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Abstract.    It is common that analyses of offshore platforms being carried out with the assumption of rigid 
tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) 
of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms 
considering local joint flexibility leads to more accurate results. This paper presents an extensive 
finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints 
commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in 
offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas 
are obtained by non-linear regression analyses on the database. The proposed equations are verified against 
existing analytical and experimental formulations. The equations can be used reliably in global analyses of 
offshore structures to account for the LJF effects on overall behavior of the structure. 
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1. Introduction 
 

Conventionally, in structural analysis of offshore platforms, the joints are assumed to be 
completely rigid. In this type of analysis local distortions of the chord circular cross sections are 
assumed to be negligible, and hence, no relative displacements and rotations between the chord 
and the brace can occur. However, at tubular joints, especially at unreinforced tubular joints, the 
connection is not rigid since the chord wall deforms locally as a result of loading. Significant 
errors can occur in estimating deflection, nominal stresses, buckling loads, natural frequencies, 
mode shapes and fatigue life of the platform due to the rigid connection assumption.  

Numerous structures have been installed and are still in operation without reserve strength 
equal to conventional jacket type structures. Accounting for LJF may result in considerable 
redistribution of member forces, which cannot be neglected in assessment of performance and 
reliability of these structures. Therefore, Design codes such as API (2005) and DNV (1982 and 
2010) require that the LJF effects should be engaged in global analyses of the structures. 

Studies on local flexibility of tubular joints were started in the early 1980s. In 1980 Boukamp 
et al. (1980) tried to present a method for incorporating the effects of LJF into the overall response 
of the structure. 
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Fessler et al. (1986) proposed parametric equations for obtaining flexibility matrices of any 
unreinforced single brace or multi-brace tubular joints by testing 27 Araldite tubular joints.  

Later, Hu et al. (1993) presented an equivalent element to account for LJF of tubular joints in 
the structural analysis of offshore platforms.  

Based on FE methods, Buitrago et al. (1993) published a set of equations for predicting LJF of 
simple tubular joints. Buitrago’s parametric expressions for LJFs are simple to use in addition to 
having a good agreement with experimental data. As a result, they are widely used by API (2005) 
and DNV (1982 and 2010).  

Later in 1996, Chen et al. (1996) proposed a semi-analytical method for estimating the LJF of 
tubular T/Y and symmetric K-joints. 

In 1998, Morin et al. (1998) conducted a research with the general FE software ABAQUS and 
concluded that, especially for joints with axial loads in bracings it is necessary to use existing 
parametric formulae to account for the influence of local failure modes of tubular joints on global 
failure modes in reliability analyses of jacket type structures.   

MSL Engineering Limited (2001) considered LJFs in spectral fatigue analyses and verified the 
results against the underwater inspections of MSL Services Corporation (2000) for existing 
structures. MSL Engineering Limited subsequently concluded that considering LJFs in spectral 
fatigue analyses result in a significant increase in estimating the fatigue life of offshore 
platforms.Consequently, fatigue analyses which account for effects of the LJF, can be performed 
instead of the more cost-consuming underwater inspections for estimation of the reliability of 
existing platforms. 

Similarly, Samadani et al. (2009) conducted a research on two offshore platforms and showed 
that effects of LJF on overall behavior of jackets without joint cans is not negligible. This is 
particularly the case in assessment of old offshore platforms in service. 

Chakrabarti et al. (2005) conducted a reassessment research on more than twenty platforms. 
They used Buitrago's (1993) formulations for considering LJF effects in fatigue analyses and 
showed that considering these effects can result in at least two times of increase in fatigue life of 
most joints they had analyzed. 

Later, using FE models to account for the effect of gap size, Gho (2011) showed that the 
existing Y-joint formulae cannot be used reliably for predicting the LJFs of overlapped braces. 

Using the proposed equations of Fessler et al. (1986) for LJFs of tubular joints, Alanjari et al. 
(2011) developed a two-dimensional elastic-perfectly plastic element to represent the LJF in the 
global analysis of offshore structures.  

Due to the complexity of the problem parametric equations for LJF cannot be obtained 
analytically and hence, such equations are obtained by regression analyses of a given database. 
Thus, the reliability of these equations would be highly dependent on the size of the database. 
There are no equations based on a large database available yet. Therefore, this study intends to 
obtain more reliable equations by taking advantage of a large database generated using FE models 
as well as considering more effective non-dimensional parameters. Regression analyses on the 
database are subsequently performed to propose equations for LJFs of tubular joints. 

Further studies can be carried out in order to expand the flexibility matrix proposed in this 
paper to a 66  matrix to account for out of plane bending effects on LJFs of tubular Y-T and 
K-joints.
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2. Scope of the study 
 
For the case of general multi-brace tubular joints, the LJFs depend on too many 

non-dimensional parameters. Therefore, it becomes too complicated to find equations that 
represent LJFs of such joints. Hence, the conventional approach is considering a multi-brace 
tubular joint as a combination of more simple joints and the interaction between these components 
is considered from some factors which are basically dependent on the load pattern. For instance, 
according to the approach defined in codes such as DNV (2010) for Multi brace joints, LJF may be 
extracted from a combination of joint types, i.e., from formulations such as Eq. (1). 

Y Y X X K KLJF LJF LJF LJF      (1)

in which the λ values are the fractions corresponding to the joint type designated by the subscript 
when the joint is classified by loads. 

In this study, LJF equations for K or Y-T joints (
KLJF  in Eq. (1)) are proposed from numerical 

analysis result of 814 FE models. Geometrical properties of any tubular Y-T or K-joint are 
functions of twelve non-dimensional parameters. However, it was investigated that only six 
non-dimensional parameters have considerable influence on LJFs of these joints. Hence, Six 
non-dimensional parameters, namely 1, 2,=Rc/tc, β1=Rb1/Rc, β2=Rb2/Rc and ζ=g/Rc were used to 
generate 814 FE model. On the other hand, the six non-important parameters, namelyτ1=tb1/tc, 
τ2=tb2/tc,α=Lc/Rc, tc, Lb1 andLb2were used with constant values in all 814 models. Rc, tc,Rb1,Rb2,g, tb1, 
tb2, Lc, Lb1 andLb2denote radius of the chord, wall thickness of the chord, radius of the first brace, 
radius of the second brace, the gap size between the two braces, wall thickness of the first brace, 
wall thickness of the second brace, length of the chord, length of the first brace and length of the 
second brace respectively. As it is shown in Fig. 1, 1 and 2 are the angle between the braces and 
the chord. 

 
 
 

Fig. 1 Definition of local coordinate systems and positive directions for degrees of freedom 
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Table 1 shows the values for non-dimensional parameters of the 814 generated FE models. 
Constant values used to create the FE models are presented in Table 2. 

American Petroleum Institute (API) recommends that the gap size should have a size of at least 
5.08 cm. In this paper, an extensive range of gap sizes has been covered in order to generate a 
reliable database for investigating the effect of the gap on local flexibility of tubular joints. 
 
Table 1 Ranges of non-dimensional parameters for the FE models 

  1 2   1  2  

0.1, 0.2, 0.3, 0.4 30, 45, 60, 90 30, 45, 60, 90 12,15,18 0.25,0.5,0.75 0.25,0.5,0.75

 
Table 2 Constant values of non-important parameters 

 tc (m)  Lb2(m)  Lb1(m)  2   1     

 0.03175  2  2  0.5  0.5  12 

 
 

3. Local flexibility matrix 
 
The local coordinate systems of the planner Y-T and K-joints which describe four degrees of 

freedom, including two axial displacements along the braces and two rotational displacements in 
the plane of the joint are shown in Fig. 1. Given these degrees of freedom, the non-dimensional Eq. 
(2) can be used to describe the relation between the loads and the deformations: 

            F P   
(2)

where 

         
 1 1 1 2 2[ ] / /

T
D D        (3)

            

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

[ ]

f f f f
f f f f

F
f f f f
f f f f

 
 
 
 
 
  

  (4)

              
2 3 2 3

1 1 2 2[ ] / / / /
T

P P ED M ED P ED M ED     (5)

where Δ1 and Δ2 are the local axial displacements; Φ1 and Φ2 are the local rotational displacements 
at the two conjunction points between the chord and braces as shown in Fig. 1. E and D denote 
steel modulus of elasticity and the chord diameter, respectively. Subscripts 1 and 2 are used to 
refer to the loads, displacements or rotations of brace 1 and 2. According to Betti/Rayleigh 
reciprocal theorem which holds for elastic solids, the flexibility matrix [F] would be symmetric, 
and hence, it would have ten dependent terms, which can be obtained by analyzing the FE models. 
Therefore, to obtain the flexibility matrix for each FE model, the model must be analyzed in four 
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cases as follows. 
 
Case 1: 
In the first attempt, only P1 is applied to the model.Δ1, Δ2, Φ1 and Φ2 are to be evaluated 

accordingly from the analyses on the FE model. Thus, elements of the first column of the 
flexibility matrix [F] can be obtained from Eqs. (6) to (9) 

11 1 1( / )( ) f P ED                          (6) 

2
21 1 1( / )( ) f P ED                         (7) 

31 2 1( / )( ) f P ED                         (8) 

2
41 2 1( / )( ) f P ED                        (9) 

 
Case 2: 
In this case, only 1M  is appliedto the model.  Δ2,Φ1 and Φ2 are to be evaluated accordingly 

from the FE analyses. Thus, elements of the second column of the flexibility matrix [F]  can be 
obtained Eqs. (10) to (13) 

21 12f f                                (10) 

3
21 1 1( / )( ) f M ED                         (11) 

2
32 2 1( / )( )f M ED                          (12) 

3
42 2 1( / )( )f M ED                         (13) 

 
Case 3: 
In this case, only 2P  is applied to the model. Δ2 and Φ2 are to be evaluated accordingly  from 

the FE analysis. Consequently, elements of the third column of the flexibility matrix [F]can be 
obtained from Eqs. (14) to (17) 

13 31f f                              (14) 

23 32f f                              (15) 

33 2 2( / )( ) f P ED                         (16) 

2
43 2 2( / )( ) f P ED                         (17) 

 
Case 4: 
In this case, only M2 is applied to the model.Φ2is to be evaluated accordingly from the FE 

analyses. Thereby, elements of the fourth column of the flexibility matrix [F] can be obtained from 
Eqs. (18) to (21) 
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5. Flexibility equations 
 
A large database of flexibility matrices was obtained by analyzing the FE models. The database 

was subsequently used to derive parametric equations for each term of the flexibility matrix using 
the Levenberg-Marquardt (1944 and 1963) algorithm which is the most widely used optimization 
algorithm to solve a nonlinear least squares problem. By following the LM method, Eq. (23) which 
will be called as AMA (Asgarian-Mokarram-Alanjari) equations, are proposed for determining the 
flexibility matrix of uniplaner multi brace tubular Y-T and K-joints. 

 

)221.0exp()412.0exp()302.2exp()(sin)(sin501.3 21
129.2114.0

2
898.1

111   f  

 )492.2exp()761.2exp()581.5exp()(sin)(sin408.0070.10 21
458.2375.1

2
457.2

121  f

)256.0exp()636.1exp()636.1exp()(sin)(sin789.2 21
225.2949.0

2
949.0

131  f  

)295.0exp()863.0exp()064.3exp()(sin)(sin116.10 21
710.1033.1

2
716.0

141  f           

)491.0exp()003.0exp()255.6exp()(sin)(sin164.102 21
166.2042.0

2
411.2

122  f          (23) 

)295.0exp()064.3exp()863.0exp()(sin)(sin116.10 21
710.1716.0

2
033.1

132  f  

 )955.3exp()317.6exp()317.6exp()(sin)(sin641.953793.40 21
500.1016.2

2
016.2

142  f

)221.0exp()302.2exp()412.0exp()(sin)(sin501.3 21
129.2898.1

2
114.0

133   f  

 )492.2exp()581.5exp()761.2exp()(sin)(sin408.0070.10 21
458.2457.2

2
375.1

143  f  

)491.0exp()255.6exp()003.0exp()(sin)(sin164.102 21
166.2411.2

2
042.0

144  f  
 

Figs. 5(a) and 5(b) are provided to assure the accuracy of the performed regression analyses. 
Figs. 5(a) and 5(b) compare the data obtained from FE analyses for 

33f  and 
31f  with AMA’s 

equations for these terms. Hence, it can be concluded that equations obtained from regression 
analyses are well suited for the pure FE results. 
 

  

(a) (b) 

Fig. 5 (a) Comparison of parametric equation with the FE results for f33 and (b) Comparison of parametric
equation with the FE results for f31  
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6. Discussion 
 
In this section, Buitrago’s (1993), Fessler’s (1986) and Chen’s (1996) equations for LJF of 

tubular joints will be compared to AMA’s formulas. Chen’s (1996) equations are applicable to 
symmetric K-joints without accounting for the effects of gap size on LJF. In Fessler’s (1986) 
equations, on the other hand, effects of gap size on LJF are somehow taken into account only for 
non-diagonal terms of the local flexibility matrix. Buitrago’s (1993) equations takes gap size 
effects into account for all terms but no equation is suggested for the interaction between rotational 
and translational degrees of freedom, i.e. 21 41 32 43f f f, ,  and f are assumed to be equal to zero. 

Buitrago’s (1993), Fessler’s (1986) and Chen’s (1996) equations are presented in Eqs. (24), (25) 
and (27), respectively. It is to be noted that in these equations, notations and parameters were 
redefined so as to conform to those of this paper. 

 
 Buitrago’s (1993) equations 

 
089.0

2
869.1

1
009.0869.1114.0

11 )(sin)(sin)2/()163.2exp(90.5   f  
108.0

2
417.1

1
011.0934.1119.0

22 )(sin)(sin)2/()835.3exp(2.52   f  
089.0

1
869.1

2
009.0869.1114.0

33 )(sin)(sin)2/()163.2exp(90.5   f  
108.0

1
417.1

2
011.0934.1119.0
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1
056.0847.1113.0
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1
020.0872.1102.2212.0
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043324121  ffff  

 
 Fessler’s (1986) equations 
 

3.1
1
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1
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11 )1()(sin95.1  f  

   







D

e
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1 2
1 2

1 2

1
tan tan

2 sin sin 2 2

e

D

     
 

            
   

 (26)

 
 Chen’s (1996) equations 
 

02.217.2
3311 ))(sin25.3exp(71.4   ff  

07.339.2
31 ))(sin49.2exp(79.1  f  

20.168.1
4132 ))(sin62.2exp(69.6   ff

                                    (27) 
25.168.1

4422 ))(sin58.4exp(169   ff  
86.043.1

42 ))(sin00.3exp(1.19  f  
04321  ff

  
Chen’s (1996) equations are not applicable to non-symmetric joints. Thus, for the results to be 

compared with Chen’s (1996) equations, it is necessary that symmetric joints be studied. Figs. 6-9 
compare main diagonal components of the flexibility matrix obtained from AMA’s equations for 
the case of joints with symmetric configurations with those recommended by Buitrago (1993), 
Fessler (1986) and Chen (1996). Figs. 10-15, on the other hand, compare main diagonal 
components of the flexibility matrix for the case of joints with non-symmetric configurations with 
those proposed by Fessler (1986) and Buitrago (1993). It is to be noted that Buitrago’s (1993) 
equations are not applicable to non-symmetric joints in which β1≠ β2while those from AMA and 
Fessler (1993) are. Hence, Buitrago’s (1993) equations do not suggest any curves in Figs. 10, 11, 
20 and 21. 

Although Fessler’s (1986)equations for the main diagonal components of the LJF matrix are 
obtained from single-brace models, Figs. 6-15 show good agreement between the results of this 
paper for f11 and f33, and those obtained from Buitrago’s (1993), Fessler’s (1986) and Chen’s 
(1996). The reason of this agreement can be understood by investigating the interaction effects 
between the two braces on LJFs through Figs. 10-13 and Fig. 15. Figs. 10-13 show that changing  
 

Fig. 6 Effects of β on main diagonal terms of the 
LJF matrix for a symmetric K-joint 

Fig. 7 Effects of   on main diagonal terms of the 
LJF matrix for a symmetric K-joint 

160



 
 
 
 
 
 

Local joint flexibility equations for Y-T and K-type tubular joints 

 

Fig. 8 Effects of  on main diagonal terms of the 
LJF matrix for a symmetric K-joint

Fig. 9 Effects of ζ on main diagonal terms of the 
LJF matrix for a symmetric K-joint 

 
 

 

Fig. 10 Effects of β1 on main diagonal terms of the 
LJF matrix for a Y-T joint 

Fig. 11 Effects of β2 on main diagonal terms of the 
LJF matrix for a Y-T joint 

 
 

 

Fig. 12 Effects of 1 on main diagonal terms of the 
LJF matrix for a Y-T joint 

Fig. 13 Effects of 2 on main diagonal terms of the 
LJF matrix for a Y-T joint 
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Fig. 14 Effects of  on main diagonal terms of the 
LJF matrix for a Y-T joint 

Fig. 15 Effects of ζ on main diagonal terms of the 
LJF matrix for a Y-T joint 

 
 

 

 

Fig. 16 Effects of β  on non-diagonal terms of the 

LJF matrix for a Symmetric K-joint
Fig. 17 Effects of  on non-diagonal terms of the 

LJF matrix for a Symmetric K-joint 
 
the values of β1 and 1 has no significant effect on f33 while f11 is not affected by changes in β2 and 
2 values. Moreover, Fig. 15 represents that the gap size has no significant effect on f11 and f33. 

Figs. 6-9 show good agreement between Buitrago’s (1993), Fessler’s (1986) and Chen’s (1996) 
results for f22 and f44 while there is some difference between these results, and those obtained by 
the authors’ formulae. The reason for this difference is that neither Fessler’s (1986) nor Chen’s 
(1996) equations account for the effects of the gap size and the local stiffening effect of the other 
brace on flexibilities in the brace under investigation. By investigating Figs. 10-13 it can be 
understood that changing the values of β1 and 1 has no significant effect on f22 and f44 is not 
affected by changes in β2 and 2 values, but Fig. 15 shows significant effects of the gap size on 
these two terms. Moreover, Fig. 9 shows that as the values of ζ become grater the authors’ results 
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for f22 and f44 get closer to those from Buitrago (1993), Fessler(1986) and Chen(1996) because the 
effect of the gap size becomes insignificant for large values of ζ. This convergence behavior of the 
authors’ equations confirms their accuracy. From the above discussion, it can be concluded that the 
authors’ equations for f22 and f44 are more acceptable than similar equations proposed by previous 
researchers, since the authors’ formulae account for the effects of gap size.  

Fig. 17 investigates the effect of changing the angle between the brace and the chord in a 
symmetric joint. It can be seen that Fessler’s (1986) equations for f41 and f31 yield inaccurate 
results as the angle approaches 90. In this case, f41 approaches infinity and f31 approaches zero. On 
the other hand, in comparison with the authors’ equations, Chen’s (1996) equations give 
overestimates for these terms, since they do not account for the gap size effects while Buitrago’s 
(1993) formulation for the case off31 have good agreement with the author’s results. Moreover, 
Buitrago et al. (1993) have not presented any equations for f41 while it can be observed (see Figs. 
16-25) that this term cannot be neglected. 

Comparing Fessler’s (1986) results for f31 and f11 in Fig. 8 and 18 reveals that Fessler’s (1986) 
equations do not yield reasonable results since f31 has greater values thanf11. f31 and f11 are 
respectively equal to the axial deflections under brace 2 and brace 1 due to applying unit axial load 
on brace 1; therefore, f11 should be greater than f31 whenever the two braces have the same stiffness. 
The reason of this error in Fessler’s (1986) equations can be recognized by regarding Fig. 21. It 
can be seen that f31 in Fessler’s (1986) formula is almost constant with β2variations. It shows that 
Fessler’s (1986) equations do not account for the effects of the other brace’s stiffness on f31 reliably, 
and hence it results in overestimates forf31. On the other hand, Fig. 19 shows that Fessler’s (1986) 
formula for f31 gives overestimations in flexibility in addition to wrong estimations of the gap size 
effect since it shows an increase in flexibility with bigger gap sizes. Such deficiencies in 
estimation of f31 is not present in the authors’ and Buitrago’s (1993) formulations and it is observed 
that they both yield reasonable results for this case. 

 
 

  

Fig. 18 Effects of   on non-diagonal terms of the 

LJF matrix for a Symmetric K-joint 

Fig. 19 Effects of   on non-diagonal terms of 

the LJF matrix for a Symmetric K-joint 
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f21 and f43 are assumed to be negligible in Buitrago’s (1993), Fessler’s (1986) and Chen’s (1996) 
equations. The values predicted by the authors’ formulations for these two terms in Figs. 16-19 
show that this assumption is acceptable for symmetric joints. However, when the joint is not 
symmetric, the axial load in a brace can result in considerable rotations between the brace and the 
chord. Figs. 22-24 show that neglecting these two terms for large values of 1, 2,  or ζ is not 
acceptable. Moreover, according to Figs. 20-21, f21 will have considerable values for small values 
of β1 and large values of β1 while f43 will have considerable values for large values of β1 and small 
values of β1. Fig. 25 shows that neglecting these rotations is not acceptable for small values of ζ 
where the influence of the gap size on local joint flexibility becomes significant.  
 

 

 

Fig. 20 Effects of 
1  on non-diagonal terms of the 

LJF matrix for a Y-T joint 

Fig. 21 Effects of 
2  on non-diagonal terms of 

the LJF matrix for a Y-T joint 
 

  

Fig. 22 Effects of 
1  on non-diagonal terms of the 

LJF matrix for a Y-T joint 

Fig. 23 Effects of 
2  on non-diagonal terms of 

the LJF matrix for a Y-T joint 
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Fig. 24 Effects of   on non-diagonal terms of the 

LJF matrix for a Y-T joint 

Fig. 25 Effects of   on non-diagonal terms of 

the LJF matrix for a Y-T joint 
 
 
Fessler (1986) suggests taking 42f  equal to zero. Regarding Figs. 16-19 for symmetric joints, 

the large difference between the values of Chen’s (1996) equations and those of this paper as well 
as the conformity between Fessler’s (1986) equations and those proposed in this paper can be 
recognized. Hence, for symmetric joints, it can be concluded that Fessler’s (1986) suggestion for 
neglecting the values of f42 is almost acceptable except for joints with small values of β1 and β2. On 
the other hand, for non-symmetric joints, values of f42 cannot be neglected. Figs. 20-25 show that 
the values of f42 can be significant in non-symmetric joints. Furthermore, Buitrago’s (1993) results 
for f42 do not match with those from the authors or Chen (1996) in none of the Figures mentioned 
above. Moreover, for the case of Fig. 16 Buitrago’s formulation presents inaccurate behavior since 
in addition to the sign change of f42 it does not vary monotonically. 

Figs. 23 and 25 show that Fessler’s (1986) equation for 32f is unreliable since it suggests a 
non-monotonic behavior for this term. The authors’ equation, however, does not face such 
problem. 

Figs. 16-19 show that the authors’ and Chen’s (1996) formulations are more close to each other 
while Fessler’s (1986) equations seems to present overestimations in LJF of this component. 
Buitrago et al. (1993) have not suggested any formulation for this term while it is observed that 
this term cannot be assumed to be negligible. 
 

 

7. Conclusions 
 
Relative deformation of tubular joints may significantly affect analysis results of offshore 

platforms. This effect which is recommended to be considered by many design codes, leads to 
more accurate results. For the advanced analysis of old offshore platforms during their assessment 
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process, it is recommended to consider LJF as one of the numerical model improvements.  
In this paper, a large database for LJF matrix of planner tubular Y-T and K-joints was 

established by developing FE models in ANSYS. The models were selected such that a wide range 
of values for all important non-dimensional parameters of Y-T and K-joints is covered. 
Subsequently, regression analyses on the database were employed to provide parametric equations 
for obtaining LJF matrix of such types of joints.  

The effect of the gap length as well as the interaction effects between the two braces on local 
flexibility of the joints was investigated. It was shown that neglecting these effects has been the 
principal reason for less accuracy in previous studies for predicting local flexibility of tubular 
joints. It was investigated that existing formulations for LJF matrix of tubular Y-T and K-joints 
have some shortcomings while formulations presented in this paper present acceptable behavior 
for all components of the LJF matrix. Therefore, these equations can be used reliably for 
considering the effects of LJFs of tubular joints on overall behavior of the structures. 
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