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Abstract.    For the reliable design of substructure supporting offshore wind turbines it is very important to 
reduce the effects of wave forces. Since the substructure is strongly influenced by the effects of wave forces 
as the size of substructure increases. In the present study, the hybrid substructure with multi-cylinder is 
newly suggested to reduce the effects of wave forces. Using diffraction theory the scattering waves in a fluid 
region are expressed by an Eigenfunction expansion method with three dimensional potential theory to 
calculate the wave force acting on the hybrid substructure. The wave force and wave run-up acting on the 
hybrid substructure is presented to examine the water wave interaction according to the variation of 
cylindrical size and the distance among cylinders. It is found that the suggested hybrid substructure with 
multi-cylinder is very useful to reduce the effects of wave forces acting on the substructure for offshore wind 
turbines. 
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1. Introduction 
 

To tackle climate change and to find alternative and reliable energy sources, the offshore wind 
energy has gained attention from many countries. It is recognized that the offshore wind energy 
one of the most promising and fastest growing alternative energy sources in the world. Therefore, 
many offshore wind farms are in the planning phase. South Korea will also invest $9 billion in 
building a 2.5GW offshore wind farm in the southwest sea of Korea by 2019 (South Korea 
offshore wind project plan 2011). However, the size of a substructure supporting offshore wind 
turbines is gradually increased because the size of a tower and a rotor-nacelle becomes larger with 
increment of wind turbine’s gross generation. In other words, the substructure for offshore wind 
turbines is strongly influenced by the effect of wave forces as the size of substructure increases. 
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Therefore, it is very important to reduce the wave forces acting on substructures. In the present 
study the hybrid substructure, which is composed of multi-cylinder having different radius of each 
upper and lower area as shown in Fig. 1, is newly suggested to reduce the wave forces using water 
wave interaction with multi-cylinder.  

The water wave interaction with multi-cylinder has been studied by many researchers. Under 
the assumption of potential flow and linear wave theory, Spring and Monkmeyer (1974) first 
proposed a semi-analytical solution for impermeable cylinders using an Eigenfunction expansion 
approach. In the case of N bottom-mounted circular cylinders Linton and Evans (1990) simplified 
this solution. Kagemoto and Yue (1986) developed another exact solution within the context of 
linearized theory, showing that a general three-dimensional wave diffraction problem could be 
solved in terms of algebraically-based diffraction characteristics of a single member. Another 
popular approach based on the wide-spacing assumption was the modified plane wave method, 
developed by McIver and Evans (1984). This approach was later applied to a variety of cases by 
McIver (1984), Williams and Demirbilek (1988), Williams and Abul-Azm (1989), and Williams 
and Rangappa (1994). Using Eigen-function expansion method, the interaction of waves with N 
vertical circular cylinders is examined by Kim (1993).For the analysis of N full-body 
porous-surfaced cylinders, the Eigen-function expansion method could be employed to describe 
hydrodynamic interactions in multi-body structures (Williams and Li 1998, 2000, Cho and Kim 
2010, Park et al. 2010, Zhao et al. 2011). Cho et al. (2012) also presented the hydrodynamic 
performance of the wave energy converter (WEC) in various design parameters and irregular-wave 
conditions using Eigen-function expansion method. 

In order to calculate the wave forces acting on the suggested hybrid substructure with 
multi-cylinder, the fluid domain is divided into two regions: an interior region and an exterior 
region. Using three-dimensional linear potential theory the scattering waves in each fluid region 
are expressed by the Eigenfunction expansion method. The comparison of wave forces and wave 
run-ups is made for the different depth ratio of interior region. In order to examine the water wave 
interaction with hybrid substructures, the wave forces and the wave run-ups are presented for the 
different array of hybrid substructures with multi-cylinder. 

 
 

2. Formulation 
 
A hybrid substructure for offshore wind turbines is composed of multi-cylinder having different 

radiuses of each upper and lower area as shown in Fig. 1. The hybrid substructure is situated in 
water of uniform depth d and the draughts of each upper and lower area are h and c, respectively. 
The lower and the upper radius of the jth cylinder are aj and bj, respectively. Also, the global 
Cartesian coordinate system(x, y, z) is defined with an origin located on the sea bed with the z-axis 
directed vertically upwards. The center of each cylinder at (xj, yj) is taken as the origin of a local 
polar coordinate system (rj, θj), where θj is measured counter-clockwise from the positive x-axis. 
The center of the lth cylinder has a polar coordinate (Rjl, αjl) relative to the jth cylinder. The 
coordinate relationship between the jth and lth cylinder is shown in Fig. 1. Moreover, the fluid 
domain is divided into two regions: region 1 which is interior to the cylinder (bj  rj  aj, d-h  z  d) 
and region 2 which is exterior to the cylinder and extends to infinity in the horizontal plane (rj  aj, 
0  z  d). 
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Fig. 1 Coordinate system for an array of hybrid substructures 
 
 
It is assumed that the computational fluid domain is inviscid, and incompressible, and its 

motion is irrotational. The array of cylinders is subjected to a train of regular waves of height H 
and angular frequency ω propagating at an angle β to the positive x-axis. The velocity potential of 
the computational domain can be written as 

      , , , Re / 2 , , i tx y z t igH x y z e                       (1) 

Where Re[ ] denotes the real part of a complex velocity potential Φ, and g is the gravitational 
acceleration. 

As a governing equation, the Laplace equation is satisfied for the entire fluid domain of the 
present boundary value problem 

2 0                               (2) 

For solving the governing equation, the following boundary conditions for the free surface (Eq. 
(3)), bottom of region 1 (Eq. (4)), vertical wall of upper and lower area (Eq. (5)), flat rigid sea 
bottom (Eq. (6)), and the Sommerfeld radiation boundaries (Eq. (7)) can be given, respectively 
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0 0on z
z
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 
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in in
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r ik
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 
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                   (7) 

where k is the incident wave number related to the wave frequency through the dispersion relation 
2 tanhgk kd  , and d is the water depth.

2
 and

in
  denote the total velocity potential in region 2 

and the incident wave potential, respectively. 
The wave potential in the interior region (1) of the jth cylinder, which satisfies the appropriate 

free surface and structural boundary conditions, can be expressed by the following Eigen-function 
expansion 
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in which Jn and Yn denotes the Bessel function of the first and the second kind of order n, and nJ 

and nY  are the first derivatives of the Bessel function, respectively. An
j is the unknown complex 

potential coefficient. A new wave number k0 is introduced, which satisfies the dispersion relation
2

0 0tanhgk k h  , where h denote local water depth in the interior region 1. 

The incident wave potential in the jth local polar coordinate system can be expressed using 
Jacobi-Anger expansion of Bessel function as follows 
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where  cos sin
j j

ik x y

j
T e

  is a phase factor associated with the cylinder j from the global origin. 

The wave potential in the exterior region (2), which is expressed by using Graf’s addition 
theorem for the Bessel Functions (Abramowitz and Stegun 1972) and satisfies the Helmholtz 
equation, can be expressed by the following Eigenfunction expansion 
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     (10) 

The right-hand side of Eq. (10) represents the incident wave upon the jth cylinder, the scattered 
wave produced by the jth cylinder, and the re-scattered wave generated by the adjacent cylinder l, 
respectively. Cn

j is the unknown complex potential coefficient. Hn is the Hankel function of the 
first kind of order n, and nH   is the first derivatives of the Hankel function, respectively. 

In addition to applying the body boundary conditions associated with the free surface 
conditions, the present boundary value problem must satisfy the matching conditions at the 
interface between the regions, which are given by 
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Substituting Eqs. (8) and (10), and using the orthogonality of depth from z=d-h to d, the first 
matching condition between region 1 and 2 in Eq. (11) can be rewritten as 
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Applying the orthogonal property to the second matching conditions in Eq. (11), with respect to 
z over the region of validity, the following equation can be obtained 
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By applying Eq. (12) to Eq. (13), the key equation for unknown coefficients Cn
j can be obtained 

as follows 
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In order to calculate the potential coefficients Cn

j from the infinite system, Eq. (14) is truncated 
to (2M+1)N equations with (2M+1)N unknown values for j=1, 2,…, N and n=-M,…, M. That is, 
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By using a stand matrix technique, the equations on Cn
j can be solved and the unknown 

coefficients An
j may then be obtain from Eq. (12) by applying Cn

j. In this manner the velocity 

potential in each fluid region ( 1

j , 2

j ) can be determined. 
After solving the velocity potentials, the wave excitation forces on each cylinder are obtained 

using the integration of pressure on the wetted surface of cylinder. Wave forces in x-direction (Fx) 
and in y-direction (Fy) are calculated as follows 
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where Eq. (16) is for upper part and Eq. (17) is for lower part of the hybrid substructure with 
multi-cylinder.  
 

 
3. Numerical results and discussion 

 
In order to verify the wave forces on an array of four cylinders, the present numerical results 

are compared with the numerical results of Williams and Li (2000) for the various incident wave 
angles (β). The calculation conditions are a=10.0 m and d=50.0 m. The cylinders are numbered 
clockwise from 1 to 4 and situated at (-20, 20) m, (20, 20)m, (20, -20) m, and (-20, -20) m, 
respectively. The wave forces are normalized by ρg(H/2)a2 and the axis of abscissa denotes the 
wave number. Although the wave number at the first peak value of wave force is very similar for 
all cases, the wave number at the second peak becomes different according to the incident wave 
angles. The calculated wave forces obtained from the present method are in good agreement with 
the results from Williams and Li (2000) as shown in Fig. 2. 

Fig. 3 show the comparison of wave forces on hybrid substructure with five cylinders for 
various depths (h/d) of region 1. The calculation conditions are a1=3.0 m, b1=1.0 m, aj=1.0 m, 
bj=0.5 m (j=2,3,4,5) and d=20.0 m. The largest cylinder 1 is located at (0, 0) m, and the other 
cylinders are numbered clockwise from 2 to 5 and situated at (-4, 0) m, (0, -4) m, (4, 0) m, and (0, 
-4) m, respectively. In the comparison the ratio of h/d=0.0 indicates the case without small 
cylinders of region 1, while h/d=1.0 represents the case with only small cylinders. The calculated 
total wave forces are normalized by ρg(H/2)a1

2. In the comparison, the peak wave force with depth 
0.25 and 0.5 decreases about 33% and 50%, respectively, compared to the peak value of depth 1.0. 
Although in the long wave region (ka≤0.8) the pattern of wave forces is strongly influenced by the 
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depth of region 1, the pattern of both depth 0.5 and 0.0 becomes very similar, and the difference 
between depth 0.5 and 1.0 is very small in the short wave region (ka≥0.8). The wave forces on the 
hybrid substructure with the depth 0.25 become remarkably smaller than those on the mono pile 
with radius 3.0 m as the wave number becomes larger than 0.6. It means that the hybrid 
substructure with depth 0.25 of region 1 is significantly efficient to reduce the wave forces acting 
on hybrid substructures in the short wave region. 
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Fig. 2 Comparison of wave forces on the array of four cylinders with Williams and Li (2000) for d/a=5 
and s/a=4 
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Fig. 3 Comparison of total wave forces on the hybrid substructure of five cylinders with a1=3.0 m, b1=1.0 
m, aj=1.0 m, bj=0.5 m (j=2,3,4,5) and d=20.0 m for various depths (h/d): (a) x-direction for β=0.00 
and (b) x-direction for β=45.00 
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The wave forces on each cylinder of the hybrid substructure with five cylinders are presented in 
Fig. 4. In case of incident wave angle 0.00, the wave forces on cylinder 1 are largest and the wave 
forces on cylinder 3 and 5 have same values. The pattern of cylinder 3 and 5 in x-direction shows 
the same pattern of cylinder 4 and 2 in y-direction in case of incident wave angle 450.  

Fig. 5 shows the comparison of total wave forces on the hybrid substructure with five cylinders 
for various radiuses (b1) of cylinder 1. Since the wave force is closely related to the wetted surface 
of structure, the wave forces gradually decrease as the radius of cylinder1 decreases. The hybrid 
substructure with the radius less than 2.0m is significantly efficient to reduce the wave forces in 
short wave region (ka≥0.7) compared to the mono pile with radius 3.0 m. 
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Fig. 5 Comparison of total wave forces on the hybrid substructure of five cylinders with a1=3.0 m, aj=1.0 
m, bj=0.5 m(j=2,3,…,5) and d=20.0 m for various radiuses of cylinder 1 (b1): (a) x-direction for 
β=0.00 and (b) x-direction for β=45.00 

 
 

0 60 120 180 240 300 360
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 60 120 180 240 300 360
0.35

0.40

0.45

0.50

0.55

0.60

0.65
 

W
a

ve
 r

u
n

-u
p

(
/H

)

Angle()

 h/d=1.0
 h/d=0.5
 h/d=0.25
 h/d=0.0

(a) Various depths(h)

 Mono(a=3.0m)

0 60 120 180 240 300 360
0.35

0.40

0.45

0.50

0.55

0.60

0 60 120 180 240 300 360
0.35

0.40

0.45

0.50

0.55

0.60
(b) Various radiuses(b

1
)

W
av

e 
ru

n-
up

(
/H

)

Angle()

 b
1
=2.5m

 b
1
=2.0m

 b
1
=1.5m

 b
1
=1.0m

 Mono(a=3.0m)
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Fig. 7 Hybrid substructure: (a) Five cylinders, (b) Seven cylinders, (c) Nine cylinders 
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Fig. 8 Comparison of total wave forces on the hybrid substructure of various cylinder numbers with 
a1=3.0 m, b1=1.0 m, aj=1.0 m, bj=0.5 m(j=2,3,…,7) and d=20.0 m for various incident wave angles 
(β): (a) x-direction for β=0.00 and (b) x-direction for β=45.00 

 
 
Fig. 6 shows the comparison of wave run-up on cylinder 1 for five cylinders with the incident 

wave angle (β) 0.00. Since the wave force has the peak value when the wave number is 0.3, the 
comparison of wave run-ups is made at the wave number 0.3. The calculation conditions are 
a1=3.0 m, aj=1.0 m, bj=0.5 m (j=2,3,4,5) and d=20.0 m. The wave run-up is normalized by 
incident wave height (H) and the abscissa denotes the angle (θ) measured counter-clockwise from 
the positive x-axis. The wave run-up on cylinder 1 is largest when the depth of region 1 is 0.0. 
However, in case of depth 1.0 with only small cylinders the wave run-up is smaller than that of 
depth 0.0 and the mono pile with radius 3.0 m. Although the difference of wave run-up between 
the depth 0.25 and 0.5 is small, the wave run-up on hybrid substructure is smallest for all cases. It 
means that the suggested hybrid substructure remarkably reduce the wave run-up on cylinder 1. 
Although the wave run-up due to the radius of cylinder 1 is gradually increased as the radius of 
cylinder 1 increases, it is smaller than in case of the mono pile with radius 3.0 m for all cases. It 
means that the suggested hybrid substructure plays very important role to reduce the wave forces 
and wave run-up compared to the mono pile at the penalty of increased cost. 

The Comparison of total wave forces on the hybrid substructure of various cylinder numbers is 
presented in Fig. 8 to examine the water wave interaction among cylinders. The relative 
contributions of viscous drag forces for various shapes, particularly in the long wave regime, are 
beyond the scope of the present study. The calculation conditions are a1=3.0 m, b1=1.0 m, h/d=0.5, 
aj=1.0 m, bj=0.5 m (j=2,3,…,9) and d=20.0 m. The largest cylinder 1 is located at center, and the 
other cylinders are numbered clockwise from 2 to 9 as shown in Fig. 7. In the long wave region 
(ka≤0.7) the peak wave force of nine cylinders is largest and the difference of peak wave force 
between seven and nine cylinders is small. The wave forces of nine cylinders gradually decrease 
and especially have a lower value than those of five cylinders in the short wave region (ka≥0.7). 
The difference between five and nine cylinders becomes larger as the wave number is greater than 
0.7. It means that wave forces are strongly influenced by the wave length and the water wave 
interaction is strongly depended on the relation between the wave length and the number of 
cylinders. Moreover, the wave forces acting on the suggested hybrid substructure is smaller than 
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those on the mono pile with radius 3.0 m when the wave number is larger than 0.4. It means that 
the hybrid substructure is significantly efficient to reduce the wave forces compared to the mono 
pile in the short wave region. 

The wave forces on each cylinder of hybrid substructure with seven and nine cylinders are 
shown in Figs. 9 and 10. The wave force on cylinder 1 is largest for all cases. 

Fig. 11 shows the comparison of wave run-up on each cylinder for various hybrid substructures. 
The wave run-up on the cylinder 2 for both cases of five and nine cylinders has the similar pattern 
since the incident wave propagates toward the cylinder 2. The peak value of cylinder 1 is lowest in 
all cases. It is found that due to the reduction of wave-body interaction the wave run-up of cylinder 
1 has a similar value regardless of the number of cylinders and the hybrid substructures, when the 
depth ratio of region 1 becomes a larger than 50.0% of whole water depth (h/d=0.5), is remarkably 
effective to reduce the wave run up. 

Fig. 12 shows the non-dimensional elevation contours on hybrid substructure of various 
cylinder members at the wave number 0.3. 
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Fig. 9 Comparison of wave forces on each cylinder with a1=3.0 m, b1=1.0 m, aj=1.0 m, bj=0.5 m 
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x-direction for β=45.00 and (c) y-direction for β=45.00 
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Fig. 10 Comparison of wave forces on each cylinder with a1=3.0 m, b1=1.0 m, aj=1.0 m, bj=0.5 m 
(j=2,3,…,9) and d=20.0 m for various incident wave angles (β): (a) x-direction for β=0.00, (b) 
x-direction for β=45.00 and (c) y-direction for β=45.00 
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Fig. 11 Comparison of wave run-ups on hybrid substructure of various cylinder numbers with β=0.00, 
h/d=0.5 and ka=0.3: (a) Five cylinders, (b) Seven cylinders and (c) Nine cylinders 
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Fig. 12 Free surface elevation contours around hybrid substructure for various cylinder numbers with 
β=0.00, h/d=0.5 and ka=0.3: (a) Five cylinders, (b) Seven cylinders and (c) Nine cylinders 

 
 

5. Conclusions 
 
The hybrid substructure with multi-cylinder for offshore wind turbines is newly suggested to 

reduce the wave forces on substructures. Under the assumption of potential flow and linear wave 
theory, a 3D numerical method for the hybrid substructure was developed using the Eigen-function 
expansion method. In the short wave region, the wave force on hybrid substructures is found to be 
greatly reduced compared to the case without small cylinder of region 1. Consequently, installing 
small cylinders of region 1 on the gravity substructure may be an effective means of decreasing the 
wave forces. It is also found that the suggested hybrid substructure with depth ratio 0.25 of region 
1 effectively reduces the wave force compared to the mono pile in the short wave region. 
Moreover the water wave interactions among cylinders rapidly diminish for the hybrid 
substructure. It means that the hybrid substructure significantly reduces the wave run-up on 
substructure. Consequently, the suggested hybrid substructure for offshore wind turbines with 
multi-cylinder can be an effective substructure for reducing hydrodynamic effects in the short 
wave region. 
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