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Abstract.   Ocean surface currents have an essential role in the Earth’s climate system and significantly 
impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface 
currents remains challenging due to the complexity and variability of the oceanic processes involved. This 
review article provides an overview of the current research status, challenges, and opportunities in the 
prediction of ocean surface currents. We discuss the various observational and modelling approaches used to 
study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. 
We also highlight the major challenges facing the prediction of ocean surface currents, such as data 
assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, 
we suggest that future research should focus on developing advanced modeling techniques, such as machine 
learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean 
surface current predictions. We also emphasize the need to address the limitations of observing instruments, 
such as delays in receiving data, versioning errors, missing data, and undocumented data processing 
techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. 
The future research should focus on developing methods for effective bias correction, a series of data pre-
processing procedures, and utilizing combined models and xAI models to incorporate data from various 
sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime 
operations, climate studies, and ecosystem management. 
 

Keywords:   ocean current modelling; ocean current prediction challenge; ocean current prediction 

opportunities; ocean surface current prediction 

 
 
1. Introduction 

 

Ocean surface currents take a significant role in the global climate pattern, influencing weather, 

the cycling of gases, and the distribution of heat and critical nutrients to marine ecosystems (Siedler 

et al. 2013, WMO 2015). Understanding and predicting these currents is essential for a wide range 

of applications, including accurate weather forecasting, efficient and safe navigation, reliable search 

and rescue operations, prevention of pollution, as well as for marine resource management (Dohan 

2017, Życzkowski et al. 2019). 
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Ocean surface currents are driven by complex forces, including wind, tides, and thermohaline 

circulation (Bolaños et al. 2014, Rahmstorf 2003). The ability to accurately predict ocean surface 

currents is critical for various industries, including shipping, oil and gas exploration, and fisheries 

management  (Bao et al. 2015). Additionally, knowledge of ocean surface currents was essential in 

optimizing the efficiency and sustainability of a renewable energy systems (Rotor et al. 2023).  

However, it is challenging to predict ocean surface currents because of the many unknowns inherent 

in these natural processes. These unknowns include the ocean's unique physical characteristics, the 

difficulty of representing the ocean's complex flows, the scarcity of direct in-situ measurements, and 

the constraints imposed by the availability of observational data (“Unravelling ENSO complexity”, 

2023). 

Recent advances in technology and modelling techniques have enabled significant progress in 

the prediction of ocean surface currents (Muhamed Ali et al. 2021, Sinha and Abernathey 2021).  

This article reviews the recent findings of technological advancement and techniques of modelling 

for ocean surface current prediction and highlights the key challenges and opportunities in this field. 

This article is composed of four parts and is organized as follows: First part is about introductions 

of ocean surface current predictions; Secondly elaborates on the method of ocean surface current 

predictions; The third part is about the challenges and opportunities of ocean surface current 

predictions. The last part is a summary of the article in discussion, and the conclusion as the core of 

the article. 

 

 
2. Method for ocean current predictions 
 

Ocean surface current predictions can be made using various method. Generally, the method can 

be divided into three types: traditional (physics-based), statistical, and soft computing method. Each 

method has its own advantages and disadvantages. 

 

2.1 Traditional methods: Numerical modelling and data assimilation 
 

Traditional Methods of ocean current prediction are typically relying on physics-based 

computational models of the earth system to predict ocean currents (Ness et al. 2022, Willard et al. 

2020). These methods are based on well-established principles, referred as general circulation 

models (GCMs) and are often computationally expensive (Song et al. 2022, Storto et al. 2020). In 

this section, the traditional methods include Numerical Modelling and Data Assimilation. 

 

2.1.1 Numerical modelling 
Numerical modelling is a widely used method for simulating ocean circulation and predicting 

surface currents (Hays 2017, Miller 2007). The numerical models describe the fields of velocity and 

density in the ocean that based on a set of hydrodynamical-thermodynamical equations, incorporate 

the laws of momentum, mass, and energy conservation (Kowalik and Murty 1993). A variety of 

numerical models are available, including the Princeton Ocean Model (POM) (Xu et al. 2015), 

Regional Ocean Modelling System (ROMS) (Shchepetkin and McWilliams 2005), the Finite 

Volume Coastal Ocean Model (FVCOM) (Chen et al. 2012), the HYbrid Coordinate Ocean Model 

(HYCOM) (Bleck, 2002), the Nucleus for European Modelling of the Ocean (NEMO) (Kärnä et al. 

2021), Modular Ocean Model (MOM) (Griffies 2012) and the Navy Coastal Ocean Model (NCOM) 

for ocean models; WRF (Skamarock et al. 2019) for atmosphere model; WAM (Günther et al. 1992), 
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Wavewatch III (Tolman 2009) and SWAN (Booij et al. 1996) for wave model. These models use 

mathematical equations to simulate the physics of ocean circulation, taking into account factors such 

as wind, tides, and density gradients. The timely and accurate monitoring of oceanic networks, 

encompassing both in situ and satellite observations, is crucial for the effective implementation of 

data-assimilation techniques to refine models and validate forecast products. The accuracy of 

predictions from these models can be improved by incorporating data from a variety of sources, 

including in situ measurements and satellite observations (Tonani et al. 2015). 

 

2.1.2 Data assimilation 
Data assimilation is another commonly used method for ocean current predictions. Ocean surface 

current prediction using Data Assimilation (DA) applies the estimation theory/control theory 

involving statistical and numerical methods. DA combines observational data with numerical 

simulations for efficient, accurate, and realistic ocean estimations. Data assimilation (DA) is a 

method of analysis that involves integrating observed data into a model state by utilizing consistency 

constraints with respect to the laws of time evolution and physical properties. DA has the capability 

to furnish a time series comprising four dimensions of dynamically adapted fields, thereby 

constituting comprehensive and high-resolution data sets (Bouttier and Courtier 2002, Stanev and 

Schulz-Stellenfleth 2014).  

Prediction using DA is generally classified into two types: a) Operational Ocean Prediction 

(Numerical Weather Prediction), which involves progressively updating the model state to get the 

best feasible forecast; and b) State / Parameter Estimation, which focuses on hindcast/reanalysis. 

This method compares the models to the observed temporal development in order to recreate the 

past. (Villas Bôas et al. 2019). 

There are two categories of DA approaches: sequential and non-sequential. Sequential methods 

only consider past observations until the time of analysis (Bouttier and Courtier 2002). Direct 

Insertion (DI), Newtonian Relaxation (NR), Optimal Interpolation (Oke et al. 2010), Kalman Filter 

(KF) (Chen et al. 2009), 3D-VAR (Li et al. 2015), Singular Evolutive extended Kalman (SEEK), 

and Singular Evolutive Interpolated Kalman (SEIK) are included in sequential methods. Meanwhile, 

in the non-sequential method, consider future data observation such as reanalysis (which usually 

requires continual model restarting and data ingestion). A non-sequential method such as Smoother 

Approaches includes the four-dimensional analysis (4D-VAR) (Sugiura et al. 2008), Ensemble 

Kalman smoother (EnKS) (Nerger et al. 2014), and Asynchronous Ensemble Kalman Filter (AEnKF) 

(Stanev and Schulz-Stellenfleth 2014).  

The sources of data for DA systems range from satellite remote sensing observations, remotely 

sensed observations from coastal HF Radar, in situ observation instruments (profiling Argo, mooring 

arrays, CTD, and XBT) also from the observations from autonomous vehicles and ocean gliders. 

DA methods are capable of aggregating or downscaling the remote sensing data. Data assimilation 

can also be used to interpolate and extrapolate the observational data. By assimilating observational 

data into numerical models, researchers can improve the accuracy of ocean current forecasts. The 

data assimilation techniques have been shown to improve the accuracy of predictions in various 

oceanic regions (Storto et al. 2020). 

 

2.2 Statistical method 
 
Statistical methods for ocean surface current prediction typically involve the use of statistical 

techniques to analyze historical data and identify patterns and trends that can be used to make 
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predictions about future currents (Allen et al. 2018, Egger and Carpi 2008, Sinha and Abernathey 

2021). Unlike traditional physical-based methods, which rely on mathematical models of the 

physical processes that drive ocean currents, and soft computing methods, which use artificial 

intelligence techniques to learn from data and make predictions, statistical methods do not rely on a 

priori knowledge of the underlying physical processes, but rather on the analysis of data and the 

identification of patterns and relationships within the data (Lammers and Badia 2005, Mishra et al. 

2019). 

One example of a statistical method for ocean surface current prediction is the use of an 

Empirical Orthogonal Functions (EOF) as empirical statistical model that developed to relate the 

non-tidal motion of the ocean surface currents off the Oregon coast to forecasts of the coastal winds 

by Zelenke (2005) The empirical statistical model based on bilinear regression is then used to 

produce predictions of the surface currents that are evaluated for their agreement with measured 

currents. Correlations between the predictions and the measurements were found in excess of 0.7 in 

both the V and U components, and the average error in this prediction remained less than 4 cm/s out 

to 48 hours into the future. 

Another example of a statistical method for ocean surface current prediction is the use of linear 

Auto-Regression (AR) statistical model. Frolov et al. (2012) used empirical orthogonal functions 

(EOFs) to capture spatial correlations in the HF-radar data and used a linear autoregression model 

to predict the temporal dynamics of the EOF coefficients. The developed statistical model was tested 

using historical observations of surface currents in Monterey Bay, California. The developed model 

is found to be capable of learning tidal variability directly and found to be more accurate than the 

existing operational model in Monterey Bay (GPO2009 empirical model), also better in capturing 

of the spatial and temporal correlations. 

The other application of statistical approach was conducted in grid-based spatial ARIMA (auto-

regressive integrated moving average) (Pongto et al. 2020). It estimated the short-term forecast 

values of Ocean Current Patterns. The implemented method showed that the approach outperformed 

other methods in V component prediction and a historical dataset of 1 day and 7h prior compared 

with different existing approaches. 

In summary, statistical methods for ocean surface current prediction involve the use of statistical 

techniques to analyze historical data and identify patterns and trends that can be used to make 

predictions about future currents. While these methods do not rely on a priori knowledge of the 

underlying physical processes, they have been shown to be effective in predicting surface currents 

over short time horizons. 

 

2.3 Soft computing methods 
 
Soft Computing Methods typically rely on machine learning algorithms to learn patterns in data and 

make predictions. These methods are based on data-driven models and are often computationally 

efficient (Houssein et al. 2023, Pugliese et al. 2021, Sarker 2021). The most frequently used method 

of soft computing is Artificial Intelligence method (Sarker 2022). 

 

2.3.1 Artificial intelligence 
Artificial intelligence (AI) has been increasingly used in oceanography and marine science to 

understand better and predict changes in marine ecosystems (Song et al. 2023). AI is described as 

the science and engineering of intelligent machines, with a special emphasis on intelligent computer 

programs (Xu et al. 2021). By providing a more accurate and efficient approach to predicting ocean  
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Table 1 Summary of types and models for Ocean Current Prediction Method 

Method of Ocean 

Current Prediction 
Types Models 

Traditional Numerical 

Modelling 

POM (Xu et al. 2015), ROMS (Shchepetkin and 

McWilliams 2005), FVCOM (Chen et al. 2012), 

HYCOM (Bleck 2002), NEMO (Kärnä et al. 2021), 

MOM (Griffies, 2012), NCOM, WRF (Skamarock et 

al. 2019), WAM (Günther et al. 1992), 

WAVEWATCH III (Tolman 2009), SWAN (Booij et 

al. 1996) 

Data Assimilation SEQUENTIAL (Direct Insertion (DI), Newtonian 

Relaxation (NR), Optimal Interpolation (OI) (Oke et 

al. 2010), Kalman Filter (KF) (Chen et al. 2009), 3D-

VAR (Li et al. 2015)) and  

NON-SEQUENTIAL (4DVAR (Sugiura et al. 2008), 

EnKS (Nerger et al. 2014), AEnKF (Stanev and 

Schulz-Stellenfleth 2014)) 

Statistical  Statistical Models Empirical Statistical Model (Zelenke 2005), AR 

Model (Frolov et al. 2012), Grid-based ARIMA 

(Pongto et al. 2020) 

Soft Computing Artificial 

Intelligence 

Machine Learning (Temporal kNN, ANN) (Dauji et 

al. 2015, Jirakittayakorn et al. 2017, Moreno et al. 

2022, Schultz et al. 2021, Sinha and Abernathey 

2021) 

 Deep Learning (CNN-GRU (Thongniran et al. 2019), 

LSTM (Bayindir 2019), STCANet (Xie et al. 2023), 

SDPNet (Zhang et al. 2023))  

 

 

currents, AI has the potential to revolutionize the field of oceanography (Wen et al. 2021). The 

application of AI models for prediction and forecast has demonstrated greater performance in 

various areas, including weather forecasting, traffic forecasting, video prediction, energy estimation, 

and so on, compared to traditional statistical approaches (Xu et al. 2021). Since it can deal with 

unclear, partial, and even conflicting data, an AI approach to forecasting in the ocean environment 

has potential advantages over other approaches (Durazo and Baumgartner 2002).  

The major parts of AI are Machine Learning (ML) and Deep Learning (DL), frequently used 

interchangeably in recent years. Artificial intelligence, or AI, is a subfield of computer science that 

aims to mimic human intelligence by developing computational capabilities that mimic human 

cognitive and logical abilities in order to tackle difficult issues. In order to accomplish this goal, AI 

develops computational systems capable of performing activities normally associated with human 

intelligence.  

On the other hand, ML approaches attempt to discover relationships (such as pattern recognition) 

between input data and output data using or without mathematical representations of problems 

(algorithms). Once the machine-learning models have been adequately trained using the training 

dataset, decision-makers can retrieve the forecasting output values by feeding the forecasted input 

data into the well-trained models to perform the aforementioned tasks. A third terminology often 

written as DL, is also in use. Deep learning (DL) is a machine learning subfield that uses flexibility 

and scalability of neural networks trained with several processing layers (Tapeh and Naser 2023). 
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Machine Learning (ML) has grown rapidly in a variety of study domains, including computer 

vision (Khan and Al-Habsi 2020), natural language processing (Otter et al. 2020), science 

(Mjolsness and DeCoste 2001) and engineering (Willard et al. 2022). The literature, in particular, 

reveals that the use of ML techniques, ranging from traditional methods to deep neural networks, is 

present in practically all aspects of spatio-temporal problems. Adopting ML techniques improves 

forecasting of complex high-dimensional dynamics significantly. In recent years, machine learning 

techniques also have been used to predict ocean currents such as the utilization of Temporal kNN 

(Jirakittayakorn et al. 2017), and Artificial Neural Network (ANN) (Dauji et al. 2015, Kwon et al. 

2023, Moreno et al. 2022, Sinha and Abernathey 2021). These techniques can be used to uncover 

patterns in observational data that typical numerical models cannot capture (Schultz et al. 2021). 

These methods were be able to extract the spatial and temporal characteristic ocean current patterns 

that may be challenging for conventional models (Li et al. 2021). This can improve the accuracy of 

predictions in coastal regions and areas with complex topography (Zandi et al. 2022). 
Deep learning is the most rapidly expanding AI sub-domain (Szczepanski 2019). DL is a 

collection of approaches that make use of deep neural networks, or networks with two or more 
hidden layers. The capacity to tackle jobs utilizing the end-to-end method is the primary advantage 
of deep architectures. Because a signal or picture vector is utilized as an input to the network, and 
the network independently finds the regularities tying the input vector to the target variable, this 
approach lowers the requirements for preliminary data processing. The network selects the 
significant features, which is a time-consuming and complex procedure. This network's operation 
substantially simplifies the task of researcher. However, these benefits are only seen with a large 
enough amount of training data and a properly constructed neural network architecture. 

One example of a deep learning application for ocean surface current prediction is the use of 

CNN-GRU spatio-temporal deep learning model to capture both spatial and temporal effect of ocean 

surface current (Thongniran et al. 2019). When the model evaluated and compared to the other eight 

existing models on the current data in the Gulf of Thailand from 2014 to 2016, it is and found that 

the CNN-GRU combination method outperforms almost all baselines in terms of the Root Mean 

Square (RMSE) as the measures of the average difference between a statistical model's predicted 

values and the actual values. Another deep learning prediction approach namely Long Short-Term 

Memory (LSTM) was applied to the ocean current velocity timeseries to find its prediction 

performance (Bayindir 2019). The algorithm was tested to four months experimental data collected 

by NOAA in Massachusetts Bay and found that the RMSE predicted time series for the ocean current 

velocity is less than 0.07 for both u and v ocean current surface components. 

A similar ocean current pattern forecast value was conducted using spatio-temporal coupled 

attention deep network model STCANet (Xie et al. 2023). It utilizes the Spatial Channel Attention 

Module (SCAM) to capture the spatial correlations and dependencies, the Gated-Recurrent-Unit 

(GRU) to extract temporal relationships, and finally the nearest neighbour time attention module to 

extract the interdependences of ocean currents between adjacent times to improve the accuracy of 

ocean current prediction. A series of comparative experiments to the Dataset showed that the 

prediction quality of the model can outperforms the other benchmark models. 
Another application of deep learning method was done using namely skipped dual path network 

(SDPNet) (Zhang et al. 2023). Specifically, SDPNet has a 1D CNN) module a recurrent neural 
network (RNN) module with a dual-path structure (LSTM-GRU) to enable mining the intrinsic 
change pattern contained in ocean surface current timeseries data. Experiments are conducted on the 
South China Sea utilizing the data set from ocean reanalysis dataset of South China Sea (REDOS). 
SDPNet can achieves average accuracy of 74% in predicting the coming 7 days of ocean surface 
current values and directions and performs better than state-of-the-art machine learning methods. 
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3. Limitation and challenges 
 
3.1 Multiple sources of errors from numerical model 
 
Regional ocean models are extremely useful tools for operational oceanography (Wilkin and 

Hunter 2013). However, the use of numerical models in computing ocean currents is unavoidably 
hampered by errors from many sources which can have a negative impact on model's performance 
and accuracy particularly in highly dynamic coastal locations where conditions vary fast 
(Hernandez-Lasheras et al. 2021).  

The numerical model errors can be caused by both formulation and discretization problems. This 
is because the mathematical model can only be an approximation of the genuine processes in nature. 
Physical processes are typically complex, poorly understood, or, in some cases, altogether unknown, 
and so can only be described in a simplified form. Parts of the real dynamics are consequently 
ignored in the final mathematical model, introducing the first layer of error, the formulation error. 
The mathematical model is then discretized and approximated on a computer, introducing the second 
component of model errors, known as discretization error. This word refers to all errors that have 
their origins in the discretization of the continuous equations and boundary conditions of the 
mathematical model (Jan Ackmann 2017). 

Other example of errors includes problems in properly specifying a model's initial and boundary 

conditions (Moore et al. 2011), faults in setting atmospheric parameters (wind, air temperature, and 

so on), uncertainties in flow forcing (tide, winds, pressure) (Karri et al. 2013), and uncertainties in 

bathymetric data. These inaccuracies are frequently accompanied with other flaws in the core of 

modelling (Fringer et al. 2019). These errors may accumulate over time and often deviate the model 

from the actual ocean trajectory. 
 
3.2 Requirement of high computation 
 
The field of ocean prediction has been dominated by numerical models for decades. Nonetheless, 

there are boundaries to what can be modelled numerically. To begin, a high-powered computing 
infrastructure capable of producing reliable future state predictions is essential for running numerical 
models. Typically, supercomputers are required to do the calculations necessary for producing high-
precision worldwide forecasts. Second, the atmospheric forcing field is a crucial input for numerical 
models. Since weather forecasts is limited within two weeks, accurate long-range ocean prediction 
is challenging to obtain (Zhao et al. 2020). 

Meanwhile, for Data Assimilation, although it obtains more reliable ocean state estimates by 
routinely constraining and adjust the model outputs with incoming ocean data through, however, DA 
also relies on supercomputer facilities to assimilate massive amounts of data gathered by monitoring 
systems in real-time to generate the advanced general circulation models (Hoteit et al. 2018). 

 
3.3 Uncertainties factors for data assimilation 
 
Although Data Assimilation can solve data availability problems by generating data at a specific 

spatial and temporal scale, DA has big issues that can affect the reliabilities of the prediction result. 
Data assimilation has uncertainties that can be inherited from the incomplete ocean models dynamics 
(Tokmakian and Challenor 2019), measurement sensors (Reichle 2008), and various parameters and 
inputs. 

 
3.4 Limitation of AI model 

91



 

 

 

 

 

 

Ittaka Aldini, Adhistya E. Permanasari, Risanuri Hidayat and Andri Ramdhani 

 
There are promising potential for the widespread use of AI. However, there are a number of 

challenges, and resolving them would open up exciting new opportunities for the use of AI in 
predicting ocean surface currents. There are several limitations of AI Applications, including: 1) 
Requirement toward large amounts of data; 2) Difficulties in data collection and preliminary 
processing; 3) Insufficient labeled data and tedious data labeling; 4) Data biases and technical 
limitations; 5) The need of improve the model and accelerate the learning. 

 
3.5 Limitation of instruments lead to limited data availability and data issues 
 
In predictions, observational data from ocean observing instruments are used in several ways: (a) 

validating numerical model output, (b) employing observational data directly or via a short-term 
predictive model, or (c) assimilating observational data into ocean models that are then used for 
predictions. 

Measurements of the ocean are collected and distributed with varying time lags from various 
observing platforms such as satellites, anchored surface and subsurface buoys, drifters, floats, 
dedicated manned and unmanned vehicles, research ships, and vessels of opportunity. These 
instruments contain a number of difficulties, including delayed and duplicate data receipts, 
versioning errors, missing data and metadata, and undocumented data processing techniques. 
Because of a lack of metadata, the accuracy of observational data is frequently unclear or 
underestimated within historical data records. This also prevents the implementation of appropriate 
bias-correction processes and may result in the incorrect definition of instrumental errors, which 
may compromise data quality. 

On the other hand, each of the observing instruments has its own disadvantages. In-situ observing 
instruments, although they can generate higher data resolutions, these instruments, besides the high 
operational costs, are also lacking in providing measurements for larger areas. In addition, surface 
drifters, as drifting buoys, face some challenges in interpretations due to several factors, such as 
motions due to slip caused by windage, surface gravity wave rectification, and stokes drift (Lumpkin 
et al. 2017).  

In the meantime, remote sensing observation instruments are at the forefront of many elements 
of global monitoring. They are less expensive, more uniform, cover more areas, and have the 
potential for synergistic data mining. Valid data acquisition is limited by a number of satellite 
constraints, and obtaining a continuous data series is seldom accomplished in practice. The altimeter 
observing system has two key drawbacks when it comes to tracking ocean surface currents: (1) it 
can only deduce the geostrophic component of the currents, and (2) in some regions, it can only do 
so for a limited range of spatial scales (Dotto et al. 2018). 

In terms of high-frequency coastal radar (HF Radar), although generally having spatial resolution 
larger than satellite altimetry, due to long-range propagation circumstances, HF radars are 
susceptible to external Radio Frequency Interference (RFI) caused by diurnal fluctuations in the 
ionosphere, resulting in greater noise levels (Cook et al. 2008). 

 
 

4. Opportunities for further research 
 
4.1 Development of algorithm for ocean data pre-processing 

 
The methods of ocean data pre-processing have significant influence on the creation of the 

models, and these approaches in turn depend heavily on the requirements of various applications 
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and the cognitive background of the users. In order to improve the overall efficiency of model 
creation and reduce the large amount of time spent on ocean data preparation, future algorithm 
development (particularly employing AI) should be directed toward numerous data formats, 
especially from the different ocean observing equipment. To illustrate, the ocean current data can be 
obtained from HF Radar and Acoustic Doppler Current Profiler (ADCP), while the data format of 
that two devices are different. The data obtained from the HF Radar instrument has a format of either 
*.RUV, * (radial velocity) or *.TUV (total velocity). Besides, other observing instrument such as 
satellite, wave buoy, ocean glider, moored buoy, and Argo float, mostly stored the data in *.NC 
(NetCDF) format. In contrast, ADCP instrument has a format in binary form (*.ENR, *.ENS, *.ENX, 
*.N1R, *.STA, *.LOG). Uniformize all of those formats to ASCII format such as Comma Separated 
Value (*.CSV) or *.TXT is required to open and visualize data for further processing and analysis 
utilizing either Python, MATLAB, or R programming language. Additional algorithm for data pre-
processing can be made for instance for quality control, data cleaning, data normalization, feature 
selection, and data normalization. Another additional approach can involve activities such as 
centralizing data collection and marking up data sets to make the data easily accessible. 

 

4.2 Comparison of artificial intelligence model for prediction/forecast 
 

Predicting the behaviour of a dynamic system is really challenging in general, and it becomes far 

more difficult when the prediction needs to be accomplished in real time. There are a lot of AI 

algorithmic models out there, but nobody can agree on which one would work best for a certain 

maritime data mining issue. Therefore, different training strategies, including tweaks to parameters 

and training procedures, are commonly utilized, and comprehensive comparisons between traditional 

model, statistical model, and soft computing model are required for model creation through a large 

number of experimental comparisons to build a more accurate model. 

 
4.3 Development of a Model based on a specific purpose 
 

With regard to various uses, novel deep neural network architectures need to be created. Dataset 

preparation is also required for many specific uses, such as particle tracking, eddy detection, storm 

surge detection, and seasonal predictions. The selection of predictive modelling techniques and the 

preparation of prediction models would differ based on the specific purpose of the prediction. For 

example, a model developed for particle tracking may require different input data and modelling 

techniques than a model developed for storm surge detection. 

 
4.4 Incorporation from various sources of data 
 

Missing or incomplete data can reduce the performance of operational forecasts/predictions. 

Incorporating data from various sources can complement/fill the missing gap in time-series data 

observations. For example, in-situ observations such as current meter, current profiler, and research 

vessels were usually taken to complement the data observation from remote sensing instruments 

such as synthetic aperture radar (SAR), satellite altimetry (SA), and coastal high-frequency radars. 

The temporal resolution of both SAR and SA with the broader coverage is typically only on the order 

of days to weeks. In comparison, the temporal resolution of the current meter with the narrow 

coverage is typically on the order of seconds to minutes. However, coastal High-Frequency Radar is 

usually preferred over other instruments because of its advantage of offering vast coverage up to 
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200 kilometers with a high spatial resolution of 1-2 kilometers and providing the observation data 

within minutes. 

Incorporation of data sources from other observing instruments, not only can be used for 

improvement of the accuracy and reliability of the prediction, but also can be used for data evaluation 

and calibration. 

 

4.5 Combination of different model / coupled model 
 
While applying one single model can have several factors that reduce the accuracy of the predictions, 

using a combined model/coupled model, such as a physics-based numerical model combined with an 

artificial intelligence model, can improve the predictions/ forecast of ocean surface currents. 

As a result of the wide variety of datasets, time-steps, prediction-ranges, settings, and performance 

metrics, it might be challenging to optimize a single ML/DL model for better forecasting results. Pre- 

dictions of ocean surface currents may benefit from the development of hybrid machine-learning or deep- 

learning models or overarching prediction methodologies. 
 

4.6 Implementation of explainable AI (xAI) model 
 

The applicability of classical neural networks to problems of ocean prediction is constrained by the 

absence of uncertainty analysis. Since neural networks in ocean science must be trained on historical data 

before being applied to a changing ocean situation where the dynamics governing an area may have 

fundamentally changed, uncertainty measures are particularly critical for out-of-sample predictions. 

Decisions based on the predictions of neural networks may have far-reaching consequences, making the 

quantification of uncertainty within ocean applications crucial. In addition, the ocean scientific 

community may be sceptical about neural network forecasts due to the possibility of misleading 

correlations leading to nonphysical forecasts. If the reasoning behind a network’s prediction is clear to 

those working in the field of climate science, then that network’s prediction is more credible. Adding 

explainability methods to uncertainty analysis, however, is a somewhat unexplored field. 

 

 

5. Discussions of key challenges and future prospects 
 

There were challenges and limitations that researchers face when predicting ocean surface 

currents. One of the major challenges is the accumulation of errors from various sources in numerical 

models. These errors can arise from formulation and discretization problems, uncertainties in flow 

forcing and bathymetric data, defining initial and boundary conditions, and more. The errors tend to 

multiply in highly dynamic coastal regions where conditions shift frequently. Addressing these errors 

and improving the accuracy of numerical models will be crucial for enhancing the performance of 

ocean current predictions. 

Another challenge is the high computational requirements of numerical models and data 

assimilation techniques. High-precision global forecasts often require supercomputers, limiting the 

accessibility and scalability of these models. Additionally, data assimilation relies on assimilating 

massive amounts of data gathered by monitoring systems in real-time, further increasing the 

computational burden. Future research should focus on developing advanced computing 

environments and optimization techniques to make the computation more efficient and enable long-

term ocean predictions. Moreover, data assimilation introduces uncertainties, which can arise from 
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incomplete ocean model dynamics, measurement sensors, and various parameters and inputs. Future 

research should aim to reduce these uncertainties through improved model calibration and validation 

techniques, as well as the development of more accurate and precise measurement sensors. 

Addressing the limitations of observing instruments is also a significant challenge for researchers. 

Delays in receiving data from ocean observation instruments like satellites, moored buoys, drifters, 

and research ships, as well as versioning errors, missing data, and undocumented data processing 

techniques are common. Due to a lack of metadata, the accuracy of observational data is typically 

unknown or underestimated, which hinders efficient bias correction and affects data quality. Each 

observing instrument also has its own disadvantages, such as limited coverage, high operational 

costs, and challenges in data interpretation. Improving data availability and quality will be essential 

for enhancing the accuracy of predictions. Future research should focus on developing methods for 

effective bias correction, a series of data pre-processing procedures, and utilizing combined models 

and xAI models to incorporate data from various sources. Advancements in predicting ocean surface 

currents will benefit various applications such as maritime operations, climate studies, and 

ecosystem management. 
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