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Abstract.  This paper deals with the problem of the global stabilization for a class of ocean structure 
systems. It is well known that, in general, the global asymptotic stability of the ocean structure subsystems 
does not imply the global asymptotic stability of the composite closed-loop system. The classical fuzzy 
inference methods cannot work to their full potential in such circumstances because given knowledge does 
not cover the entire problem domain. However, requirements of fuzzy systems may change over time and 
therefore, the use of a static rule base may affect the effectiveness of fuzzy rule interpolation due to the 
absence of the most concurrent (dynamic) rules. Designing a dynamic rule base yet needs additional 
information. In this paper, we demonstrate this proposed methodology is a flexible and general approach, 
with no theoretical restriction over the employment of any particular interpolation in performing 
interpolation nor in the computational mechanisms to implement fitness evaluation and rule promotion. 
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1. Introduction 
 

In recent years, fuzzy logic control (FLC) has been used in many successful practical control 

applications. Despite the success, it has become evident that many basic issues remain to be 

further addressed. The idea is to design a compensator for each rule of the fuzzy model. Since each 

control rule is individually designed from the corresponding rule of the T-S fuzzy model, the linear 

control design techniques can be employed to design the PDC fuzzy controller (see Omidi and 

Lotfi 2017, Dinachandra and Raju 2017, Loria and Nesic 2003, Panteley and Loria 1998, Panda et 

al. 2011, Chu and Tsai 2007, Pardhan and Panda 2012, Wang et al. 2012, Lam 2009, Liu and 

Zhang 2003, Park et al. 2003, Wang et al. 1996). 

Fuzzy rule interpolation (FRI) offers the most effective reasoning mechanism to perform fuzzy 

reasoning offers the most effective reasoning mechanism to perform fuzzy reasoning based on a 

sparse rule base. The classical fuzzy inference methods cannot work to their full potential in such 

circumstances because given knowledge does not cover the entire problem domain. However, 

requirements of fuzzy systems may change over time and therefore, the use of a static rule base 
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may affect the effectiveness of FRI due to the absence of the most concurrent (dynamic) rules. 

Designing a dynamic rule base yet needs additional information. Fortunately, a fuzzy reasoning 

system that utilizes FRI may produce a large number of interpolated rules during the interpolative 

reasoning process. Such interpolative results are always discarded once the required outcomes 

have been obtained in the present applications of FRI. Nonetheless, these relinquished interpolated 

rules may contain possibly valuable information, covering regions that were uncovered by the 

original sparse rule base and thus, may be collected and utilized to create a dynamic rule base 

through generalization. 

 

 

2. Background 
 

Several methods for evaluating stability designs have been successfully applied, see Cheng et 

al. (2016) and Su et al. (2017). Systematic comparative investigations are carried out against 

conventional FRI that uses just the original sparse rule base, demonstrating that D-FRI possesses 

higher accuracy and robustness level.  

In addition to evaluation of D-FRI against benchmark datasets, it is important to examine how 

it may work in a real-world application setting. Security is one of the major concerns of any 

organization regardless of their size and nature of work. Security attacks and their types are 

countless, however, network intrusion attack is one of the key concerns, being an illicit attempt 

that compromises the confidentiality, integrity, or availability of the organizational IT 

infrastructure. 

Although there have been many successful applications of intelligent computation, some 

references of damage assessment and uncertainty analysis were published to mitigate the threaten 

of casualty, in which the fuzzy theory has received considerable attention recently in structural 

engineering. This article attempts to expect this future and discusses directions of research to 

approach the realization of more intelligent systems. 

 

 

3. Mathematical formulation background 
 

3.1 Initial boundary value problem for ocean structure systems 
 

Consider a wave-induced flow field system in which a Cartesian coordinate system oxz is 

employed. As shown in the sketch of a 2D numerical wave flume, a plane 0z  coincides with 

the undisturbed still water level and the z-axis is directed vertically upward. The vertical elevation 

of any point on the free surface can be defined by the function  t,y,xz  , in which the surface 

tension is negligible. For incompressible fluids the fluid density is constant throughout the flow 

field. Thus 

0V                                (1) 
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3.2 fuzzy rule based interpolation 
 
For simplicity and owing to their popularity, in this work, fuzzy sets are represented using 

triangular membership functions. Suppose that an original, sparse rule base ℝ exists, with rules Ri 

∈ ℝ and an observation O: 

iR : IF 𝑥𝑖 is 𝐴𝑖,1, . . ., and 𝑥𝑗 is 𝐴𝑖,𝑗, . . ., and 𝑋𝑁 is 𝐴𝑖,𝑁, 

THEN y is 𝐵𝑖 

O: 𝐴𝜊,1, . . ., 𝐴𝜊,𝑗, . . ., 𝐴𝜊,𝑁 

where i indexes rule Ri in the sparse rule base, Ai,j = (a0, a1, a2) is the triangular linguistic term 

defined on the domain of the antecedent variable xj , j ∈ {1, . . . , N}, with N being the total 

number of antecedents, and Bi is the consequent. 

Let a given observed fuzzy value of the variable xj be denoted by A◦,j, and the representative 

value rep(A) of a triangular fuzzy set A be defined as the mean of the X coordinates of the 

triangle’s three odd points: the left and right extremities of the support a0, a2 (with membership 

values = 0), and the normal point a1 (with membership value = 1) 

𝑟𝑒𝑝(𝐴) =  (𝑎0 + 𝑎1 + 𝑎2) ∕ 3 

The distance between iR  and O is determined by computing the aggregated distance of all 

antecedent variables 

jx

i
range

A jA jid

d j
N
j d jORd

,

),,,(
,1

2),(


                     (2) 

where d(𝐴𝑖,𝑗, 𝐴𝑜,𝑗) = |𝑟𝑒𝑝(𝐴𝑖,𝑗) − 𝑟𝑒𝑝(𝐴∘,𝑗)| is the distance between the representative values of 

the two fuzzy sets in the jth antecedent, with rangexj = maxxj − minxj over the domain of the 

variable xj.dj ∈ [0,1] is therefore the normalized result of the otherwise absolute distance 

measure, so that distances are compatible with each other across different variable domains. The M, 

M ≥ 2 rules which have the least distance measurements, with regard to the observed values 

𝐴𝑜,𝑗 are then chosen to perform the interpolation in order to obtain the required conclusion B . 

Guided by the new observation, an intermediate rule is needed to approximately approach the 

final outcome of the consequent, by linearly interpolating the previously identified M closest rules 

to the observation. The antecedents of this rule are initially estimated by manipulating the 

antecedents of the M rules 

𝐴𝑗
†† = ∑ 𝓌𝑖,𝑗𝐴𝑖,𝑗

𝑀
𝑖=1                                                     (3) 

where 

                    𝜔𝑖,𝑗 =
𝓌𝑖,𝑗
†

∑ 𝓌
𝑖,𝑗
†𝑀

𝑘=1

,𝜔𝑖,𝑗
†
=𝑒𝑥𝑝

−𝑑(𝐴𝑖,𝑗,𝐴𝑜,𝑗)                      (4) 
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These 𝐴𝑗
††

are then shifted to 𝐴𝑗
†
 such that they have the same representative values as those of 

𝐴𝑜,𝑗 

𝐴𝑗
† = 𝐴𝑗

†† + 𝛿𝑗𝑟𝑎𝑛𝑔𝑒𝑥𝑗                          (5) 

where 𝛿𝑗 is the bias between 𝐴𝑜,𝑗 and 𝐴𝑗
†
on the jth variable domain 

𝛿𝑗 =
𝑟𝑒𝑝(𝐴𝑜,𝑗)−𝑟𝑒𝑝(𝐴𝑗

†
)

𝑟𝑎𝑛𝑔𝑒𝑥𝑗 
                            (6) 

From this, the shifted intermediate consequent 𝐵†can be computed, with the parameters 𝜔𝐵𝑖   and 

𝛿𝐵 being aggregated from those regarding the antecedents of 𝐴𝑗
†
, such that 

𝜔𝐵𝑖 =
1

𝑁
∑ 𝜔𝑖,𝑗, 𝛿𝐵 = 

1

𝑁
∑ 𝛿𝑗 .          
𝑁
𝑗=1

𝑁
𝑗=1                 (7) 

The above intermediate rule ensures that the representative values of its antecedents are the 

same as those of the corresponding elements in the given observation. In order to make the fuzzy 

values in this rule also the same as the observation (so that the observation matches the resulting 

rule), scale and move transformations will be required. 

Thus, guided by the observation, the current support of 𝐴𝑗
†
, ( 𝑎0

†
, 𝑎2

†
) is first rescaled to a new 

support ( 𝑎0
+, 𝑎2

+) such that , 𝑎2
+− 𝑎0

+ = 𝑠𝑗  ×  ( 𝑎2
† − 𝑎0

†) 

{
 
 
 

 
 
 𝑎0

+ = 
𝑎 
†
(1+2𝑠𝑗)+𝑎1

†
(1−𝑠𝑗)+𝑎 

†
(1−𝑠𝑗)    

3
                                                 ( )

𝑎1
+ = 

𝑎 
†
(1−𝑠𝑗)+𝑎1

†
(1+2𝑠𝑗)+𝑎 

 †
(1−𝑠𝑗)

3
                                                    ( )

𝑎2
 + = 

𝑎 
†
(1−𝑠𝑗)+𝑎1

 †
(1−𝑠𝑗)+𝑎 

 †
(1+2𝑠𝑗)

3
                                                (  )

𝑠𝑗 = 
𝑎 
 −𝑎 

 

𝑎 
†−𝑎 

†

                     

From this, the scaling factor sB for the consequent can then be calculated by 

𝑠𝐵 = 
∑ 𝑠𝑗
𝑁
𝑗=1

𝑁
                               (11) 

The resulting rescaled fuzzy values are subsequently moved using the following move rate  𝑗, 

so that the final transformed fuzzy sets match the corresponding elements in the observation 

{
 𝑗 = 

3(𝑎 −𝑎 
  )

𝑎1
  −𝑎 

 , 𝑎0 ≥ 𝑎0
 +  

 𝑗 = 
3(𝑎 −𝑎 

  )

𝑎3
  −𝑎 

 , otherwise
                      (12) 

From this, the move factor mB for the consequent is calculated such that 

                   𝐵 =
∑ 𝑚𝑗
𝑁
𝑗=1

𝑁
                           (13) 
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The final interpolated result 𝐵𝜊  can now be estimated by applying the scale and move 

transformation to B†, using the parameters 𝑠𝐵, and  𝐵. Note that given both transformations are 

linear operations, the order of applying the scale and move transformations can be reversed. 

The momentum equation obtained from the motion of the floating structure is extensively 

derived from Newton's second law. Assume that the momentum equation of a ocean structure 

system can be characterized by the following differential equation (see Ignaciuk and Bartoszewicz 

(2010), Korkmaz (2011), Kuok and Yuen (2012) 

)()( trMtXM 


                         (14) 

where n
n R)]t(x)t(x),t(x[)t(X  21  is an n-vector; )t(X),t(X),t(X     

  are the acceleration, 

velocity, and displacement vectors, respectively. This is only a static model and M is the mass of 

the system; )t(rM   is a wave-induced external force which can be expressed as follows 

TXwx FFtrM )(                            (15) 

where wxF  is the horizontal wave force acting on the both sides of the structure; and TxF  is the 

horizontal component of the static (or the pre-tensioned) tension applied by the tension legs. The 

static tension is given by fFTx  . 

For controller design as proposed by Hammami (2001) and Sun et al. (2003), the standard 

first-order state equation is obtained from Eq. (16) assuming the equation of motion for a 

shear-type-building modeled by an n-degrees-of-freedom system controlled by actuators and 

subjected to an external force 

)()()( tEtAXtX 
                          (16) 

where 









)t(x

)t(x
)t(X  , 










  CMKM

I
A 11

0
, 












r
E

0
, in which 

n
n R)]t(x)t(x),t(x[)t(X  21  is an n-vector; )t(X),t(X),t(X     

  are the acceleration, velocity, 

and displacement vectors, respectively; matrices M, C, and K are ( nn ) mass, damping, and 

stiffness matrices, respectively; r  is an n-vector denoting the influence of the external force; 

)t(  is the excitation with a upper bound )t()t(up   ; U(t) corresponds to the actuator forces 

(generated via active a tendon system or an active mass damper, for example). 

Thus 

∀𝑅𝑗
′, 𝑅𝑘

′ ∈ ℝ′, 𝑑(𝑅𝑗
′, 𝜇𝑞) =  𝑑(𝑅𝑘

′ , 𝜇𝑞)                   (17) 

where 

𝑑(𝑅′, 𝜇𝑞) =  √∑ (rep(𝐴𝑖
′) − 𝜇𝑞,𝑖)2

𝑁
𝑖=1 , 𝑅′ ∈  ℝ′                (18) 

To generate an 𝑅∗, a weighted aggregation method is employed that calculates the contribution 

of every candidate rule in the selected cluster with respect to the cluster centroid 𝑢𝑞.This process 

is similar to the construction of intermediate rules in T-FRI, where a matrix 𝑤𝑖𝑗of the rank 
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𝐶𝑞 × (𝑁 +  )  is involved. It reflects the weighting of the antecedent 𝐴𝑖𝑗
′ of an interpolated rule 

𝑅𝑖
′ ∈ 𝐶𝑞 in relation to the 𝑗th antecedent 𝐴𝑗

∗ of 𝑅∗such that 

𝑤𝑖,𝑗 =
1

𝑑(𝐴𝑖,𝑗
′  ,𝜇𝑞,𝑗)

 , 𝑖 ∈ { , … , |𝐶𝑞|}, 𝑗 ∈ * , … , 𝑁+             (19) 

and similarly, that of 𝐵𝑖
′ of the interpolated rule to 𝐵∗ 

𝑤𝑖,𝑁+1 =
1

𝑑(𝐵𝑖
′,𝜇𝑞,𝑁 1)

                            (20) 

The weights are then normalized, resulting in 

𝑤𝑖,𝑗
′ =

𝑤𝑖,𝑗

∑ 𝑤𝑖,𝑗
|𝐶𝑞|

𝑖=1

                            (21) 

With the resultant calculated weights, a new rule 𝑅∗ is thus, dynamically constructed, such that 

𝐴𝑗
∗ = ∑ 𝑤𝑖,𝑗

′|𝐶𝑞|

𝑖=1
𝐴𝑖,𝑗
′ , 𝑗 ∈ * , . . . , 𝑁+, 𝐵∗ = ∑ 𝑤𝑖,𝑁+1

′ 𝐵𝑖
′|𝐶𝑞|

𝑖=1
             (22) 

An LDI system can be described in the state-space representation (see Hu 2008 and Liu and Li 

2010) as follows 

),())(()( tYtaAtY 
 





r

i

ii AtahtaA
1

))(())((

                    (23) 

According to the interpolation method, we can obtain 









 )()()( tEthtX

                          (24)

 

Finally, based on Eq. (23), the dynamics of the NN model can be rewritten as the following 

LDI state-space representation 

)()()(
1

tEthtX
r

i

ii 




                        (25) 

Based on the above modeling schemes, the ocean structural system can be approximated as the 

T-S fuzzy model, which combines the flexibility of fuzzy logic theory and the rigorous 

mathematical analysis tools of a linear system theory into a unified framework. To ensure the 

stability of the ocean structure system, the T-S fuzzy model and the stability analysis are recalled. 

First, the ith rule of the T-S fuzzy model, representing the structural system, can be represented as 

follows 

Rule i: IF ippi M)t( xMtx   is   and  and    is )( 11                  (26) 

THEN )t(E)t(XA)t(XA)t(X iii                     (27) 

Through using the fuzzy inference method with a singleton fuzzifier, product inference, and 

center average defuzzifier, the dynamic fuzzy model (36) can be expressed as follows 
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Fig. 1 The controlled system response by the designed controller 
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Theorem 1: 

 

The augmented system is asymptotically stable in the large if there exists a common positive 

definite matrix , the controller gains and observer gains, can be found to satisfy the following 

matrix inequalities 

,       (29) 

 

 

4. The experiment design and the simulation result 
 

The ocean structure system is able to be modeled from the dynamics 
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where 1x  is the radius of the pendulum vertically, 2x  represents the rotation velocity, and r  

indicates the demand output angle. A set of NN based fuzzy rules is employed to describe the 

temporary state of the nonlinear system. Similar operations can be found in previous studies (see 

Liu and Lin (2012, 2012a, 2013)). By combining the whole set of fuzzy rules, the approximation 

of the nonlinear system is completed. Thus, the fuzzy model approximated inverted pendulum 

nonlinear system can be described as follows: 

A large population size provides a larger chance for the algorithm to find the near best solutions. 

However, a larger population size requires more memory resource and computation power. Hence, 

we set the population size to be 16 in the experiment.  

Fig. 1 gives the simulation result controlled by the designed controller. On the other hand, the 

controller maintains the system to be held in the stable state. 

 

 
5. Conclusions 

 

This paper has presented a D-FRI approach for designing a dynamic rule-based fuzzy system 

and its application to network security analysis, building an intelligent dynamic IDS. D-FRI is 

used to select, combine, and promote informative, frequently used interpolated rules into an 

existing sparse rule base. Systematic experimental results have shown that D-FRI can achieve 

higher accuracy and robustness than those achievable by the use of conventional FRI. 
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