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Abstract.  Wave load prediction at zero forward speed using finite depth Green function is a 
well-established method regularly used in the offshore and marine industry. The forward speed 
approximation in deep water condition, although with limitations, is also found to be quite useful for 
engineering applications. However, analysis of vessels with forward speed in finite water depth still requires 
efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding 
motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite 
depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to 
allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean 
second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in 
predicting added resistance is incorporated. This implementation provides the unique capability of predicting 
added resistance in finite water depth with flare angle effect using a Green function approach. The results are 
validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with 
forward speed is presented. 
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1. Introduction 
 

The recent trend in building ultra large vessels such as the Maersk Triple E class container ship, 

Prelude FLNG and SHI's 330m long FPSO created renewed interest in understanding the behavior 

of floating structures with forward speed in deep and restricted water depths. The large draft of 

these vessels requires consideration of seabed clearance for most harbors and even for operating 

condition in the open seas. Also, to design channels connecting the harbor to sea, it is important to 

study the vertical motions of a ship to ensure no grounding occurs during the passage. For this, the 

prediction of the hydrodynamic coefficient and 6DOF motion of the vessel traveling with a steady 

forward speed in finite water depth is of interest. 

The second order drift forces are also very important for designing mooring systems and side 

by side offloading operations. Finite depth effects must be considered in the calculation of drift 

forces and the corresponding effect on vessel motion to ensure the mooring line tension and vessel 

offsets are within the bounds for safe operation. It was found that the water depth effects on 
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hydrodynamic coefficients becomes perceptible when the water depth is less than about four times 

the draft of the ship, defined here as intermediate water depth. When the depth to draft ratio 

becomes less than 2, the effect of the bottom becomes significant and is considered to be shallow 

water. 

The close proximity of the seabed affects the vessel motion in two ways. First, the incident 

waves change due to a restricted water depth where the wavelength is related to depth by the 

dispersion relation. Secondly, the hydrodynamic coefficients such as the added mass, radiation 

damping and diffraction forces changes due to the bottom boundary condition. These 

hydrodynamic coefficients can be obtained using potential theory by applying the finite depth 

Green function. 

In this paper, the development of a new finite depth Green function is explained which is then 

implemented in an existing 3D panel method program named MDLHydroD (Guha 2012, Guha and 

Falzarano 2015, 2016, 2013). The forward speed approximations are applied using encounter 

frequency and simplified m-terms. The results obtained show a significant effect of forward speed 

and water depth on wave excitation forces and vessel motion. 

 

 

2. Formulation 
 

The boundary value problem is formulated with a body (floating or fully submerged) traveling 

with steady forward speed 𝑈 or equivalently fixed in a current of equal magnitude and opposite 

direction. Regular waves of incidence frequency 𝜔𝐼 with heading angle 𝛽 and amplitude 𝐴, 

traveling in uniform water depth ℎ are considered. The relation between finite water depth and 

the wave frequency is expressed as the dispersion relation ω2  =  kg tanh(𝑘ℎ) , where 𝑘 is the 

wave number. To solve the dispersion relation an efficient code applying higher order iterative 

technique following (Newman 1990) is developed. 

The forward speed changes the frequency at which the body encounters the waves, which is 

expressed as the encounter frequency 𝜔𝑒 = 𝜔𝐼 − 𝑘𝐼𝑈 cos 𝛽. The unsteady fluid potential around 

the body is given by 

 ( ⃗ 𝑡) = [−𝑈    ( ⃗)]  [ 𝐼( ⃗ 𝛽 𝜔𝐼)    ( ⃗ 𝛽 𝜔𝐼)  ∑ 𝑗 𝑗( ⃗ 𝑈 𝜔𝑒)

6

𝑗  

]  𝑖    (1) 

where    is the steady disturbance potential due to forward motion of the body in calm water.  𝐼 
is the potential due to incident wave,    is the diffraction potential and  𝑗 is the radiation 

potential.  𝑗  is the motion amplitude of the body in 6 degrees of freedom. The continuity 

condition in the fluid domain gives the Laplace equation 

 2 =   (2) 

where the potential can be solved by applying the following boundary conditions: 

1. Combined dynamic and kinematic free surface boundary condition:[( 𝜔𝑒 − 𝑈
 

  
)
2
 

 
 

  
] ( 𝐼      𝑗) =   on  =   

2. The bottom boundary condition: 
 

  
( 𝐼      𝑗) =   on  = −ℎ 
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3. The Sommerfeld radiation condition: lim𝑘    𝑘𝑟 (
 

  
−  𝑘) ( −  𝐼) =   

4. The body surface no-penetration boundary condition: 

a. Radiation: 
   

  
=  𝜔𝑒 𝑗  𝑈 𝑗 on   

b. Diffraction: 
   

  
 
   

  
=   on   

where simplified  𝑗 ≈ (         3 − 2) terms with body normal  ⃗⃗ = (    2  3) are applied. 

The linear incident wave potential satisfying above boundary conditions is given by 

 𝐼 =
  𝐴

𝜔𝐼

cosh(𝑘𝐼(  ℎ))

cosh(𝑘𝐼ℎ)
  𝑖𝑘 ( cos   sin ) (3) 

An approximation to the radiation potential for low to moderate forward speed can be obtained 

using the zero speed potential as 

 𝑗 =  𝑗
  for  =         

 5 =  5
  

𝑈

 𝜔𝑒
 3
  

 6 =  6
 −

𝑈

 𝜔𝑒
 2
  

(4) 

Analytical solutions for the radiation potential  𝑗  and the diffraction potential    are 

generally not available for arbitrary shaped bodies, which necessitates the use of numerical 

techniques such as the source distribution method. 

 

2.1 The source distribution method 

 
To obtain the diffraction and radiation velocity potentials, the body surface is discretized into 

𝑁 quadrilateral panels of areaΔ 𝑗 and a source of unknown strength is distributed uniformly over 

each panel. The zero speed velocity potential can be written in terms of the unknown source 

strength 𝜎 as 

  =
 

  
∫ 𝜎( ⃗ ) ( ⃗  ⃗ )

 

 𝑠 (5) 

where  ⃗ is the field point where the potential is being evaluated due to a source at  ⃗ . Here, 

 ( ⃗  ⃗ )is the finite depth Green function which satisfies the free surface, bottom and radiation 

boundary conditions. Applying the body boundary condition gives 

−
 

 
𝜎𝑖  

 

  
∑𝜎( ⃗ )

  

  
( ⃗  ⃗ )Δ 𝑗 = {

 𝜔𝑒 𝑗     a iation

−
  𝐼
  

   Diffraction

 

𝑗  

 (6) 

This system of linear equations is solved using efficient matrix inversion algorithms to obtain 

the source strength 𝜎𝑖 on each panel. 
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2.2 The finite depth green function 

 
In obtaining the source strength on each panel of the body, the most computationally 

burdensome aspect is due to the Green function evaluation. For a body with 𝑁 panels, the Green 

function must be evaluated for at least (𝑁 −  ) × (𝑁 −  ) times and 4 times more in the case of a 

higher order integration method such as Gauss quadrature, which consumes a large portion of the 

CPU time. To overcome this, an efficient finite depth Green function has been developed. The 

analytical form of the finite depth Green function is given in (John 1949, 1950) which is also 

summarized in (Wehausen & Laitone, 1960). In terms of numerical stability and the computational 

efficiency the finite depth Green function is divided into two separate functions which are used in 

the domain 
𝑅

𝑕
<  .5  and 𝑅/ℎ ≥  .5 , where 𝑅 = [( − 𝜉)2  (𝑦 −  )2] /2 is the horizontal 

distance from the source 𝑞(𝜉   𝜁) to the field point 𝑝(  𝑦  ). 
 

2.3 Integral form of the green function 

 

The integral form of the Green function is suitable for 
𝑅

𝑕
<  .5 and found to be unstable for 

𝑅

𝑕
> 7. The analytical form of this function is given by (Wehausen and Laitone 1960) as 

 (𝑝 𝑞) = 

 

𝑟
 
 

𝑟 
   𝑉∫

(   )   𝑕 cosh( (𝜁  ℎ)) cosh( (  ℎ))

 sinh( ℎ) −  cosh( ℎ)

 

 

  ( 𝑅)  

  
  (𝑘   )  𝑘𝑕 sinh(𝑘ℎ) cosh(𝑘(𝜁  ℎ)) cosh(𝑘(  ℎ))

 ℎ  sinh2(𝑘ℎ)
  (𝑘𝑅) 

(7) 

where  𝑉 represents the principal value integral and 

 =
𝜔2

 
= 𝑘 tanh(𝑘ℎ) 

𝑟 = [( − 𝜉)2  (𝑦 −  )2  ( − 𝜁)2]
 

  

𝑟 = [( − 𝜉)2  (𝑦 −  )2  (   ℎ  𝜁)2]
 

  

𝑅 = [( − 𝜉)2  (𝑦 −  )2]
 

  

(8) 

The solution of the Rankine part for both source and the image source is obtained using the 

method described by (Hess and Smith 1964). The full numerical implementation details for this is 

given in (Guha 2012). The imaginary part of the Green function can be directly calculated. The 

numerical difficulty is presented mostly by the principal value integral part of the Green function. 

Using the method of substitution the singularity of the function is removed and a form that can be 

numerically integrated is obtained. The Gauss-Laguerre quadrature is implemented to efficiently 

obtain the value of the integral. 

 

2.4 Series form of the green function 
 

The series form of the Green function is applicable for the rest of the domain 
𝑅

𝑕
≥  .5. (John 
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1949, 1950) derived the infinite series expansion for the finite depth Green function as 

 (𝑝 𝑞) = 

  
 2 − 𝑘2

𝑘2ℎ −  2ℎ   
cosh(𝑘(  ℎ)) cosh(𝑘(𝜁  ℎ))[  (𝑘𝑅)     (𝑘𝑅)]

  ∑
𝑘 
2   2

𝑘 
2ℎ   2ℎ −  

cos(𝑘 (  ℎ)) cos(𝑘 (𝜁  ℎ)) (𝑘 𝑅)

 

   

 

(9) 

where 𝑘  denotes the set of corresponding positive real roots of equation: 𝑘 tanh(𝑘 ℎ) =  − . 

Again, the function can be broken into real and imaginary parts. The imaginary part can be 

rewritten using the relation given by (Wehausen and Laitone 1960) to be equal to the imaginary 

part of the integral form of the Green function which can be calculated directly. The real part of the 

Green function has a singularity at 
𝑅

𝑕
=   and takes a significantly large number of terms in the 

infinite sum to give a converged solution. However, for the domain 
𝑅

𝑕
≥  .5 a six decimal 

accuracy can be achieved by using approximately 6ℎ/𝑅 number of terms. To be consistent, the 

algorithm is developed to iterate until a 7 significant digit accuracy is achieved. 

A number of comparisons are made with published data to establish the accuracy and validity 

of the code. Fig. 1 shows for the case  ℎ = 5 the comparison between the series and integral 

Green function with that of (Li 2001) and (Monacella 1966). Further validations can be found in 

(Guha 2016). 

 

 

 

Fig. 1 The real part of  ℎ when  ℎ = 5. , 𝑘ℎ = 5.    5  and  < 𝑅/ℎ < 7 

 

 

 

309



 

 

 

 

 

 

Amitava Guha and Jeffrey Falzarano 

 

2.5 Forces and motions of the body 

 
The forces and moments on the body are obtained by integrating the pressure over the 

submerged body surface. The pressure is obtained from the velocity potential by applying the 

Bernoulli's equation 

 =
 

 
 𝑈2 −  

  

 𝑡
−
 

 
 |  |2 −     (10) 

The hydrodynamic force can be obtained by 

  𝑗 = −∫   𝑗 𝑠 
   =       6 (11) 

The added mass and damping is obtained by integrating the radiation pressure over the hull as 

𝐴𝑗𝑘
 = −

 

𝜔𝑒
∫  ( 𝑘) 𝑗 𝑠
 

 𝑗𝑘
 = − ∫𝑅 ( 𝑘) 𝑗 𝑠

 
 (12) 

followed by forward speed corrections as described in (Guha and Falzarano 2016). The wave excitation 

force due to incident wave also known as the Froude-Krylov force is obtained as 

 𝐼 =  𝜔𝐼 ∫ 𝐼 𝑗 𝑠
 

 (13) 

and the force due to diffracted wave is 

  =  ∫( 𝜔𝑒 𝑗 − 𝑈 𝑗)   𝑠
 

= − ∫  𝑗
   𝐼
  

 𝑠
 

 for  =        

=
=

− ∫  𝑗
   𝐼
  

 𝑠
 

 
 𝑈

 𝜔𝑒
∫ 3

 
  𝐼
  

 𝑠  for  = 5
 

− ∫  𝑗
   𝐼
  

 𝑠
 

−
 𝑈

 𝜔𝑒
∫ 2

 
  𝐼
  

 𝑠  for  = 6
 

 (14) 

The calculated added mass, damping and wave excitation forces are used to solve the equation 

of motion to get the vessel response as 

∑[−𝜔𝑒
2( 𝑗𝑘  𝐴𝑗𝑘)   𝜔𝑒 𝑗𝑘   𝑗𝑘] 𝑘 =  𝑗

𝐼   𝑗
    for  =       6

6

𝑘  

 (15) 

where  𝑗𝑘  is the mass matrix,  𝑗𝑘 is the hydrostatic stiffness matrix and  𝑘  the vessel response in 

𝑘 𝑕 mode of motion. 

 

2.6 Calculation of the second order mean drift forces 

 
The influence of second order mean drift forces are proven to be of critical importance in the 

prediction of stability criteria for floating bodies as well in determining the integrity of the 

mooring system design. Numerical prediction of the mean drift forces rely primarily upon two 
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methods. First, the far field method proposed by (Maruo 1960) which is based on diffracted and 

radiated wave energy and the momentum flux at infinity. Second is the near field method first 

proposed by (Boese 1970) and later modified by (Pinkster 1979) and (Faltinsen, Minsaas et al. 

1980). This method is more intuitive and gives forces in all 6DOF compared to the former which 

can only provide forces in 3DOF. In the near field method, a perturbation approach is applied to 

differentiate zeroth, first and second order quantities and the forces and moments are simply 

obtained by integrating the hydrodynamic pressure on the body surface. 

The velocity potential  , wave elevation 𝜁  relative wave elevation 𝜁 , body motion 

amplitude   and the pressure 𝑝 are perturbed using a small parameter 𝜖 of the order of the 

wave slope assuming small amplitude oscillation of the body about a mean position. 

 = 𝜖 ( )  𝜖2  (2)    

𝜁 = 𝜖𝜁( )  𝜖2𝜁(2)    

𝜁 = 𝜖𝜁 
( )
 𝜖2𝜁 

(2)
   

 ⃗ = 𝜖 ⃗
( )  𝜖2 ⃗(2)    

𝑝 = 𝑝( )  𝜖𝑝( )  𝜖2𝑝(2)    

(16) 

Substituting the above expressions into the Bernoulli's Eq. (10) gives the expression for zeroth, 

first and second order pressures. Similarly, the perturbation of the hydrodynamic force in Eq. (11) 

give 

 ⃗ = −(∫  𝑠  ∫ 𝜁   
 𝑙  

) (𝑝( )  𝜖𝑝( )  𝜖2𝑝(2)) ( ⃗⃗( )  𝜖( ⃗( ) ×  ⃗⃗( ))  𝜖2  ⃗⃗( )) (17) 

Separating terms with 𝜖2 gives the second order force equation as 

 ⃗(2) = −∫
 

 
  (𝜁 

( ))
2  ⃗⃗( )

√ −  3
2
  

 𝑙

 ∫  (
  (2)

 𝑡
− 𝑈

  (2)

  
)  ⃗⃗( ) 𝑠

  

 ∫
 

 
{(
  ( )

  
)

2

 (
  ( )

 𝑦
)

2

 (
  ( )

  
)

2

}  ⃗⃗( ) 𝑠
  

 ∫  𝜔𝑒 {(  −  6𝑦   5  )
  ( )

  
 ( 2   6  −  4  )

  ( )

 𝑦  

 ( 3   5  −  4𝑦 )
  ( )

  
}  ⃗⃗( ) 𝑠

−   𝐴( ) [ 4 6   𝑓   5 6𝑦  𝑓  
 

 
( 4
2   5

2)  ] 𝑘̂

− 𝜔𝑒
2{− 2 6   4 6  𝑔 −  6 6  𝑔   3 5   4 5𝑦𝑔 −  5 5  𝑔} ̂

− 𝜔𝑒
2{   6   5 6  𝑔 −  6 6 𝑦𝑔 −  3 4 −  4 4 𝑦𝑔   4 5  𝑔} ̂

− 𝜔𝑒
2{−   6 −  5 5  𝑔   5 6 𝑦𝑔   2 4 −  4 4  𝑔   4 6  𝑔}𝑘̂ 

(18) 
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Taking a time average over one wave period cancels the term with the second order potential 

and the rest of the terms can be evaluated from the linear potential theory. Similarly the second 

order moment terms can be obtained, but excluded from here for brevity (See (Guha 2016)). These 

forces are known as the mean drift forces. A critical term included here is the multiplication of 
 ⃗⃗( )

√   3
 
 with the waterline integral term, which allows consideration of hull emergence angle (or 

flare angle) in prediction of added resistance. This is found to be of significant importance as 

shown in (Guha and Falzarano 2015). 

It must be noted that the zero speed Green function is used in the forward speed calculations 

using the approximations suggested by (Salvesen, Tuck et al. 1970) and (McTaggart 2002) which 

limits the applicability of the code to low to moderate forward speed. 

 

 

3. Results and discussion 
 

3.1 Validation of finite depth hydrodynamic load rredictions at zero forward speed 
 

The finite depth hydrodynamic results are compared with an industry standard program (Lee 

2013). The container ship S175 as shown in Fig. 2 is used for validating the first order motions and 

second order forces. The heave and pitch motion RAOs are compared in Figs. 3 and 4. The  

heave and pitch drift forces are compared in Figs. 5 and 6. The calculated results were found to be 

in good agreement with the industry standard code. 

A truncated floating cylinder of radius 𝑅 =   m and draft 𝑇 =  .5 m (Fig. 7) is also 

considered to validate the developed code at three different water depths with depth to draft ratio 

ℎ/𝑇 =     and 8. Fig. 8 shows the comparison results with the commercial code for all three 

depths. 

 

 

 

Fig. 2 Panel model of the S175 container ship with 1202 number of panels 
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Fig. 3 Comparison of heave RAO for S175 container ship for water depth to draft 
𝑑

𝑇
=   

 

 

 

Fig. 4 Comparison of pitch RAO for S175 container ship for water depth to draft 
𝑑

𝑇
=   
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Fig. 5 Comparison of heave drift force for S175 container ship for water depth to draft ratio 
𝑑

𝑇
=   

 

 

 

Fig. 6 Comparison of pitch drift force for S175 container ship for water depth to draft ratio 
𝑑

𝑇
=   
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It can be observed that the results from both codes are essentially identical. The other 

phenomena that can be observed from these results is that the heave motion RAO at ℎ/𝑇 =   is 

significantly different than the ℎ/𝑇 =   and ℎ/𝑇 = 8 showing the effect of the shallow water 

depth. Also, the effect of water depth on hydrodynamic coefficients becomes insignificant beyond 

the ℎ/𝑇 =   and the deep water Green function can be used for this cases. It should be noted here 

that the deep water Green function is significantly faster (about      times) compared to the 

finite depth Green function. 

 

 

 

Fig. 7 Panel model of the floating cylinder of 𝑅 =     𝑇 =  .5   with 1024 panels 

 
 

 

Fig. 8 Comparison of a floating cylinder of R=1 m, T=0.5 m for water depth to draft ratio ℎ/𝑇 =     8 
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3.2 Validation of finite depth hydrodynamic load predictions at low forward speed 

 
The forward speed analysis at finite water depth is significantly more complicated compared to 

the deep water. A number of parameters begin to change with reduction in the water depth which 

needs to be considered while performing such analysis. In terms of the floating body dimension, 

two factors may be defined to investigate the effect of the water depth. First, the ratio between the 

wave length and water depth which is characterized by 𝑘ℎ where 𝑘 is the wave number. Second, 

the ratio of the water depth to the body draft (ℎ/𝑇) which signifies the  seabed clearance. Along 

with this, there is the forward speed effect which is represented by Froude number   = 𝑈/√ 𝐿, 

where 𝐿 is the characteristic length of the body. 

The experimental or computational results are very limited for the forward speed finite depth 

condition. Here, the results obtained by (Grue and Biberg 1993) for a floating hemisphere (Fig. 9) 

translating at a low forward speed at various water depth is compared. 

Fig. 10 shows the comparison of surge force and Fig. 11 shows the comparison of heave force 

at ℎ/𝑅 = ∞ and ℎ/𝑅 =  .  compared with those of (Grue and Biberg 1993). Both cases the 

results were found to be in excellent agreement with the published results. 

 

3.3 Effect of water depth on vessel motion and added resistance 

 
To understand the effect of water depth on motion and added resistance, a tanker hull is chosen. 

The principal particulars of the hull is given in Table 1. The deep water or infinite water depth 

condition is plotted in black colored lines. The red and blue lines represent water depth 

corresponding to ℎ/𝑇 =   and ℎ/𝑇 =  .5 respectively. The heave and pitch motion and the 

added resistance are calculated for three forward speeds corresponding to   =    .   and  . 6 

in head sea condition. 

 

 

Fig. 9 Panel model of the floating hemisphere of radius 10 m with 672 number of panels 
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Fig. 10 Surge force comparison for floating hemisphere of radius 10 m at   =  .   in deep and shallow 

water depths 

 

 

 

Fig. 11 Heave force comparison for floating hemisphere of radius 10 m at   =  .   in deep and 

shallow water depths 
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Figs. 12-14 show the results for the zero speed case where it can be observed that the water 

depth has almost no effect on the vessel motion or the drift forces. Where Fig. 15 to Fig. 20 shows 

that with an increase of forward speed the effect of water depth becomes more perceptible. Both 

motion and added resistance were found to be reduced with a decrease in water depth. While this 

may be the favorable condition when a ship enters the port channel, the viscous effects of the 

seabed are expected to be more significant which is not considered in the potential flow method 

applied here. One should also consider the squat and trim of the vessel in shallow water to avoid 

vessel grounding. This method however provides a quick way to evaluate the vertical motions 

expected for ships entering intermediate water depths or analysis of platforms operating in finite 

water depths. 

 

 
Table 1 Principal particulars of the Tanker 

Length L 158.5 m 

Breadth B 23.2 m 

Draft T 7.75 m 

Displacement Δ 18000 t 

Longitudinal Center of Gravity LCG 0.317 m 

Radius of Gyration in Roll 𝑘   49.927 m 

Radius of Gyration in Pitch 𝑘   39.625 m 

Radius of Gyration in Yaw 𝑘   39.625 m 

 

 

 

Fig. 12 Heave amplitude at   =   in head sea condition 
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Fig. 13 Pitch amplitude at   =   in head sea condition 

 

 

 

 

Fig. 14 Surge mean drift force at   =   in head sea condition 
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Fig. 15 Heave amplitude at   =  .   in head sea condition 

 

 

 

 

Fig. 16 Pitch amplitude at   =  .   in head sea condition 
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Fig. 17 Added resistance at   =  .   in head sea condition 

 

 

 

 

Fig. 18 Heave amplitude at   =  . 6 in head sea condition 
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Fig. 19 Pitch amplitude at   =  . 6 in head sea condition 

 

 

 

 

Fig. 20 Added resistance at   =  . 6 in head sea condition 
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4. Conclusions 
 

This paper presents a potential theory application in predicting wave induced loads and motions 

of floating bodies with low to moderate forward speed in finite water depth. A Green function 

approach is followed, as it allows performing the hydrodynamic analysis using only discretized 

underwater hull surface. A new finite depth Green function is developed for this purpose and 

implemented in an existing panel method code capable of considering forward speed effects. The 

results were validated using industry standard tools for finite depth zero speed conditions for the 

S175 container ship and published results for finite depth forward speed condition for a floating 

hemisphere. A tanker hull is then analyzed to show the effect of forward speed and water depth on 

vessel motion and drift forces. Further validation for higher forward speed in finite depth needs to 

be performed to establish applicability of the developed code for real applications. 
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