(𝑒)𝑑Γ]𝑑

𝑒=1 𝐀  

= 𝟎. 

(25) 

Note that the length of the domain Ω no longer affects 

the solution of Eq. (25), because all the integrals in the 

equation are linearly proportional to the length of the 

domain. Therefore, the domain length can be arbitrarily 

chosen when calculating the interface warping functions. 

By eliminating 𝛿𝐔 in Eq. (25), the following equation 

in matrix form is obtained 

𝐊𝑤𝐔 − 𝐍𝑧�̃�𝑦 + 𝐍𝑦�̃�𝑧 + 𝐁𝑐𝐀 = 𝟎 (26) 

with 

𝐊𝑤 = A [∫ 𝐺(𝑒) (
𝜕𝐇(𝑒)𝑇

𝜕𝑦

𝜕𝐇(𝑒)

𝜕𝑦
+

𝜕𝐇(𝑒)𝑇

𝜕𝑧

𝜕𝐇(𝑒)

𝜕𝑧
)

Ω(𝑒) 𝑑Ω]𝑑
𝑒=1 , (27a) 

𝐍𝑧 = A [∫ 𝐺(𝑒)𝑛𝑧𝐇
(𝑒)𝑇𝐡(𝑒)

Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 , (27b) 

𝐍𝑦 = A [∫ 𝐺(𝑒)𝑛𝑦𝐇
(𝑒)𝑇𝐡(𝑒)

Γext
(𝑒) 𝑑Γ]𝑑

𝑒=1 , (27c) 

𝐁𝑐 = A [∫ 𝐺(𝑒)(−𝑧𝑛𝑦 + 𝑦𝑛𝑧)Γext
(𝑒) 𝐇(𝑒)𝑇𝐡(𝑒)𝑑Γ]𝑑

𝑒=1 . (27d) 

The orthogonality conditions of Eqs. (13b)-(13d) are 

also discretized and expressed in the matrix and vector 

forms 

𝐐𝑥𝐔 = 𝟎, 𝐐𝑦𝐔 = 𝟎, 𝐐𝑧𝐔 = 𝟎, (28) 

with 

𝐐𝑥 = A [∫ 𝐸(𝑒)𝐇1
(𝑒)𝑇

Ω(𝑒) 𝑑Ω,⋯ , ∫ 𝐸(𝑒)𝐇𝑛
(𝑒)𝑇

Ω(𝑒) 𝑑Ω]
𝑇

𝑑
𝑒=1 , (29a) 

𝐐𝑦 = A [∫ 𝑦𝐸(𝑒)𝐇1
(𝑒)𝑇

Ω(𝑒) 𝑑Ω,⋯ , ∫ 𝑦𝐸(𝑒)𝐇𝑛
(𝑒)𝑇

Ω(𝑒) 𝑑Ω]
𝑇

𝑑
𝑒=1 , (29b) 

𝐐𝑧 = A [∫ 𝑧𝐸(𝑒)𝐇1
(𝑒)𝑇

Ω(𝑒) 𝑑Ω,⋯ , ∫ 𝑧𝐸(𝑒)𝐇𝑛
(𝑒)𝑇

Ω(𝑒) 𝑑Ω]
𝑇

𝑑
𝑒=1 , (29c) 

where 𝐇𝑘
(𝑒)

 is the 3D interpolation matrix 𝐇(𝑒) at cross-

sectional plane k. 

Eq. (13e) is discretized and expressed in matrix form as 

follow 

𝐑𝑤𝐔 − 𝐒𝑦�̃�𝑦 − 𝐒𝑧�̃�𝑧 + 𝐉𝑥𝐀 = 𝑀𝑥𝟏, (30) 

with 

𝐑𝑤 = A [𝐂1
(𝑒)

, 𝐂2
(𝑒)

, ⋯ , 𝐂𝑘
(𝑒)

, ⋯ , 𝐂𝑛
(𝑒)

]
𝑇

𝑑
𝑒=1 , (31a) 

𝐒𝑦 = A [∫ 𝐺(𝑒)𝑦𝐡𝑘
(𝑒)𝑇

𝐡𝑘
(𝑒)

Ω(𝑒) 𝑑Ω]𝑑
𝑒=1 , (31b) 

𝐒𝑧 = A [∫ 𝐺(𝑒)𝑧
Ω(𝑒) 𝐡𝑘

(𝑒)𝑇
𝐡𝑘

(𝑒)
𝑑Ω]𝑑

𝑒=1 , (31c) 

𝐉𝑥 = A [∫ 𝐺(𝑒)(𝑦2 + 𝑧2)
Ω(𝑒) 𝐡𝑘

(𝑒)𝑇
𝐡𝑘

(𝑒)
𝑑Ω]𝑑

𝑒=1 , (31d) 

𝟏 = [1, 1, ⋯ , 1]𝑇, (31e) 

where 𝐡𝑘
(𝑒)

 is the 1D interpolation matrix 𝐡(𝑒) at cross-

sectional plane k, 𝑀𝑥 is an torsional moment acting on the 

beam, and 𝐂𝑘
(𝑒)

 is defined as 

𝐂𝑘
(𝑒)

= [∫ 𝐺(𝑒) (𝑦
𝜕𝐇𝑘

(𝑒)𝑇

𝜕𝑧
− 𝑧

𝜕𝐇𝑘
(𝑒)𝑇

𝜕𝑦
)

Ω(𝑒) 𝑑Ω]. (31f) 

Eqs. (26)-(31) can be merged into the following matrix 

equation 

[
 
 
 
 
𝐊𝑤 −𝐍𝑧 𝐍𝑦 𝐁𝑐

𝐐𝑥 𝟎 𝟎 𝟎
𝐐𝑦 𝟎 𝟎 𝟎

𝐐𝑧 𝟎 𝟎 𝟎
𝐑𝑤 −𝐒𝑦 −𝐒𝑧 𝐉𝑥 ]

 
 
 
 

[

𝐔
�̃�𝑦

�̃�𝑧

𝐀

] = 𝑀𝑥

[
 
 
 
 
𝟎
𝟎
𝟎
𝟎
𝟏]
 
 
 
 

. (32) 

Solving Eq. (32), the interface warping function, the 

corresponding twisting center, and the twist rate can be 

simultaneously calculated along with the fully coupled 

effects of adjacent elements. Since the magnitude of 𝑀𝑥 is 

proportional to the twist rate and does not affect the 

warping function and twisting center, an arbitrary number 

can be applied to 𝑀𝑥. Note that, when Eq. (32) is applied to 

continuous cross-section beams with uniform material, the 

free warping function with constant twist rate and twisting 

center is obtained.  

We tested the proposed finite element discretization to 

calculate the interface warping function considering beams 

with geometric and material discontinuities. Almost the 

same interface warping functions were calculated 

irrespective of beam length and number of elements used 

along the longitudinal direction. Therefore, the use of only 

two elements along the longitudinal direction is 

recommended. For example, considering the beam in Fig. 1, 

one element is used for cross-section ① and another 

element is used for cross-section ②. 

 

 

3. Continuum-mechanics based beam element 
 

In this section, we present the implementation of the 

interface warping function in the beam finite element 

formulation. To consider the warping displacement, a 

continuum-mechanics based beam element is employed, 

which is directly degenerated from an assemblage of 3D 

solid finite elements (Yoon and Lee 2014a, Bathe 1996, 

Kim et al. 2020, Kim et al. 2021, Yoon et al. 2012, Yoon 

and Lee 2014b, Yoon et al. 2015, Yoon et al. 2017a, b). As 

shown in Fig. 4(a), an arbitrary-shaped continuum-

mechanics based beam element consists of multiple sub-

beams. Note that a superscript t indicates incremental load 

levels, and its corresponding configurations in static 

nonlinear analysis rather than actual time in dynamic 

analysis (Yoon et al. 2012, Yoon and Lee 2014b, Yoon et al. 

2015, Yoon et al. 2017a, b).  

Fig. 4(b) shows the n-node continuum-mechanics based 
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beam element with its nodes and director vectors. Inside the 

sub-beam e (gray color in Fig. 4), a material position in the 

configuration at time t can be written as 

𝒙(𝑒)𝑡 = ∑ ℎ𝑘(𝑟)( 𝒙𝑘
𝑡 + �̄�𝑘

(𝑒)
𝐕�̄�

𝑘𝑡 + �̄�𝑘
(𝑒)

𝐕�̄�
𝑘𝑡 +𝑛

𝑘=1

�̄�𝑘
(𝑒)

𝐕�̄�
𝑘𝑡 𝛼𝑘

𝑡 ), 
(33) 

where ℎ𝑘(𝑟) is the 1D shape function corresponding to 

beam node k, 𝒙𝑘
𝑡  is the position vector of beam node k, 

𝐕�̄�
𝑘𝑡  and 𝐕�̄�

𝑘𝑡  are orthonormal director vectors to define 

the cross-sectional Cartesian coordinate system at beam 

node k, �̄�𝑘
(𝑒)

(𝑠, 𝑡) and �̄�𝑘
(𝑒)

(𝑠, 𝑡) denote the coordinates in 

the cross-sectional Cartesian coordinate system on cross-

sectional plane k, 𝐕�̄�
𝑘𝑡 (= 𝐕�̄�

𝑘𝑡 × 𝐕�̄�
𝑘𝑡 )  is the warping 

director vector orthonormal to the cross-section, �̄�𝑘
(𝑒)

 is the 

warping function value on cross-sectional plane k, and 𝛼𝑘
𝑡  

is the corresponding warping DOF at beam node k. 

Fig. 4(c) shows the cross-sectional geometry in the 

cross-sectional Cartesian coordinate system at beam node k. 

For an m-node cross-sectional element corresponding to 

sub-beam e (colored in gray), the material position and the 

warping function are interpolated as 

�̄�𝑘
(𝑒)

= ∑ ℎ𝑗(𝑠, 𝑡) �̄�𝑘
(𝑒)𝑗𝑚

𝑗=1 , (34a) 

�̄�𝑘
(𝑒)

= ∑ ℎ𝑗(𝑠, 𝑡) �̄�𝑘
(𝑒)𝑗𝑚

𝑗=1 , (34b) 

�̄�𝑘
(𝑒)

= ∑ ℎ𝑗(𝑠, 𝑡) 𝑓𝑘
(𝑒)𝑗𝑚

𝑗=1 , (34c) 

where ℎ𝑗(𝑠, 𝑡) is the 2D shape function corresponding to 

cross-sectional node j, �̄�𝑘
(𝑒)𝑗

 and �̄�𝑘
(𝑒)𝑗

 denote the 

position of cross-sectional node j, and 𝑓𝑘
(𝑒)𝑗

 is the warping 

function value at cross-sectional node j. Note that 𝑓𝑘
(𝑒)𝑗

 is 

pre-calculated through Eq. (32). 

From the geometry interpolation in Eq. (33), the 

incremental displacement field of sub-beam e from time 𝑡 

to 𝑡 + Δ𝑡 is obtained as 

𝐮(𝑒)
0 = ∑ ℎ𝑘[ 𝐮𝑘0 +0𝛼𝑘�̄�𝑘

(𝑒)
𝐑𝑘0 𝐕�̄�

𝑘𝑛
𝑘=1   

+( 𝐑𝑘0 − 𝐈)(�̄�𝑘
(𝑒)

𝐕�̄�
𝑘𝑡 + �̄�𝑘

(𝑒)
𝐕�̄�

𝑘𝑡 + 𝛼𝑘
𝑡 �̄�𝑘

(𝑒)
𝐕�̄�

𝑘𝑡 )], 
(35) 

where 𝐮𝑘0 , 𝛉𝑘
0  and 𝛼𝑘0  are the incremental nodal 

DOFs at beam node k consisting of three translations, three 

rotations and warping, respectively, and 𝐑𝑘0 (0𝛉
𝑘) is the 

finite rotation tensor of beam node k from time 𝑡 to 𝑡 + 𝛥𝑡 

(Yoon et al. 2012, Yoon and Lee 2014b, Yoon et al. 2015, 

Yoon et al. 2017a, b) defined as 

𝐕�̄�
𝑘𝑡+𝛥𝑡 = 𝐑𝑘0 𝐕�̄�

𝑘𝑡 , (36a) 

𝐕�̄�
𝑘𝑡+𝛥𝑡 = 𝐑𝑘0 𝐕�̄�

𝑘𝑡 , (36b) 

𝐕�̄�
𝑘𝑡+𝛥𝑡 = 𝐑𝑘0 𝐕�̄�

𝑘𝑡 . (36c) 

The position and displacement fields are then used to 

derive the linearized incremental equilibrium equation for 

nonlinear incremental analysis based on the total 

Lagrangian formulation. The equation is discretized using 

nodal DOFs, and its solutions are calculated iteratively and 

incrementally. The calculated DOFs are used to update the 

position and director vectors of each node in every 

incremental step. Detailed nonlinear formulations are well 

described in Bathe (1996), Yoon et al. (2012), Yoon and Lee 

(2014b), Yoon et al. (2015), Yoon et al. (2017a, b). 

 
(a) 3-node arbitrary-shaped curved beam with sub-beams 

 
(b) Continuum-mechanics based beam element with 

beam nodes and director vectors 

 
(c) Cross-sectional Cartesian coordinate system at beam 

node k, at time t 

Fig. 4 Concept of the continuum-mechanics based beam 

element 
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(a) Beam with longitudinal discontinuity and its cross-

sections 

 
(b) Free warping beam model constructed using free 

warping functions 

 
(c) Proposed warping beam model constructed using the 

interface warping function 

Fig. 5 Comparison of the free warping beam model and the 

proposed warping beam model 

 
 
4. Numerical examples 

 

In this section, we present four numerical examples to 

verify the usefulness of the proposed interface warping 

function: a partially reinforced wide flange beam, a partially 

constrained warping problem, a step varying rectangular 

cross-section beam, and a circular beam with a step varying 

rectangular cross-section. 

In the following examples, the beams are modeled using 

2-node continuum-mechanics based beam elements, and 

their cross-sections are discretized using 4-node or 16-node 

quadrilateral cross-sectional elements. The well-known 

reduced integration scheme is applied along the longitudinal 

direction of the beam element to avoid shear locking 

(Hughes 2000, Bathe 1996), and 2 × 2 or 4 × 4 Gauss 

integration points are used on 4-node or 16-node cross-

sectional elements, respectively. The interface warping 

functions are calculated using Eq. (32) in the straight beam 

domain Ω in Fig. 3(a), where its cross-sectional mesh used 

is the same as that of continuum-mechanics based beam 

elements. 

Fig. 5 compares two different methods of modeling 

beams with longitudinal discontinuity. Fig. 5(a) illustrates 

 
(a) Reference solid model 

 
(b) Beam model and its cross-sectional mesh 

Fig. 6 Partially reinforced wide flange beam 

 

 

two beam elements, (I) and (II), with three different cross-

sections: ①, ②, and ③. Fig. 5(b) shows the free warping 

beam model, in which free warping functions of each cross-

section are applied to each node. In this model, the 

compatibility of warping displacements is not satisfied at 

the interface cross-section ③. This incompatibility can be 

resolved with the proposed warping beam model by 

applying the interface warping function to cross-section ③, 

as shown in Fig. 5(c). As a result, the adjacent elements of 

the interface cross-section share the same warping shape 

and magnitude; therefore, the displacement compatibility is 

always satisfied. 

 The numerical results are compared with the reference 

solutions obtained using 20-node hexahedral solid elements 

in ANSYS (ANSYS 2017). To assess the performance of 

the proposed warping beam model, the calculated values 

using the free warping beam model, BEAM188 in ANSYS, 

and results from Yoon and Lee (2014a) are compared. 

While BEAM188, the free warping beam model, and the 

proposed warping beam model employ 7 DOFs per node, 7 

to 9 DOFs per node are used in the beam model by Yoon 

and Lee (2014a). 

 
4.1 Partially reinforced wide flange beam 
 

Here, we consider a partially reinforced wide flange 
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beam of length 10 m with material discontinuity. As shown 

in Fig. 6(a), the height and width of the cross-section are 

1m, and the thickness is 0.1 m. Half of the beam has a 

reinforced upper flange Ω𝑟  (colored in gray) with Young’s 

modulus 𝐸𝑟 = 6 × 1011 Pa and Poisson’s ratio 𝜈 = 0, as 

illustrated in Fig. 6(a). In the remaining part, Young’s 

modulus is 𝐸0 = 2 × 1011 Pa and Poisson’s ratio is 𝜈 =
0. The beam is fully clamped at 𝑥 = 0 m and the torsional 

moment 𝑀𝑥 is applied at 𝑥 = 10 m. 

To obtain the reference solutions, the solid model is 

constructed using 280 hexahedral solid elements (5,223 

DOFs), as illustrated in Fig. 6(a). All DOFs are fixed at the 

 

 

 

clamped end surface (𝑥 = 0 m), and the torsional moment 

𝑀𝑥 is applied at the free end surface (𝑥 = 10 m). Three 

beam models are constructed using eight 2-node beam 

elements (7 × 9 = 63 DOFs) for comparison: an ANSYS 

beam model using BEAM188, a free warping beam model, 

and the proposed warping beam model. The fully clamped 

boundary condition (𝑢 = 𝑣 = 𝑤 = 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 𝛼 = 0) 

is applied at 𝑥 = 0 m, as shown in Fig. 6(b). The cross-

section of the ANSYS BEAM188 is discretized with 

twenty-eight 9-node quadratic cross-sectional elements, and 

the proposed warping beam model is discretized with seven 

16-node cubic cross-sectional elements. 

 
(a) Free warping displacement and 

twisting center (𝜆𝑦, 𝜆𝑧) = (0,0.2234) 

at 𝑥 = 2.5 m 

(b) Interface warping displacement 

and twisting center (𝜆𝑦 , 𝜆𝑧) =

(0,0.1487) at 𝑥 = 5.0 m 

(c) Free warping displacement and 

twisting center (𝜆𝑦 , 𝜆𝑧) = (0,0)  at 

𝑥 = 7.5 m 

Fig. 7 Distributions of the warping displacements u and twisting centers (𝜆𝑦 , 𝜆𝑧) for the partially reinforced wide flange 

beam. The location of twisting centers is indicated by a red cross 

 
     (a) Twist angle 𝜃𝑥 (b) Displacement v of point A 

along the beam 

(c) Displacement v of point B along 

the beam 

Fig. 8 Linear analysis results for the partially reinforced wide flange beam 
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Fig. 7 illustrates the distribution of the calculated 

warping displacements and positions of the twisting centers 

at 𝑥 = 2.5 m , 𝑥 = 5.0 m , and 𝑥 = 7.5 m  when 𝑀𝑥 =
1 Nm is applied. The shape of free warping displacements 

and the corresponding positions of twisting centers at 𝑥 =
2.5 m  and 𝑥 = 7.5 m  are identical to those from the 

classical Saint Venant torsion theory. However, the interface 

warping function at 𝑥 = 5.0 m  can only be obtained 

through Eq. (32). The variation of the twisting center along 

the x-direction is automatically considered through the 

displacement field in Eq. (33). 

 

 

 

Fig. 8 compares three numerical results of the linear 

analysis along the beam length when 𝑀𝑥 = 1 Nm  is 

applied: the distribution of twist angle 𝜃𝑥 and y-directional 

displacements v of points A and B, respectively. The 

proposed warping beam model shows good agreement with 

the reference model, while the free warping beam model 

fails to predict the behavior of the beam after the interface 

(𝑥 = 5 m). ANSYS BEAM188 gives a twist angle that 

exhibits superb agreement with the reference solutions, but 

displacements corresponding to points A and B do not 

match with the reference solutions. 

 
(a) Displacement v of point A at the free tip       (b) Displacement w of point A at the free tip 

Fig. 9 Load-displacement curves for the partially reinforced wide flange beam 

 
(a) Displacement v of point A at the free tip        (b) Displacement w of point A at the free tip 

Fig. 10 Nonlinear analysis results for the partially reinforced wide flange beam 
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(a) Reference solid model: shaded areas in the boundary 

cross-section are constrained 

 
(b) Beam model and its cross-sectional mesh: warping 

DOF is imposed to the boundary cross-section for the 

partially constrained boundary condition 

 
(c) Model used to calculate the interface warping 

function by attaching a rigid beam 

Fig. 11 Partially constrained warping problem 

 

 

For geometric nonlinear analysis, the torsional moment  

𝑀𝑥 increases up to 8 × 106 Nm. Fig. 9 displays the load-

displacement curves, where the displacements of point A at 

the free tip is considered. This shows the proposed warping 

beam model can accurately predict the deformation due to 

 

 
(a) Interface warping displacement and twisting center 

(𝜆𝑦 , 𝜆𝑧) = (0, −0.4369) at 𝑥 = 0.0 m 

  
(b) Free warping displacement and twisting center 

(𝜆𝑦 , 𝜆𝑧) = (0,0) at 𝑥 = 5.0 m 

Fig. 12 Distributions of the warping displacements u and 

twisting centers (𝜆𝑦 , 𝜆𝑧)  for the constrained warping 

problem. The location of twisting centers is indicated by 

a red cross 

 

 

the twisting-bending coupling unlike ANSYS BEAM188. 

Fig. 10 illustrates the displacement distributions when the 

torsional moment of 𝑀𝑥 = 8 × 106 Nm is applied at the 

free tip. This shows that the proposed warping beam model 

can accurately predict not only the y-directional 

displacement v of point A, but also the z-directional 

displacement w of point A. 

 
4.2 Partially constrained warping problem 
 

In this section, we consider the wide flange beam 

proposed in Yoon and Lee (2014a). The geometry of the 

beam is equal to that used in the previous example.  

In this problem, two boundary conditions are 

considered: a partially constrained boundary condition and 

a fully constrained boundary condition. In the boundary 

cross-section at 𝑥 = 0 m , all displacements, including 

warping, are constrained only at the shaded area in Fig. 

11(a), and a torsional moment 𝑀𝑥 is applied at the free end 

(𝑥 = 10 m ). Young’s modulus is 𝐸 = 2 × 1011 Pa  and 

Poisson's ratio is 𝜈 = 0. 

The reference solid model uses 1,120 hexahedral solid 

elements (19,803 DOFs), as illustrated in Fig. 11(a). All 

nodes corresponding to the shaded area (𝑥 = 0 m) are fixed. 

Fig. 11(b) shows a beam model consisting of eight 2-node 

beam elements; its cross-section consists of seven 4-node 

cross-sectional elements. All DOFs at 𝑥 = 0 m are fully  
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clamped ( 𝑢 = 𝑣 = 𝑤 = 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 𝛼 = 0 ) for the 

fully constrained condition, while the partially constrained 

boundary condition has warping DOF (𝑢 = 𝑣 = 𝑤 = 𝜃𝑥 =
𝜃𝑦 = 𝜃𝑧 = 0), as illustrated in Fig. 11(b). Note that Yoon 

and Lee (2014a) used 8 DOFs per node (8 × 9 = 72 

DOFs) to solve this beam problem, while the proposed 

warping beam model uses 7 DOFs per node (7 × 9 = 63 

DOFs). 

The interface warping function is employed to model 

the partially constrained boundary condition. Fig. 11(c) 

shows the model used to calculate the interface warping 

function by attaching a rigid beam (colored in gray, Ω𝑟) to 

 

 

the boundary cross-section. The rigid beam is modeled with 

a higher Young’s modulus 𝐸𝑟 = 2 × 1018 Pa and Poisson’s 

ratio 𝜈 = 0. Note that the model in Fig. 11(c) is only 

adopted to calculate the interface warping function using 

Eq. (32). 

Fig. 12 demonstrates the distribution of the calculated 

warping displacements and positions of the twisting centers 

at 𝑥 = 0.0 m and 𝑥 = 5.0 m when 𝑀𝑥 = 1 Nm is 

applied. The warping displacement at 𝑥 = 5.0 m shows 

the free warping function, and its twisting center is located 

on 𝑦 = 𝑧 = 0.0 m due to symmetry. The shape of the 

warping displacement observed at 𝑥 = 0.0 m is similar to  

 
(a) Displacement v of point A in the fully 

constrained boundary condition 

(b) Twist angle 𝜃𝑥 along the beam in the fully 

constrained boundary condition 

 
(c) Displacement v of point A in the partially 

constrained boundary condition 

(d) Twist angle 𝜃𝑥 along the beam in the partially 

constrained boundary condition 

Fig. 13 Linear analysis results for the partially constrained warping problem in fully and partially constrained boundary 

conditions 
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that of the free warping function except for the constrained 

region (shaded area in Fig. 11(a)), but the location of the 

twisting center is significantly different. 

Fig. 13 shows the numerical results of the linear analysis 

when 𝑀𝑥 = 1 Nm is applied at the free tip. In the fully 

constrained boundary condition, both results from Yoon and 

Lee (2014a) and the proposed warping beam model match 

considerably well with the reference solution. However, in 

the partially constrained boundary condition, even though 

the proposed warping beam model used fewer DOFs per 

node, it shows better results compared with those in Yoon 

and Lee (2014a). Note that the classical Saint Venant 

torsion theory cannot be applied to solve the partially 

constrained warping problems. 

 
4.3 Step varying rectangular cross-section beam 
 

Fig. 14(a) shows the step varying rectangular cross-

section beam (Yoon and Lee 2014a) with two parts. Cross- 

 

 

 

sections of each beam part, ① and ②, have heights of 

0.5 m and 1 m, respectively, and an identical width of 

0.5 m. Young’s modulus is 𝐸 = 2 × 1011 Pa and Poisson's 

ratio is 𝜈 = 0 . A fully clamped boundary condition is 

imposed at 𝑥 = 0 m  while torsional moment 𝑀𝑥  is 

applied at 𝑥 = 10 m. 

As illustrated in Fig. 14(a), the reference solid model is 

constructed using 480 hexahedral solid elements (8,055 

DOFs). All DOFs are fixed at the clamped end surface (𝑥 =
0 m), and the torsional moment 𝑀𝑥 is applied at the free 

end surface (𝑥 = 10 m). Fig. 14(b) shows that the beam 

models consist of eight 2-node beam elements, with cross-

sections ① and ② (blue and red colored, respectively). 7 

DOFs per node are used to construct the proposed warping 

beam and ANSYS BEAM188 models (7 × 9 = 63 DOFs), 

but Yoon and Lee (2014a) used 7 and 8 DOFs per node to 

express the warping effect at the interface and continuous 

cross-sections, respectively (71 DOFs).  

The proposed warping beam model used two and one 

 
 

(a) Reference solid model (b) Beam model and its cross-sectional meshes 

Fig. 14 Step varying rectangular cross-section beam 

 
(a) Free warping displacement and 

twisting center (𝜆𝑦 , 𝜆𝑧) = (0,0) 

at 𝑥 = 0.0 m 

(b) Interface warping displacement 

and twisting center (𝜆𝑦 , 𝜆𝑧) =

(0, −0.0833) at 𝑥 = 5.0 m 

(c) Free warping displacement 

and twisting center (𝜆𝑦 , 𝜆𝑧) =

(0, −0.25) at 𝑥 = 7.5 m 

Fig. 15 Distributions of the warping displacements u and twisting centers (𝜆𝑦 , 𝜆𝑧) for the step varying rectangular cross-

section beam. The location of twisting centers is indicated by a red cross 
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16-node cross-sectional elements to discretize cross-

sections ① and ②, respectively, as in Yoon and Lee 

(2014a). The cross-sections of the ANSYS BEAM188 

model are discretized using finer meshes with eight and 

four 9-node quadratic cross-sectional elements, 

respectively. A fully constrained boundary condition (𝑢 =
𝑣 = 𝑤 = 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 𝛼 = 0 ) at 𝑥 = 0 m  is applied 

and torsional moment 𝑀𝑥 is applied at the free end. 

Fig. 15 illustrates the calculated warping displacements 

 

 

 

and positions of twisting centers at 𝑥 = 2.5 m, 𝑥 = 5.0 m, 

and 𝑥 = 7.5 m of the proposed warping beam model, 

when 𝑀𝑥 = 1 Nm is applied. Fig. 16 presents the linear 

analysis results along the beam length when 𝑀𝑥 = 1 Nm is 

applied. It can be seen that the proposed warping beam 

model is the most reliable for analyzing the beam with 

discontinuity. We also confirm that the proposed warping 

beam model used fewer DOFs to express the warping effect 

but showed better accuracy compared to the results in Yoon 

 
(a) Twist angle 𝜃𝑥 along the beam (b) Displacement v of point A 

along the beam 

(c) Displacement v of point B along 

the beam 

Fig. 16 Linear analysis results for the step varying rectangular cross-section beam 

 
(a) Displacement v of point A at the free tip     (b) Displacement w of point A at the free tip 

Fig. 17 Load-displacement curves for the step varying rectangular cross-section beam 
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and Lee (2014a). The free warping beam model failed to 

predict the behavior of the beam after the interface cross-

section. 

For geometric nonlinear analysis, we statically increase 

the torsional moment 𝑀𝑥 up to 2 × 108 Nm. Fig. 17 

displays the load-displacement curves, where the 

displacements of point A at the free tip are considered when 

𝑀𝑥 = 2 × 108 Nm is applied. The results indicate that the 

proposed warping beam model predicts the geometric 

nonlinear behavior better than the ANSYS BEAM188. Fig. 

18 shows the displacements of point A along the beam 

 

 

 

length when 𝑀𝑥 = 2 × 108 Nm is applied. As seen, the 

proposed warping beam model successfully reflects the 

twisting-bending coupling effect compared with the 

ANSYS BEAM188 model. 

 
4.4 Circular beam with step varying rectangular 

cross-section 
 

Finally, we consider the circular beam with a step 

varying rectangular cross-section, as shown in Fig. 19, to 

assess the twisting-bending behavior of the curved beam  

 
(a) Displacement v of point A along the beam (b) Displacement w of point A along the beam 

Fig. 18 Nonlinear analysis results for the step varying rectangular cross-section beam 

  

(a) Reference solid model (b) Beam model and its cross-sectional meshes 

Fig. 19 Circular beam with a step varying rectangular cross-section 
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with longitudinal discontinuity. The beam has a radius of 

10 m and its cross-section discontinuously varies from the 

rectangular cross-section ① to the square cross-section ② 

at 𝜙 = 180°. The beam is fully clamped at 𝜙 = 0°, and a 

force 𝐹𝑧 = 1.5 × 106 N is applied at 𝜙 = 359°. Young’s 

modulus is 𝐸 = 2 × 1011 Pa and Poisson’s ratio is 𝑣 =
0.3. Geometric nonlinear analysis is performed, since the 

beam is expected to undergo large displacement and large 

rotation. 

The reference solid model is obtained using 1,472 

hexahedral solid elements (23,943 DOFs), as shown in Fig. 

 

 

19(a). All DOFs are constrained at 𝜙 = 0°, and the force 

𝐹𝑧 = 1.5 × 106 N is applied at the free end surface (𝜙 =
359°). Fig. 19(b) shows that the beam model consists of 

twelve 2-node beam elements (7 × 13 = 91 DOFs), which 

are used to construct both proposed warping beam and 

ANSYS BEAM188 models. The cross-sections ① and ② 

are discretized using eight and four 9-node quadratic cross-

sectional elements for the ANSYS BEAM188 model, 

respectively, and one and two 16-node cubic cross-sectional 

elements for the proposed warping beam model, 

respectively. The constrained boundary condition 𝑢 = 𝑣 = 

 
(a) Displacement v of point A at the free tip (b) Displacement w of point A at the free tip 

Fig. 20 Load-displacement curves for the circular beam with a step varying rectangular cross-section 

 
(a) Displacement v of point A along the beam (b) Displacement w of point A along the beam 

Fig. 21 Nonlinear analysis results for the circular beam with a step varying rectangular cross-section 
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𝑤 = 𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 𝛼 = 0  and force 𝐹𝑧 = 1.5 × 106𝑁 

are applied at 𝜙 = 0° and 𝜙 = 359°, respectively. 

Fig. 20 shows the load-displacement curves considering 

the displacements of point A at the free end. The results 

from the proposed warping beam model correspond well 

with those from the reference solid model. Fig. 21 presents 

the y and z-directional displacements (v and w) of point A 

according to the angle 𝜙 when 𝐹𝑧 = 1.5 × 106 N. These 

results confirm that the proposed interface warping function 

can be adopted to calculate complex beam problems 

considering twisting-bending coupling using only 7 DOFs 

per node. Fig. 22 shows the successive deformed 

configurations obtained using the reference solid model and 

the proposed warping beam model at various load levels 

( 𝐹𝑧 = 0.3 × 106 N , 0.6 × 106 N , 0.9 × 106 N , 1.2 ×
106 N , and 1.5 × 106 N ). The geometric nonlinear 

response due to twisting-bending coupling is accurately 

predicted using the proposed warping beam model. 

 
 
5. Conclusions 

 

In this paper, we proposed a numerical method that can 

effectively calculate interface warping functions for beams 

with geometrical and material discontinuities in the 

longitudinal direction. The governing equations were 

obtained by extending the classical Saint Venant torsion 

theory along the longitudinal direction. Finite element 

discretization was developed to numerically calculate the 

proposed interface warping functions and the corresponding 

twisting centers. The interface warping functions are 

incorporated with the continuum-mechanics based beam 

element. Consequently, a general 3D beam finite element 

capable of modeling longitudinal discontinuities was 

developed for linear and nonlinear analysis while using only 

7 DOFs per node. 

The proposed beam finite element can consider 

partially/fully constrained warping conditions, curved 

 

 

geometries, composite materials, longitudinal 

discontinuities in material and geometry, and arbitrary 

cross-sections. Through numerical examples, powerful 

modeling and predictive capabilities of the proposed 

warping beam model were demonstrated in both linear and 

geometric nonlinear analysis. An important advantage of the 

interface warping functions presented in this study is that 

the displacement compatibility at an interface cross-section 

can be satisfied using only 7 DOFs per node. The interface 

warping functions can be easily adopted to other types of 

beam finite elements, allowing consideration of material 

and geometric longitudinal discontinuities. 
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