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Abstract.  The Gauss-Legendre integral method is applied to numerically evaluate the Green function and 
its derivatives in finite water depth. In this method, the singular point of the function in the traditional 
integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method 
proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. 
Using this new methodology, the Green function with the field and source points near the water surface can 
be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new 
method is investigated. The numerical results using a Gauss-Legendre integral method show good 
agreements with other numerical results of direct calculations and series form in the far field. Furthermore, 
the cases with the field and source points near the water surface are also considered. Considering the 
computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain 
the accurate numerical results of the Green function and its derivatives in finite water depth and can be 
adopted in the near field. 
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1. Introduction 
 

The hydrodynamic motion and load response of offshore structures in finite water depth present 

different characteristics compared with those in deep water. Only when the precise solution of the 

Green function and its partial derivatives in finite water depth are obtained, is it possible to acquire 

an accurate motion response prediction of floating structures in finite water depth. Therefore, an 

accurate and efficient numerical evaluation of the Green function and its partial derivatives for a 

pulsating source in finite water depth is one of the most important aspects in the theory of potential 

flow applied to marine hydrodynamics. The development of fast computers makes it possible to 

conduct numerical calculations for three dimensional flows, which has also caused a search for 

expressions of the Green function in finite water depth with efficient numerical evaluation.  

Noblesse (1982, 1983, 1986) conducted the study concerned with the Green function and the 

general identity for the velocity potential of the potential flow theory about a body in regular 

waves in deep water. Wu (2017) expressed the Green function of the theory of diffraction radiation 

and its gradient in deep water as the sum of three components corresponding to the fundamental 
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free-space singularity, a non-oscillatory local flow and waves, using simple and global 

approximations involving elementary continuous functions within the entire flow region. The 

expression of the Green function in finite water depth mainly has two forms. One is the series 

expression proposed by John (1950), the other one is the integral form proposed by Wehausen and 

Laitone (1960). The series form presents a high computational efficiency. However, it is difficult 

to converge in the near field due to the existence of a singularity at R = 0, on one hand. On the 

other hand, the integral form presents a high accuracy but low computational efficiency in the far 

field. Therefore, to calculate the Green function and its partial derivatives in finite water depth, an 

algorithm has been proposed to utilize the integral form for the near field and the series form for 

the far field. For the integral form, due to the singularity in the Cauchy principal value integral and 

the oscillatory behavior of Bessel function, it is also one of the most challenging tasks to 

accurately evaluate the Green function in finite water depth. Li (2001) has applied Gauss-Laguerre 

integration to numerically evaluate the Green function and its partial derivatives in finite water 

depth, which transfers the integral form to the summation form.  Some results have been shown 

in this scenario to investigate the effect of forward speed on the wave loads in restricted water 

depth by Guha (2016). In Li’s method, the results from the Gauss-Laguerre integration is not 

stable for the far field and is slow to converge. Moreover, the result of the Green function with the 

field and source points near the water surface is not mentioned. Liu (2008) and Yang (2014) have 

developed an improved Gauss-Laguerre method, using a reduced fraction to separate the parts that 

can be calculated by the Green function in infinite water depth, in order to decrease the integral 

variable’s order of the rest of the integral functions. The numerical results of this improved 

Gauss-Laguerre method may lose precision in some cases. Wu (2017). 

Therefore, this study is concerned with constructing an alternative integral method for the 

Green function from the theory of linearized potential flow due to a source of pulsating strength in 

finite water depth. Both the precision and computational efficiency of the Gauss-Legendre integral 

method proposed in this paper are considered. Since the asymptotic behavior of the Green function 

in finite water depth is worth being investigated, especially in solving the wave resistance 

calculations by Yu (2017), 3-D energy balance in a wave field interacting with the OWC system by 

Wang (2017), and the irregular frequency removal problem and drift force calculation discussed by 

Liu (2016, 2017). This work will present a meaningful reference with details to numerically 

evaluate the Green function in finite water depth to further solve the ship moving problem. 

 

 

2. Introduction of the Gauss-Laguerre integral method 
 

The Green function in finite water depth can be expressed in terms of integral as follows 

(Wehausen and Laitone 1960) 

𝐺 =  
1

𝑟
+

1

𝑟∗
+ 𝐺𝐼𝑅2                           (1) 

Where 

𝐺𝐼𝑅2 · 𝑕 = 2𝑃𝑉 ∫
𝑒−𝑥·(𝑥+𝐾𝑕)·cosh (𝑥(𝑟2+1))·cosh (𝑥(𝑟3+1))·𝐽0(𝑥𝑟1)

𝑥·sinh(𝑥)−𝐾𝑕·cosh (𝑥)

∞

0
𝑑𝑥           (2) 
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𝐾 =  
𝜔2

𝑔
= 𝑘 · tanh (𝑘𝑕) 

𝑟 =  [(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 − 𝜁)2]
1

2 

𝑟∗ =  [(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 + 𝜁 + 2𝑕)2]
1

2 

𝑅 =  [(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]
1

2 

𝑟1 =
𝑅

𝑕
          𝑟2 =

𝜁

𝑕
         𝑟3 =

𝑧

𝑕
 

𝑝 = 𝑝(𝑥, 𝑦, 𝑧) is the field point; 𝑞 = 𝑞(𝜉, 𝜂, 𝜁) is the source point; h is the water depth; k is 

the wave number. PV is the Cauchy principal value of the integral with a singularity x0 = k·h. 𝐽0 

indicates the first kind Bessel function with zero order. 

The partial derivatives of the Green function in finite water depth can be so thus expressed as 

follows 

𝜕𝐺𝐼𝑅2

𝜕𝑅
. 𝑕2 = −2𝑃𝑉 ∫

𝑒−𝑥·𝑥.(𝑥+𝐾𝑕)·cosh (𝑥(𝑟2+1))·cosh (𝑥(𝑟3+1))·𝐽1(𝑥𝑟1)

𝑥·sinh(𝑥)−𝐾𝑕·cosh (𝑥)

∞

0
𝑑𝑥      (3) 

𝜕𝐺𝐼𝑅2

𝜕𝑧
. 𝑕2 = 2𝑃𝑉 ∫

𝑒−𝑥·𝑥.(𝑥+𝐾𝑕)·cosh (𝑥(𝑟2+1))·sinh (𝑥(𝑟3+1))·𝐽0(𝑥𝑟1)

𝑥·sinh(𝑥)−𝐾𝑕·cosh (𝑥)

∞

0
𝑑𝑥       (4) 

Considering the computational efficiency, a strategy is proposed that the integral form can be 

applied when R/h ≤ 0.5 and the series form can be applied for R/h > 0.5 (Newman, 1985).  

Li (2001) separated the Green function in finite water depth into two parts as follows 

𝐺𝐼𝑅2 · 𝑕 =

2𝑃𝑉 ∫ 𝑒−𝑥 · [
(𝑥+𝐾𝑕)·cosh(𝑥(𝑟2+1))·cosh(𝑥(𝑟3+1))·𝐽0(𝑥𝑟1)

𝑥·sinh(𝑥)−𝐾𝑕·cosh(𝑥)
 −

∞

0

(𝑘𝑕+𝐾𝑕)·cosh(𝑘𝑕(𝑟2+1))·cosh(𝑘𝑕(𝑟3+1))·𝐽0(𝑟1·𝑘𝑕)

(𝑥−𝑘𝑕)·(sinh(𝑘𝑕)+𝑘𝑕·cosh(𝑘𝑕)−𝐾𝑕·sinh(𝑘𝑕))
] 𝑑𝑥 −

                                       2𝑒−𝑘𝑕𝐸𝑖(𝑘𝑕)
(𝑘𝑕+𝐾𝑕)·cosh(𝑘𝑕(𝑟2+1))·cosh(𝑘𝑕(𝑟3+1))·𝐽0(𝑟1·𝑘𝑕)

sinh(𝑘𝑕)+𝑘𝑕·cosh(𝑘𝑕)−𝐾𝑕·sinh(𝑘𝑕)
            (5) 

Where 

𝑃𝑉 ∫
1

(𝑥−𝑎)
·

∞

0
𝑒−𝑥𝑑𝑥 = −𝑒−𝑎 · 𝐸𝑖(𝑎)                  (6) 

Therefore, the first part is the Cauchy principal value which can be approximated by the 

Gauss-Laguerre integral and the value of the second part can be calculated through the exponential 

integral. The Gauss-Laguerre quadrature can be expressed as follows 

∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥 ≈ ∑ 𝜔𝑗𝑓(𝑥𝑗)𝑁
𝑗=1

∞

0
                    (7) 

Where: 𝑥𝑗is the 𝑗𝑡𝑕 zero of the Laguerre polynomial 𝐿𝑛(𝑥) and 𝜔𝑗 is the weight. 

The numerical results from this method are slow to converge and may lose precision at high 

wave frequency. Liu (2008) separated the function in the Cauchy principal integral to isolate the 

exponential terms that cause the numerical error in the traditional Gauss-Laguerre integral method.  
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In this scenario, the exponential term containing 𝑒𝑥(1+𝑟2+𝑟3) to be integrated was particularly 

treated by using the Green function in infinite water depth. After that, Yang (2014) developed an 

improved Gauss-Laguerre integral method by handling the other exponential terms to obtain the 

accurate values of the Green function and its derivatives in finite water depth. This improved 

method could obtain the numerical value of the Green function correctly, but may lose precision in 

the far field and in some cases with high wave frequency. 

 
 
3. Gauss-Legendre integral method 

 

From the previous research of Liu (2008) and Yang (2014), the Green function in finite water 

depth can be transformed as follows 

𝐺𝐼𝑅2 · 𝑕 = 2𝑃𝑉 ∫
𝑒−𝑥 · (𝑥 + 𝐾𝑕) · cosh (𝑥(𝑟2 + 1)) · cosh (𝑥(𝑟3 + 1)) · 𝐽0(𝑥𝑟1)

𝑥 · sinh(𝑥) − 𝐾𝑕 · cosh (𝑥)

∞

0

𝑑𝑥 

= 𝑃𝑉 ∫
(𝑥 + 𝐾𝑕) · (𝑒𝑥𝑟2 + 𝑒𝑥(−2−𝑟2)) · (𝑒𝑥𝑟3 + 𝑒𝑥(−2−𝑟3)) · 𝐽0(𝑥𝑟1)

(𝑥 − 𝐾𝑕) − 𝑒−2𝑥(𝑥 + 𝐾𝑕)

∞

0

𝑑𝑥 

= 𝑃𝑉 ∫ [1 +
2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)

(𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥)

∞

0

] · [𝑒𝑥(𝑟2+𝑟3) + 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 

𝑒𝑥(−4−𝑟2−𝑟3)] · 𝐽0(𝑥𝑟1)𝑑𝑥                      (8) 

Considering the Bessel functions (Newman 1984) and their integrals (Abramowitz 1964) 

∫ 𝑒−𝑎𝑥∞

0
𝐽0(𝑏𝑥)𝑑𝑥 =

1

(𝑎2+𝑏2)0.5 , ∫ 𝑥𝑒−𝑎𝑥∞

0
𝐽0(𝑏𝑥)𝑑𝑥 =

𝑎

(𝑎2+𝑏2)1.5 

∫ 𝑒−𝑎𝑥∞

0
𝐽1(𝑏𝑥)𝑑𝑥 = (1 −

𝑎

(𝑎2+𝑏2)0.5
)

1

𝑏
 , ∫ 𝑥𝑒−𝑎𝑥∞

0
𝐽1(𝑏𝑥)𝑑𝑥 =

𝑏

(𝑎2+𝑏2)1.5   (9) 

The Green function and its partial derivatives can be expressed as follows 

𝐺𝐼𝑅2 · 𝑕 =
1

(𝑟1
2 + (𝑟2 + 𝑟3)2)0.5

+
1

(𝑟1
2 + (2 + 𝑟3 − 𝑟2)2)0.5

+
1

(𝑟1
2 + (2 + 𝑟2 − 𝑟3)2)0.5

+
1

(𝑟1
2 + (4 + 𝑟2 + 𝑟3)2)0.5

+                     𝑃𝑉 ∫
2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)

(𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥)

∞

0

· [𝑒𝑥(𝑟2+𝑟3) + 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 

 𝑒𝑥(−4−𝑟2−𝑟3)] · 𝐽0(𝑥𝑟1)𝑑𝑥                       (10) 

−
𝜕𝐺𝐼𝑅2

𝜕𝑅
· 𝑕2 =

𝑟1

(𝑟1
2 + (𝑟2 + 𝑟3)2)1.5

+
𝑟1

(𝑟1
2 + (2 + 𝑟3 − 𝑟2)2)1.5

+
𝑟1

(𝑟1
2 + (2 + 𝑟2 − 𝑟3)2)1.5

+                                         
𝑟1

(𝑟1
2 + (4 + 𝑟2 + 𝑟3)2)1.5

+  𝑃𝑉 ∫
2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)

(𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥)

∞

0

· [𝑒𝑥(𝑟2+𝑟3)

+                                                      𝑒 𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3)]
· 𝑥 · 𝐽1(𝑥𝑟1)𝑑𝑥 

(11) 
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𝜕𝐺𝐼𝑅2

𝜕𝑧
· 𝑕2 =

−𝑟2 − 𝑟3

(𝑟1
2 + (𝑟2 + 𝑟3)2)1.5

−
−𝑟2 + 𝑟3 + 2

(𝑟1
2 + (2 + 𝑟3 − 𝑟2)2)1.5

+
−𝑟3 + 𝑟2 + 2

(𝑟1
2 + (2 + 𝑟2 − 𝑟3)2)1.5

−                                    
4 + 𝑟2 + 𝑟3

(𝑟1
2 + (4 + 𝑟2 + 𝑟3)2)1.5

+  𝑃𝑉 ∫
2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)

(𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥)

∞

0

· [𝑒𝑥(𝑟2+𝑟3)

−                                                  𝑒 𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) − 𝑒𝑥(−4−𝑟2−𝑟3)]
· 𝑥 · 𝐽0(𝑥𝑟1)𝑑𝑥 

 (12) 

For a Cauchy principal integral 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥−𝑎)·𝑔′(𝑎)
) 𝑑𝑥

∞

0
, the point 𝑥 = 𝑎 is the unique 

singularity of 
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥−𝑎)·𝑔′(𝑎)
, whose limitation at this point is 

2𝑓′(𝑎)𝑔′(𝑎)−𝑔′′(𝑎)𝑓(𝑎)

2(𝑔′(𝑎))2  through 

l'Hôpital's Rule. Therefore, the integral with the integration interval from 0 to infinity can be 

divided into two integrals with the finite integration intervals 

∫ 𝐹(𝑥)𝑑𝑥
∞

0
= ∫ 𝐹(𝑥)𝑑𝑥 + ∫ 𝐹(1/𝑥) · 𝑥−2𝑑𝑥

1

𝑎
0

𝑎

0
                   (13) 

The Gauss-Legendre integration formula is applied to approximate the integral with finite 

integration interval as follows 

∫ 𝑓(𝑦)𝑑𝑦 ≈
𝑏 − 𝑎

2
∑ 𝜔𝑗𝑓(𝑦𝑗)

𝑁

𝑗=1

b

𝑎

 

𝑦𝑗 = (
𝑏−𝑎

2
) 𝑥𝑗 +

𝑏+𝑎

2
                             (14) 

Where: 𝑥𝑗 is the 𝑗𝑡𝑕  zero of the Legendre polynomial 𝑃𝑛(𝑥) , 𝑃𝑛(1) = 1 . 

𝜔𝑗 = 2 (1 − 𝑥𝑗
2)[𝑃𝑛

′(𝑥𝑗)]2⁄ . 

According to the definition, the term 𝑟2 + 𝑟3 is from -2 to 0, while −2 ± 𝑟3 − (±𝑟2) and 

−2 − 𝑟3 − 𝑟2 are from -3 to -1 and -4 to -2, respectively. When the field point and the source point 

are both close to the water surface, namely 𝑟2 + 𝑟3 is from -0.2 to 0, the exponential term 

𝑒𝑥(𝑟2+𝑟3) converges much slower than the other three exponential terms. In this scenario, the 

integral with 𝑒𝑥(𝑟2+𝑟3) is handled specially through the Green function in infinite water depth to 

leave the Bessel function in the integral to help the whole function (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥−𝑎)·𝑔′(𝑎)
) ·

𝑒𝑥(𝑟2+𝑟3) · 𝐽0(𝑥𝑟1) converges faster. Therefore, less zero points of the Legendre polynomial are 

needed to evaluate the integral with certain accuracy, which contributes to a higher computational 

efficiency. The integral with 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3)  is evaluated by 

substituting Bessel function into the function 𝑓(𝑥), since the function  (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥−𝑎)·𝑔′(𝑎)
) ·

(𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))  itself converges fast enough. Therefore, the 

expressions of the integral forms are as follows: 

For the integral containing 𝑒𝑥(𝑟2+𝑟3) 

𝑃𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0

𝐽0(𝑥𝑟1)𝑑𝑥 = 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) ·   𝑒𝑥(𝑟2+𝑟3) ·

∞

0

𝐽0(𝑥𝑟1)𝑑𝑥 + 
𝑓(𝑎)

𝑔′(𝑎)
· 
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𝑃𝑉 ∫
1

(𝑥−𝑎)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0
𝐽0(𝑥𝑟1)𝑑𝑥                     (15) 

Where 

𝑓(𝑥) = 2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕) 

                    𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 

𝑃𝑉 ∫
1

(𝑥−𝑎)
· 𝑒𝑥𝑟 ·

∞

0
𝐽0(𝑥𝑟1)𝑑𝑥 can be evaluated from the Green function in infinite water depth 

(Wang, 1992). 

For the integral containing 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3) 

𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
·

∞

0

(𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥

= 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) ·    (𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3)

∞

0

+ 𝑒𝑥(−4−𝑟2−𝑟3)) 𝑑𝑥 + 
𝑓(𝑎)

𝑔′(𝑎)
· 𝑃𝑉 ∫

1

(𝑥 − 𝑎)
·

∞

0

(𝑒𝑥(−2−𝑟3+𝑟2) + 

𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥                  (16) 

Where 

𝑃𝑉 ∫
1

(𝑥 − 𝑎)
·

∞

0

𝑒−𝑥𝑑𝑥 = −𝑒−𝑎 · 𝐸𝑖(𝑎) 

                     𝑓(𝑥) = (2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)) · 𝐽0(𝑥𝑟1) 

                    𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 
Similarly, the integral forms of the Green function’s partial derivatives can be obtained. 

𝜕𝐺𝐼𝑅2

𝜕𝑅
· 𝑕2 : 

For the integral containing 𝑒𝑥(𝑟2+𝑟3) 

𝑃𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0

𝑥 · 𝐽1(𝑥𝑟1)𝑑𝑥 = 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) · 𝑒𝑥(𝑟2+𝑟3) ·  𝑥 ·

∞

0

𝐽1(𝑥𝑟1)𝑑𝑥 + 

𝑓(𝑎)

𝑔′(𝑎)
· 𝑃𝑉 ∫

𝑥

(𝑥−𝑎)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0
𝐽1(𝑥𝑟1)𝑑𝑥                    (17) 

Where 

𝑓(𝑥) = 2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕) 

𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 

For the integral containing 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3) 

𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
·

∞

0

(𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥

= 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) · (𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))

∞

0

𝑑𝑥

+ 
𝑓(𝑎)

𝑔′(𝑎)
· 𝑃𝑉 ∫

1

(𝑥 − 𝑎)
·

∞

0

(𝑒𝑥(−2−𝑟3+𝑟2) + 
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𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥                    (18) 
Where 

𝑓(𝑥) = (2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)) · 𝑥 · 𝐽1(𝑥𝑟1) 

𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 
𝜕𝐺𝐼𝑅2

𝜕𝑧
· 𝑕2  

For the integral containing 𝑒𝑥(𝑟2+𝑟3) 

𝑃𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0

𝑥 · 𝐽0(𝑥𝑟1)𝑑𝑥 = 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) · 𝑒𝑥(𝑟2+𝑟3) · 𝑥 ·

∞

0

𝐽0(𝑥𝑟1)𝑑𝑥 + 

𝑓(𝑎)

𝑔′(𝑎)
· 𝑃𝑉 ∫

𝑥

(𝑥−𝑎)
· 𝑒𝑥(𝑟2+𝑟3) ·

∞

0
𝐽0(𝑥𝑟1)𝑑𝑥               (19) 

Where 

𝑓(𝑥) = 2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕) 

𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 

For the integral containing 𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) + 𝑒𝑥(−4−𝑟2−𝑟3) 

𝑃𝑉 ∫
𝑓(𝑥)

𝑔(𝑥)
·

∞

0

(−𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) − 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥

= 𝑃𝑉 ∫ (
𝑓(𝑥)

𝑔(𝑥)
−

𝑓(𝑎)

(𝑥 − 𝑎) · 𝑔′(𝑎)
) · (−𝑒𝑥(−2−𝑟3+𝑟2) + 𝑒𝑥(−2−𝑟2+𝑟3) − 𝑒𝑥(−4−𝑟2−𝑟3))

∞

0

𝑑𝑥

+  
𝑓(𝑎)

𝑔′(𝑎)
· 𝑃𝑉 ∫

1

(𝑥 − 𝑎)
·

∞

0

(−𝑒𝑥(−2−𝑟3+𝑟2) + 

𝑒𝑥(−2−𝑟2+𝑟3) − 𝑒𝑥(−4−𝑟2−𝑟3))𝑑𝑥                     (20) 

Where 

𝑓(𝑥) = (2𝐾𝑕 + 𝑒−2𝑥(𝑥 + 𝐾𝑕)) · 𝑥 · 𝐽0(𝑥𝑟1) 

𝑔(𝑥) = (𝑥 · tanh(𝑥) − 𝐾𝑕) · (1 + 𝑒−2𝑥) 
Therefore, the Green function and its partial derivatives in finite water depth can be expressed 

as the summation of the special functions (𝐸𝑖 and the Green function in infinite water depth) and 

integrals that can be evaluated through the Gauss-Legendre integral method. 

 
 

4. Results and discussion 
 
The Green function and its partial derivatives in finite water depth can be regarded as functions 

of 𝑘𝑕, 𝑅 𝑕⁄ , 𝑧 𝑕⁄  and 𝜁 𝑕⁄ . The values of the Green function and its partial derivatives through 

the Gauss-Legendre integral method are compared with those from direct integral calculation 

using Romberg’s method and series form both in the near field and far field to verify the accuracy 

of the new method proposed in this paper. The numerical calculations with two different wave 

frequencies (kh = 0.46268 and 2.06534) are conducted. Moreover, the cases with the field and 

source points near the water surface are also considered as a comparison with the cases with the 

field point near the water bottom. 
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𝜕𝑅
· 𝑕2 

 

(c) 
𝜕𝐺

𝜕𝑧
· 𝑕2 

Fig. 1 The Green function and its derivatives (kh = 0.46268, 𝜁 𝑕⁄ = 0, z/h = -0.8 for (c),  z/h = -1 for 

(a) and (b)) 

 
 

  

(a) Gh (b) 
𝜕𝐺

𝜕𝑅
· 𝑕2 

 

(c) 
𝜕𝐺

𝜕𝑧
· 𝑕2   

Fig. 2 The Green function and its derivatives (kh = 1.19968, 𝜁 𝑕⁄ = 0, z/h = -0.8 for (c), z/h = -1 

for (a) and (b)) 
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(c) 
𝜕𝐺

𝜕𝑧
· 𝑕2  

Fig. 3 The Green function and its derivatives (kh = 2.06534, 𝜁 𝑕⁄ = 0, z/h = -0.8 for (c), z/h = -1 

for (a) and (b)) 
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𝜕𝑅
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𝜕𝑧
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Fig. 4 The Green function and its derivatives (Zoom in for Fig.1) 

407



 

 

 

 

 

 

Zhitian Xie, Yujie Liu and Jeffrey Falzarano 

  

(a) Gh (b) 
𝜕𝐺

𝜕𝑅
· 𝑕2 

 

(c) 
𝜕𝐺
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Fig. 5 The Green function and its derivatives (Zoom in for Fig. 2) 

 
  

(a) Gh (b) 
𝜕𝐺

𝜕𝑅
· 𝑕2 

 

(c) 
𝜕𝐺

𝜕𝑧
· 𝑕2  

Fig. 6 The Green function and its derivatives (Zoom in for Fig. 3) 
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𝜕𝐺

𝜕𝑧
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Fig. 7 The Green function and its derivatives (kh = 0.46268, 𝜁 𝑕⁄ = 0, z/h = -0.01) 
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Fig. 8 The Green function and its derivatives (kh = 1.19968, 𝜁 𝑕⁄ = 0, z/h = -0.01) 
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Fig. 9 The Green function and its derivatives (kh = 2.06534, 𝜁 𝑕⁄ = 0, z/h = -0.01) 

 
 

Figs. 1-3 present the numerical results of the cases with field points near the water bottom. 

Since the value of  𝜕𝐺 𝜕𝑧⁄  is always 0 when 𝑧 𝑕⁄ = −1, thus 𝑧 𝑕⁄ = −0.8 is chosen to present 

the numerical results of 𝜕𝐺 𝜕𝑧⁄ . The numerical results through the Gauss-Legendre integral 

method show good agreements with the direct calculations using Romberg’s method in both the 

near field and far field, which present an accurate numerical result. The results of the series form 

have a good coincidence with those from the Gauss-Legendre integral and direct integral 

calculation with high computational efficiency, but lose precision in the near field when 𝑅 𝑕⁄ ＜1.  

As there are totally 20 zero points of Legendre polynomial applied to numerically evaluate the 

Green function and its derivatives in finite water depth, the Gauss-Legendre integral method 

presents a high computational efficiency in this scenario. 

Figs. 7-9 present the numerical results of the cases with field points near the water surface. The 

numerical results of the Gauss-Legendre integral method agree well with that of direct integral 

method using Romberg’s method in both the near field and far field. As 𝑅 𝑕⁄  increases, the 

difference between the results of series form and the other two methods decreases. It should be 

noted that there are about 100 zero points of the Legendre polynomial applied for the 

Gauss-Legendre integral method in the water surface case. One reason is that when the field point 

and source point are both close enough to the water surface, 𝑒𝑥(𝑟2+𝑟3) mentioned previously 

converges slowly as 𝑥 tends to positive infinity. Therefore, there are more Legendre polynomial 

zero points needed to evaluate the second Gauss-Legendre integral. Through investigation, it can 

be concluded that less than 20 Legendre polynomial zero points are needed for 𝑟2 + 𝑟3 ≤ −0.2, 

50 points for −0.2＜𝑟2 + 𝑟3 ≤ −0.05 and about 100 points are needed for −0.05＜𝑟2 + 𝑟3 ≤
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−0 to promise the numerical accuracy. Further investigation is needed in this scenario to evaluate 

the Green function and its derivatives with field point and source point extremely close to the 

water surface with a higher computational efficiency. The Gauss-Legendre integral method is 

practical to evaluate the Green function and its partial derivatives in finite water depth in the near 

field (𝑅 𝑕⁄ ≤ 1) with a high computational efficiency, combined with series form in the far 

field (𝑅 𝑕⁄ ＞1). 

 
 
5. Conclusions 
 

The Green function and its partial derivatives in finite water depth are numerically evaluated in 

this research to predict the hydrodynamic motion and load response of offshore structures. The 

Gauss-Legendre integral method is applied to evaluate the integral form of the Green function, 

whose numerical results are compared with those of other numerical methods.  

 The results of the Gauss-Legendre method show a good agreement with the direct integral 

method in both the near field and far field and series form in the far field.  

 The computational efficiency of the case with the field point near the water bottom is 

higher than that of the case with the field point near the free surface, due to the 

convergence of the exponential term.  

 It is found that the series form presents a high accuracy and computational efficiency in the 

far field, but loses precision in the near field. Considering the computational efficiency and 

accuracy. 

 It is suggested in this paper to apply the Gauss-Legendre integral method while 𝑅 𝑕⁄ ≤ 1 

and the series form while 𝑅 𝑕⁄ ＞1 to numerically evaluate the Green function and its 

derivatives in finite water depth. 
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