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Abstract.   Aqua is an underwater biomimetic vehicle designed and built at McGill University that uses six 
paddles to produce control and propulsion forces. It has the particularity of having time-periodic thrust due 
to its oscillating paddles. Using an existing model of the vehicle, two types of controller were developed: a 
PD controller and a Floquet controller. The Floquet controller has the advantage of explicitly addressing the 
time-periodicity of the system. The performance of the controllers was assessed through simulation and 
experimentally in the Caribbean Sea. We find that the vehicle was able to follow the prescribed trajectories 
with relative accuracy using both controllers, though, the Floquet controller slightly outperforms the PD 
controller. Furthermore, a key advantage of the Floquet controller is that it requires no tuning while the PD 
controller had to be tuned by trial and error. 
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1. Introduction 
 

Conventional underwater vehicles can generally be categorized into two types: autonomous 
underwater vehicles (AUVs) and remotely operated vehicles (ROVs). The former are usually 
streamlined vehicles intended for long distance operation while the latter are bluff and 
omnidirectional. All these vehicles are actuated using propeller-based thrusters. Aqua, shown in 
Fig. 1, is an amphibious vehicle that can swim underwater or at water surface using flexible 
oscillating paddles or walk on land using semi-circular legs. Aqua does not fall into either of the 
two conventional categories of underwater vehicles mentioned above. Rather, it can be classified 
as a biomimetic autonomous underwater vehicle (BAUV). Among its key advantages are the 
ability to walk on land, to swim in the water and to be deployed from the beach. Moreover, 
because of its propulsion system, it can hover and change its orientation in the vertical plane 
without any translational movement. 

Much research has been done on the control of conventional underwater robots. Yoerger and 
Slotine (1985) and Xu et al. (2001) used sliding mode theory to develop robust trajectory tracking 
controllers for an underwater robot. These controllers had the advantage of dealing directly with 
nonlinearities and being robust to an imprecise model. However, they also showed that the 
performance of the controllers is greatly improved by a more accurate model. Smallwood and 
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Whitcomb (2004) compared the ability of several controllers to track a prescribed trajectory. Their 
controllers were tested on a conventional underwater robot as well as in simulation. They found 
that the model-based controllers were capable of providing exact trajectory tracking. The PD 
controller was able to provide velocity tracking but failed to track the position accurately, though 
the position error remained bounded. Furthermore, they found that increasing the PD gains 
improved the tracking performance. 

Some researchers have considered the guidance and control of biomimetic vehicles. Guo and 
Joeng (2004) developed a waypoint tracking controller, for a vehicle with oscillating tail fin 
propulsion, based on hierarchical local and global controllers so as to mimic fish behavior. The 
performance of the controller was evaluated in simulation with good results. They also discussed 
the effect of model uncertainties and disturbances on the control performance. Geder et al. (2008) 
developed a fuzzy logic PID controller to control the trajectory of a vehicle with two pectoral fins. 
Naik and Singh (2007) studied the motion control of a fish-like robot in the yaw plane. The motion 
of the vehicle is controlled by altering the motion of pectoral-like fins. They used an adaptive 
control law and obtained good tracking results. Plamondon and Nahon (2009) used a PID and two 
model-based controllers to provide trajectory tracking capabilities to an underwater biomimetic 
vehicle. They found that the model-based controllers outperform the PID. 

Aqua has the particularity of using oscillating fins to produce its thrust. A direct consequence of 
this propulsion system is that the thrust is not constant but time-periodic. As a result, we can treat 
Aqua as a time-periodic system, and Floquet control theory is specifically aimed at the control of 
such systems. A number of researchers have studied the theory of time-periodic systems and some 
have developed methods to use Floquet theory to design controllers for these systems. Calico and 
Weisel (1984) developed a method based on Floquet theory allowing a determination of the 
location of the poles of the system. Montagnier et al. (2004) studied various techniques to develop 
controllers using Floquet theory, but this study was theoretical, rather than applied. Acho (2001) 
used H  to design tracking controllers for a time-periodic system. He obtained good results but 
his technique did not deal with the time-periodicity of the system directly. 

 
 

 

Fig. 1 Aqua underwater vehicle 
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Conventional control laws were applied to the Aqua vehicle with some success (Plamondon 
and Nahon 2006, 2009) but they assumed that the thrust was not oscillating. In order to obtain 
better results, we are interested in studying control laws that take into account the time-varying 
thrust. The objective of this research is to apply Floquet control theory to the Aqua underwater 
vehicle in order to develop trajectory tracking controllers. Moreover, since Floquet theory requires 
a linear description of the system, a linearization technique had to be developed to account for the 
time-varying thrust. 

 
 

2. Dynamics model 
 

The robot has six degrees of freedom, and we consider two relevant reference frames of interest. 
The first one, RV, is the robot frame and has its origin at the centre of mass of the robot. As shown 
in Fig. 2, the x-axis points toward the front of the vehicle, the z-axis toward the center of the Earth 
and the y-axis follows the right-hand rule convention. The second one, RI, is the inertial coordinate 
frame and has its origin at a fixed arbitrary point on the water surface. Euler angles (, , ) are 
the angles between the RI and RV coordinate frames, where  is the roll angle,  the pitch angle and 
 the yaw angle (Fossen 1994). The motion of the robot in the 6 degrees of freedom can then be 
described by the following variables 

   TTT ZYXZYX   snn ,,][ 21       (1) 

   TTT rqpwvurqpwvu  vvv ,,][ 21        (2) 

where X, Y and Z represent the position of the robot's mass center relative to the origin of the 
inertial frame. The velocity of the robot is expressed as components in RV: u, v and w are the 
translational velocity components, while p, q and r are the angular velocity components. 

 
 

 

Fig. 2 Six degrees of freedom of the vehicle 
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2.1 Body model 
 
The body model of Aqua is based on work done by Georgiades et al. (2009) and Fossen (1994). 

It takes into account the Coriolis forces, the hydrodynamic forces and the vehicle inertia 

)()()()( 22 nbngvvDvvCvMf       

 zyxzyx MMMFFF  f                        (3) 

where f  is the vector of net forces and moments produced by the paddles in the six degrees of 
freedom, M  is 6 x 6 mass matrix including added mass, )(vC  is the 6 x 6 Coriolis matrix, 

)(vD  is the 6 x 6 hydrodynamic matrix, g  is the gravitational force vector and b  is the 
buoyancy force vector. In the simulation, it is assumed that the vehicle is neutrally buoyant and the 
centre of gravity is coincident with the centre of buoyancy. As a result, the buoyant and gravity 
forces cancel each other. In practice, they are never exactly coincident because the mass 
distribution changes depending on which batteries, set of paddles and other pieces of equipment 
are installed. Since the robot is immersed in water, the Coriolis and mass matrices include a rigid 
body and an added mass component. The rigid body part can be understood as the mass of the 
robot in a vacuum, while the added mass part models added inertia due to the acceleration of the 
fluid. According to Fossen (1994), assuming that there are three planes of symmetry and that the 
vehicle is moving at low speed, the mass matrix including the rigid-body and added mass is 
diagonal. The hydrodynamic matrix is also a diagonal matrix. However, the Coriolis matrix )(vC
has off-diagonal terms and is responsible for the coupling between the 6 degrees of freedom. 
Moreover, the Coriolis and hydrodynamic matrices contain the velocity vector. As a result, these 
two terms are responsible for the nonlinearity of the system. The parameters in the matrices were 
obtained using empirical results for a solid rectangular prism (Fossen 1994). More information 
about the vehicle model can be found in (Plamondon and Nahon 2006, 2009). 

A simulation based on Eq. (3) was implemented in MATLAB Simulink to evaluate the 
performance of the vehicle. It takes the paddle motion as the input and outputs the complete state 
of the vehicle as a function of time. It was originally developed by Georgiades et al. (2009) and 
later modified to solve our particular problem. 

 
2.2 Paddle model 

 
The paddle model consists of the relationship between the forces produced by the paddle and 

the paddle motion and is described in detail in (Plamondon and Nahon 2009). It computes the lift 
and drag forces generated by the paddle, assuming the paddle to be a tapered flat plate at a known 
incidence to the flow. The forces are resolved to find the propulsive thrust as shown in Fig. 3. 
Averaging these forces over time, we find the following relation between paddle motion and 
thrust: 

1554.0
3

)2(
1963.0

2
21 




P

Alww
Q                     (4) 

where A and P are the amplitude and period of the paddle oscillations respectively; l, w1 and w2 are 
the paddle length and width at each end; and  is the water density. This model was developed 
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from fundamental principles and calibrated using experimental data obtained from paddle tests in a 
tank. Eq. (4) is then used to create a reverse model that determines the best combination of A and P 
to produce a desired thrust (Plamondon and Nahon 2009). This reverse model is based on an 
optimization where we try to keep A and P close to desired values. 

 
 

3. Linearization 
 
The dynamics model described in Section 2 is nonlinear. Although it is convenient for a 

simulation of the vehicle a linear model is necessary for the design of the Floquet controller 
(Section 4). 

The general nonlinear model of the Aqua vehicle can be written as ),( fxFx  , where f  is 
as defined in Eq. (3), which oscillates at twice the frequency of oscillation of the paddle and x  is 

the state vector defined as  TTTsv . The linear model would then take the following form 

                           BfAxx                                 (5) 

where A  is a 12  12 matrix and B  is a 12  6 matrix. A  is defined as 
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Fig. 3 Thrust acting on centre of gravity of the robot for A = 0.6 rad and P = 0.5 s 
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Fig. 4 Disturbance in the surge velocity for u = 0.16 m/s for A = 0.6 rad and P = 0.4 s 

 
 

 
Fig. 5 Response to a disturbance of 0.016 m/s in u for A = 0.6 rad and P = 0.4 s 

 
 
There are several methods that can be used to linearize a nonlinear time-invariant system about 

an equilibrium operating point; for example, numerical differentiation by finite difference. 
Because Aqua has oscillating thrust as shown in Fig. 3, it will never reach an equilibrium point 
and will instead oscillate around a steady-state value. This precludes the direct use of a finite 
difference approach and an alternative method was designed to account for the unsteady 
equilibrium. A disturbance was applied at regular interval over one period of oscillation as can be 
seen in Fig. 4. For the specific case shown in Fig. 4, the nominal steady-state condition is u = 0.16 
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m/s with all other velocities equal to zero. A disturbance of 0.016 m/s is applied to u, 20 times 
over the paddle cycle. The response of the system in the six degrees of freedom, for the 
disturbance shown in Fig. 4, is shown in Fig. 5. This corresponds to the first six rows of the first 
column of the state matrix A . Rows 7-12 are not displayed because the bottom left part of matrix 
A  is a 6-by-6 identity matrix. We can see that for a disturbance in u as shown in Fig. 4, there is a 
response in surge, heave and pitch motion but not in the other three degrees of freedom as shown 
in Fig. 5. We can also notice that the surge motion oscillates at twice the paddle frequency while 
the heave and pitch motion oscillate at the paddle frequency.  

 The total value of ijA  is composed of two parts: one constant and one oscillating, 

)()()( tAtAtA ijijij  , as is apparent from Fig. 5. The average entries of matrix A  can be 

computed from the average response to a disturbance 

j

i
ij x

xaverage
A





)( 

                          (7) 

The RMS value of Aij  was calculated to evaluate the periodic variation of the dynamics of the 

robot. Fig. 6 shows the average value and RMS value of the first column of state-matrix A  for 
the disturbance shown in Fig. 5. We found that the diagonal elements had the largest average 
values of all entries. Moreover, the constant part is more important than its RMS counterpart 
except in the case where the average is close to zero, such as A3,1 shown in Figs. 5 and 6. 
 
 
4. Floquet controller  

 
Floquet theory is a branch of the theory of ordinary differential equation that allows the 

solution of time-periodic problems. It is named after Gaston Floquet, a French mathematician, and 
its main result is a coordinate change that transforms a time-periodic system into a linear 
time-invariant system. It can also be used to design controllers for time-periodic systems. As noted 
earlier, Aqua uses oscillating paddles to propel itself through water, resulting in a thrust is periodic 
at twice the paddle frequency. 

 
 

Fig. 6 (a) Average value of Fig. 5 and (b) RMS over average value of Fig. 5 
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As a result of the periodic nature of the system, Floquet-Lyapunov theory seems a good 
candidate for the development of controllers for the Aqua vehicle. A linear model for the vehicle 
can be represented as follows 

)()()(

)()()()()(

ttt

ttttt

xCy

uBxAx




                       (8) 

where )(tA , )(tB  and )(tC  are the time-periodic state-space linear matrices with period P, 

)(tx  is the state vector and )(tu  is the input vector. Some elements of the state-space matrices 
oscillate with period 0.5P, but they are still P-periodic. 

The linear model presented in Eq. (8) is valid for all systems and not specific to our vehicle. In 
the particular case of Aqua, it is important to note that matrix A  depends on time and on velocity. 
During the linearization process discussed in Section 3, the vehicle was linearized for different 
velocities. As a result, matrix )(tA  presented in Eq. (8) is exact only for the particular velocity 
used in the linearization process. In the case where the velocity of the vehicle was to change 
significantly during the operation, gain scheduling should be used.  

The solution to the homogenous equation, with no input )(tu is given by 

)(),()( 00 tttt xΦx                               (9) 

where ),( 0ttΦ  is the state-transition matrix and must satisfy the following differential equation 

),()(
),(

0
0 ttt

dt

ttd
ΦA

Φ
                          (10) 

The results presented in Eqs. (8)-(10) are analogous to those of conventional linear theory, with 
the exception that )(tA , )(tB  and ),( 0ttΦ  are periodic instead of constant. The main result of 

Floquet theory is that the state-transition matrix can be factored into two matrices F  and J  

)()(),( 0
1

0 tettt t  FFΦ J                         (11) 

where J  is a constant matrix and )(tF  a time-varying matrix. These two matrices are often 

called the Floquet factors. There are several methods to obtain the matrices )(tF  and J  and it is 
important to note that there are many possible solutions to this problem. However, the eigenvalues 
of J , called the Poincaré exponents (i), are unique. Solving a Floquet problem for all time 
requires determining the constant matrix J  and the time-periodic matrix )(tF  for one full 
period. We now discuss methods to obtain the state-transition matrix and the Floquet factors. 

 
4.1 Computation of state-transition matrix  

 
The state-transition matrix is used to obtain the general solution of a linear dynamics system 

governed by Eq. (8). The state-transition matrix allows calculation of the state of the system at 
time t  from the state at time t0  as shown by Eq. (9). In our case, the state-transition matrix is 

used to obtain the Floquet factors in Section 4.2. 

250



 
 
 
 
 
 

Control of an underwater biomimetic vehicle using Floquet theory 

 

Cai et al. (2001) developed an alternative method to calculate )(tx  that allows finding the 
state-transition matrix in a single pass. Effectively, their method solves a system of the form 

)())(()(
)(

00 ttt
dt

td
xAAxA

x
                     (12) 

where 0A  is the constant part of )(tA  and ))(( 0AA t  can be expressed as 

))cos()sin(())(( 0 ctctt cc BDAA                   (13) 

where cD  and cB  are constant coefficient matrices and c  are the frequencies of the system. 

In our case, the system oscillates at a single frequency (twice the paddle frequency) but in other 
situations, there could be more than one frequency, hence the summation sign. Then, after some 
manipulation, Cai et al. (2001) developed an equation to find the vector )(tx  from the previous 
time step 

xkk xHx 11                                (14) 

where 1kH  is a matrix that updates the state kx  into 1kx . 

The monodromy matrix can then found from: 








N

n
nkT

t

T
N

1
1)0,( HΦ                      (15) 

By choosing a small enough step size, the discrete state-transition matrix given by Eq. (15) can 
be considered continuous. 

 
4.2 Floquet factors using the eigenvalues and eigenvectors 

 
This section describes a technique to compute the Floquet factors from the state-transition 

matrix found in Section 4.1. It is derived from direct observation of Eq. (11) and its similarity to an 
eigenvalue problem. In the current form of the equation, there are two unknowns ( J  and )(tF ) 
and it is therefore impossible to solve the eigenvalue problem. We evaluate Eq. (11) after one 
period in order to circumvent this problem. If we assume that )(tF  is periodic with period P  

then )()( 00 ttP FF  , and evaluation of Eq. (11) at t  P  gives us 

)0()0()0,( 1 FFΦ JPeP                          (16) 

Because the system is time-periodic we have replaced t0  by 0 in Eq. (16) without loss of 

generality. The monodromy matrix is obtained using the approach discussed in Section 4.1  
From Eq. (16), we can see that )0(F  is the eigenvector matrix of the monodromy matrix. 

Moreover, J will be diagonal with the Poincaré exponents as its entries;  n 1diagJ . 
The Poincaré exponents are the time-periodic equivalents of the eigenvalues for time-invariant 

system, and are related to the eigenvalues of the monodromy matrix in the following way: 
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i 
ln(i )

P
                               (17) 

where i  represents the i-th eigenvalues of the monodromy matrix. Since )(tF  is time-periodic 

and therefore bounded, the stability of the system depends solely on the Poincaré exponents and 
those are now known from Eq. (17). At this stage, we have all the knowledge to assess the stability 
of the system, but not enough to design controllers. As will be shown in Section 4.3, we now need 
to compute matrix )(tF  to allow design of the controller. With the matrix J  known, )(tF  can 
be obtained for all time by rearranging Eq. (11) 

 Pett JFΦF  )0()0,()(                          (18) 

It is important to note that there is no guarantee that the Floquet factors will be real using this 
method. Real Floquet factors are desirable because the control gain matrix is a function of the 
Floquet factors. An appropriate rearrangement exists that makes both matrices real and leaves the 
previous formula unaltered (Calico and Weisel 1984). The result is that the Floquet factors are real 
and Eqs. (11)-(16) still hold. 

 
4.3 Control laws: theory 

 
In the previous sections, we have shown how to obtain the state-transition matrix and the 

Floquet factors for a system in the form of Eq. (8). We now have all the tools to design control 
laws for our time-periodic system. We first introduce another variable that we call the modal 
variable 

)()()( 1 ttt xFη                                (19) 

We can then rewrite Eq. (8) in terms of the modal variable 

)()()()()( 1 ttttt uBFJηη                        (20) 

This means that the matrix )(tF  reduces the time-periodic system of Eq. (8) into a 
constant-coefficient system. We will use a simple proportional feedback for our control law 

))()()(()( tttt d ηηKu                          (21) 

where the subscript d denotes a desired value and )(tK  is a 6  12 control gain matrix. Using 
this control law, the system described by Eq. (20) becomes 

)()()()()()]()()([)( 11 ttttttttt dηKBFηKBFJη                (22) 

The first part of Eq. (22) is the controller natural response of the system. The eigenvalues of 

)()()(1 ttt KBFJ   are different from those of J  in Eq. (20) and are determined by the gain 

matrix )(tK . By adjusting the gain matrix, the eigenvalues can be selected to improve the 
response of the system. The second part of Eq. (22) determines how the system will track a desired 
trajectory. Now, we can define the 12  6 controllability matrix 
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)()()( 1 ttt BFG                             (23) 

In our case, since we only have direct control over the velocity states, the controllability matrix 
will have a maximum rank of 6. Then, the matrix of Poincaré exponents of the controlled system is 
given by 

)()( tt KGJJ                           (24) 

The control problem here becomes finding the appropriate gain matrix )(tK  that will place 

the poles at the desired locations. It is also important to note that since )(tG  has a rank of 6, only 
6 eigenvalues can be selected independently. Calico and Weisel (1984) proposed a method to 
determine which eigenvalues to modify. The J  matrix is partitioned into modes to control and 
modes to ignore: cJ  and iJ  











c

i

J0

0J
J                             (25) 

The partitioning shown in Eq. (25) is straightforward since J  is almost diagonal. Therefore, 
moving the rows will not affect the column. The same row operations were applied to )(tG , 

)(tK , and )(tη  
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G              )()()( ttt ci KKK              
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i

η

η
η    (26) 

where )(tcG , )(tiG , )(tcK  and )(tiK  are 66 matrices and )(tcη  and )(tiη  are 61 

vectors. Then, the first part of Eq. (22) becomes (Calico and Weisel 1984) 

 
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
             (27) 

By setting )(tiK  to 0 , the controlled modes can be decoupled from the uncontrolled ones. 

Furthermore, this leaves the eigenvalues of the ignored modes unchanged. Rewriting Eq. (24) for 
the controlled modes 

)()( tt cccc KGJJ                          (28) 

where cJ  is the desired eigenvalues matrix. With )(tcG  being a square full rank matrix, we can 

find the required control gains to place the poles at the desired location 

 cccc tt JJGK   )()( 1                       (29) 

and the full gain matrix is given by 

 0KK )()( tt c                         (30) 
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Finally, the gain matrix in the )(tx  domain can be obtained by post-multiplying Eq. (29) by 

)(1 tF . 
 
4.4 Floquet control laws: application 

 
In this section, we describe how the theory discussed in the preceding sections was applied to 

the Aqua vehicle. The state-transition matrix was obtained using the single-pass approach 
developed by Cai et al. (2001), discussed in Section 4.1.    

The complete design process to go from the nonlinear dynamics model to the gain matrix is 
presented in Fig. 7. The model is first linearized using the technique described in Section 3. This 
technique has the advantage of giving )(tA  as a sum of a constant term and a sinusoidal term, 
which allows using Eqs. (12) and (13) directly. Then, the state-transition matrix is computed with 
results from Section 4.1 while the Floquet factors are obtained using the procedure detailed in 
Section 4.3. Finally, the control gain matrix can be obtained from the Floquet factors to achieve a 
desired performance.  

The linearization of the vehicle for this controller was performed at a speed of approximately u 
= 0.5 m/s. The paddle period and amplitude of oscillation to obtain that speed are P = 0.4 s and A = 
0.6 rad. The speed in all other degrees of freedom was zero.  

Matrix J  was initially diagonal but some of its entries were complex. The method of Calico 
and Weisel (1984) was used to eliminate the complex part of J  but as a result, J  has some 
off-diagonal elements. 

The second factor, )(tF , is time-varying and periodic with period P. However, as we can see 

from Eqs. (19) and (23) the inverse of )(tF  is in fact more relevant for use in the controller. 

Similarly to )(tA , it is composed of a constant term and of a sinusoidal term 







 t

P
t FF

2
cos)(1 KaF                         (31) 

)(1 tF  is known and each entry is taken individually and decomposed into its constant 
(average) value and its oscillating term. The first thing to notice from these matrices is that the 

constant term is generally more dominant than the sinusoidal term. Eq. (31) gives us )(1 tF  at 
any time. However, it is more convenient in practice to have this matrix as a function of the paddle 
position since the periodicity of the system comes from the oscillating paddles. Noting that the 

paddle angle is sinusoidal, we can obtain an equation for 







t
P

2
cos  as a function of the paddle 

angle ( ) 

cos
2
P

t






 

 (t) 
A

                        (32) 

where A is the amplitude of oscillation of the paddle and   is the paddle offset angle. We can 

combine Eqs. (31) and (32) to obtain an expression for )(1 tF  that depends only on paddle 
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position  (t) 

A

t
t FF

 
 )(

)(1 KaF                        (33) 

Using Eq. (32) is convenient because the paddle angle is measured on the actual robot. With 
both Floquet factors known, the next step is to determine an appropriate cJ  for our system. By 

altering the pole locations, we can achieve different performance. Our objective was to obtain a 
critically damped system and therefore the fastest response. Table 1 is used to appropriately tune 

the eigenvalues to obtain the desired performance. It is based on )(1 tF  which relates )(tx  to

)(tη . Since Fa  represents the average value of )(1 tF , Table 1 is obtained from inspection of 

Fa . Any significant entry aij tells us that i has a significant effect on xj. Table 1 summarizes the 

inspection of Fa . As we can see, x3(t) and x6(t) each appear three times in the bottom row of Table 
1, which means that their tuning is not straightforward. Moreover, as was mentioned in the 
previous section, we cannot control all 12 degrees of freedom independently because our 
controllability matrix )(tG  is only of rank 6. However, since some states of the modal variable 
depend on multiple states of the vehicle, we can actually control more than 6 states, though not 
independently. The most obvious choice for the controlled states are 1(t)- 6(t) since this will 
allow control of 11 of the 12 states of the vehicle. The only uncontrolled state is the fourth one, the 
roll rate. However, the roll motion is controlled by x10, the roll angle. 

 
 
 

Fig. 7 Flowchart of the process to obtain the control gain matrix 
 
 
 

Table 1 Relationship between the original states and the modal variable states 

)(tη  1 2 3 4 5 6 7 8 9 10 11 12 

)(tx  1, 7 6, 8 3, 9 10 3, 5, 11 2, 12 1 5 3 2, 6 2, 6 4 
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Fig. 8 Control loop 
 
 
5. Results 

  
In this section, we present the performance of the controllers that were presented in Section 4. 

The performance was first assessed in simulation and then experimentally. The simulation is based 
on the model described in Section 2 and is implemented in the MATLAB Simulink environment 
using the standard control loop shown in Fig. 8. We can see that the input to the system is the 
desired trajectory. The controller outputs the desired force in the six degrees of freedom, then the 
reverse mapping transforms this force into an amplitude, period and offset ( ) of oscillation of 
each paddle.  

In order to demonstrate that treating Aqua as a time-periodic system using Floquet control has 
advantages, we compared its performance to that of a simple PD controller. The Floquet controller 
was designed by setting the desired eigenvalues to obtain a critically damped system, and then 
using Eq. (29) to obtain the control gain matrix. On the other hand, the PD controller gains were 
tuned by trial and error based on experience acquired in previous experimental tests.  

 
5.1 Simulation results 
 
The simulation described in Section 2 is used to perform an initial assessment of the 

performance of the controllers, and to properly tune the control gains. Simulations are run in 
which the vehicle must follow a prescribed trajectory. Five maneuvers that cover the most general 
motion of the vehicle were defined: roll angle ramp, sinusoidal roll angle, roll angle pulses, pitch 
angle pulses and finally a sinusoidal pitch angle. 

The simulation results are shown in Figs. 9 and 10. We can clearly see that both controllers 
provide good trajectory tracking capabilities to the vehicle. Their performance is very similar and 
the only apparent advantage of the Floquet controller is in step tracking where its settling time is 
slightly smaller than for the PD controller. Based on these simulation results we expect good 
tracking for all maneuvers during the experiment. 

 
5.2 Experimental results 
 
In this section, we present the results of the experiment in which we tested the PD and Floquet 

controllers.  
Fig. 11 shows the general setup used when performing experiments with Aqua. The upper 

256



 
 
 
 
 
 

Control of an underwater biomimetic vehicle using Floquet theory 

 

figure is a schematic of the set of the equipment and the lower portion of the figure shows an 
actual setup used during an experiment (Chiu et al. 2013). The vehicle is connected to the 
Operator Control Unit (OCU) through an optical fiber. The OCU is then connected to a laptop with 
a serial cable. There is a monitor on top of the OCU that displays the images captured by the 
camera onboard Aqua. All the information related to the state of the vehicle is transmitted to the 
laptop. 

The pilot sees the actual and desired state of the vehicle on the GUI shown in Fig. 12. The pilot 
controls the vehicle using a gamepad also shown in Fig. 12. The commands given by the human 
pilot are also displayed on the GUI.  

During our experiments, the roll, pitch and yaw are controlled by our controllers while the 
speed remains in control of the operator. However, the speed was not changed in this set of 
experiments. We operated from a boat that was approximately 300 m offshore so that the surf did 
not interfere with the experiments. The water was quite rough and there was significant water 
current. We tried to align the vehicle with the current to minimize the disturbance. 

Aqua sensors can only measure the Euler angles accurately. Sensing of the translational degrees 
of freedom is inaccurate and cannot be used for feedback purposes. Moreover, the compass that 
measures the heading of the vehicle is somewhat unreliable and as a result only pitch and roll 
motion were tested during this experiment.  The maneuvers used were the same as in the 
simulation.  

 
 
 

 
Fig. 9 Performance of the Floquet controller in the simulation 
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Fig. 10 Performance of the PD controller in the simulation 
 
 

 
Fig. 11 General experimental setup with Aqua 
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Fig. 12 Input devices. (a) Graphical User Intergace(GUI) and (b) Gamepad 
 
 
Figs. 13 and 14 show how the two controllers were able to track the different trajectories.  The 

first thing we notice is that both controllers were able to track the trajectory with reasonable 
accuracy, especially in roll angle. Moreover, we see that the Floquet controller gives a better 
performance in the roll angle ramp experiment. However, it is important to note that the PD 
controller was tuned to give good performance for these maneuvers while the Floquet controller 
did not require any tuning. It is possible that, through adjustment of the eigenvalues of J , the 
performance of the Floquet controller could be improved further. 

 
 

 
Fig. 13 Performance of the Floquet controller in the experiment 
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Fig. 14 Performance of the PD controller in the experiment 

 
 
We can also notice from the two figures that the tracking is significantly better in roll than it is 

in pitch. There are two main reasons to explain this phenomenon. First, the moment of inertia is 
larger in pitch than it is in roll. Therefore, more force needs to be applied to produce the same 
motion. Second, only four paddles can actively produce a pitch moment while all six paddles can 
contribute to the roll moment. This is due to the fact that the two middle paddles are close to the 
y-axis of the vehicle.  

Based on the results shown in Figs. 13 and 14, we can conclude that our controllers provide 
good trajectory tracking capabilities to Aqua. Moreover, although the PD controller gives good 
performance, it requires tuning which was not necessary with the Floquet controller. 

 
 

6. Conclusions 
 
This paper describes the design of Floquet controllers for trajectory tracking of a biomimetic 

underwater vehicle. A linearized time-varying model of the vehicle was developed to provide a 
basis for the controller design. From that model, the relevant state transition matrix and Floquet 
factors were found using existing methods. A proportional feedback gain matrix was then derived 
using the Floquet factors. The performance of the resulting controller was first evaluated using a 
nonlinear simulation of the vehicle, and compared to the performance of a more traditional PD 
controller. It was found that the Floquet controller performed slightly better in response to step 
input commands. An experiment was then performed to validate the performance of the Floquet 
controller design in an open dynamic environment and compared to the PD controller. The results 
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indicated that, while both controllers were able to provide trajectory tracking capabilities, the 
Floquet controller slightly outperformed its PD counterpart especially in the roll ramp experiment. 
Moreover, the Floquet controller has the advantage of requiring no tuning. In the future, 
experiments in a controlled environment will be done to allow a more systematic evaluation of 
controller performance. It would also be useful to improve the sensing capability of the vehicle, 
and the test environment, so that a greater range of maneuvers can be accurately tested. 
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