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Abstract. A method to design a boundary controller for global stabilization of three-dimensional nonlinear
dynamics of flexible marine risers is presented in this paper. Equations of motion of the risers are first
developed in a vector form. The boundary controller at the top end of the risers is then designed based on
Lyapunov’s direct method. Proof of existence and uniqueness of the solutions of the closed loop control
system is carried out by using the Galerkin approximation method. It is shown that when there are no
environmental disturbances, the proposed boundary controller is able to force the riser to be globally
exponentially stable at its equilibrium position. When there are environmental disturbances, the riser is
stabilized in the neighborhood of its equilibrium position by the proposed boundary controller. 
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1. Introduction

The need for production of oil and/or gas from the sea bed has made control of the dynamics of a

marine riser, which is a structure connecting a oil and/or gas oshore platform with a well at the sea

bed, a necessity for both ocean and control engineers. A typical configuration of an oshore platform

is depicted in Fig. 1. The riser is considered in this paper as a slender thin walled circular beam

because of its large length to diameter ratio. In general, the riser is subject to nonlinear deformation

dependent hydrodynamic loads induced by waves, ocean currents, tension exerted at the top,

distributed/concentrated buoyancy from attached modules, its own weight, inertia forces and dis-

tributed/concentrated torsional couples. Before reviewing control techniques for the flexible marine

risers, we here mention some early work on static analysis of the risers. In Huang and Chucheepsakul

(1985), Bernitsas et al. (1985) and Huang and Kang (1991), the static models of both two-and

three-dimensional risers are first presented based on the work in Love (1920). Then numerical

simulations are carried out to analyze the effect of the system parameters on the riser equilibria. It

should be also mentioned the recent work in Ramos and Pesce (2003), where the authors carry out

static stability of a riser based on the variational method. Since the riser dynamics is essentially a

distributed system and its motion is governed by a set of partial differential equations (PDE) in both

time and space variables, modal control and boundary control approaches are often used to control

the riser in the literature. 

In the modal control approach, see Meirovitch (1997) and Gawronski (1998), distributed systems
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are controlled by controlling their modes. As a result, many concepts developed for lumped-parameter

systems in Khalil (2002) and Krstic et al. (1995) can be used for controlling the distributed ones,

since both types can be described in terms of modal coordinates. The main difficulty is computation

of infinite dimensional gain matrices. This difficulty can be avoided by using the independent

modal-space control method, but this method requires a distributed control force, which can be

problematic to implement. One way to overcome this problem is to construct a truncated model

consisting of a limited number of modes. In order to describe the behavior of a flexible system in a

satisfactory fashion, it is necessary to include a large number of modes into the model. Thus, a

characteristic of a truncated model is its large dimension, i.e., it is impractical to control all modes.

Therefore the control of such truncated systems are restricted to a few critical modes. This also

means that other modes are not controlled, and could be unstable. In fact, truncation of the infinite

dimensional model divides the system into three modes: modeled and controlled, modeled and

uncontrolled (residual), and un-modeled. Only the modeled modes are considered in the control

design. In addition, observers are needed to provide the system output for these modeled modes

from the actual distributed system. The use of these observers in combination with truncated models

of distributed system leads to a spill-over phenomenon meaning that the control from actuators not

only affects the controlled modes but also influences the residual and un-modeled modes, which can

be unstable, Balas (1977). 

The boundary control approach is more practical and efficient than the modal control approach

since it excludes the effect of both observation and control spill-over phenomenon. In the boundary

control approach, distributed actuators and sensors are not required. In addition control design based

on the original PDE model instead of a truncated model, improves the performance of the control

system. In recent years, boundary control has received a lot of attention from the control

Fig. 1 A typical riser system
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community. Design of boundary controllers for distributed systems has been usually based on

functional analysis and semi-group theory, see Chen et al. (2001) and Curtain and Zwart (1995),

and the Lyapunov’s direct method, see Queiroz et al. (2000) and Junkins and Kim (1993). The

Lyapunov’s direct method is widely used since the control Lyapunov functions/functionals directly

relate to the kinetic and potential energies of the distributed systems. Using the Lyapunov’s direct

method, various boundary controllers have been proposed for flexible beam-like systems. In Yang et

al. (2004), a robust and adaptive boundary controller is proposed for reducing transverse vibration

of an axially moving string under a varying tension and an unknown boundary disturbance force

based on the Lyapunov function, which is the sum of kinetic and potential energies of the string

system, plus a coupling term. In Fung et al. (1999) and Fung and Tseng (1999), asymptotic and

exponential stability of an axially moving string is proven by using a linear and nonlinear state

feedback boundary control, respectively. They proved that the mechanical energy of the system

decreases exponentially in the nonlinear feedback case. In Fard and Sagatun (2001), the boundary

stabilization of a beam in free transverse vibration is considered. The control law is a nonlinear

function of the slopes and velocity at the boundary of the beam to provide exponential stabilization

a free transversely vibrating beam via boundary control without restoring to truncation of the model.

The coupling between longitudinal and transversal displacements is also taken into account.

Recently, in Tanaka and Iwamoto (2007) an active boundary control is proposed for an Euler-

Bernoulli beam, which enables one to generate a desired boundary condition at designated positions

of a target beam based on structure transfer matrix and the optimal control methods. It should be

noted that the active boundary control in Tanaka and Iwamoto (2007) is implemented at various

locations of the beam. Therefore, this method closely relates to the modal control approach although

it is called boundary control. In Do and Pan (2008), Ge et al. (2010), How et al. (2009), boundary

controllers were proposed for controlling vibration of marine risers in two dimensional space based

on the Lyapunov direct method. In Nguyen et al. (2010), Nguyen et al. (2011), different control

strategies were proposed to control the angle of the marine risers’ top end based on the authors’

algorithms for chasing an optimal set-point. In Yang et al. (2004), Fung et al. (1999), Fung and

Tseng (1999), Fard and Sagatun (2001), Tanaka and Iwamoto (2007) and Queiroz et al. (2000),

two-dimensional strings and beams are considered, and distributed forces including the structures’

own weight are ignored. Mathematical work in Tsay and Kingsbury (1998) shows that even slight

space curvature introduces significant changes in the beam natural frequencies and especially on

mode shapes, i.e., the coupling of the out-of-plane wave types, and extensional and flexural waves

exhibits in the flexible beams. The coupling between these wave types due to the curved shape of

the riser, boundary constraints and external forces made the energy exchange from one wave type to

other possible. Moreover, in Yang et al. (2004), Fung et al. (1999), Fung and Tseng (1999), Fard

and Sagatun (2001), Tanaka and Iwamoto (2007), Queiroz et al. (2000), Ge et al. (2010), How et

al. (2009), no proof of existence and uniqueness of the solutions of closed loop systems was given.

It is well-known that there are systems governed by initial-boundary PDEs, whose solutions do not

exist or are not unique. For any control systems to be useful in practice, existence and uniqueness

of the solutions of the closed loop control systems are as vital as stability. 

In this paper, we consider a problem of global stabilization of three-dimensional nonlinear flexible

marine risers. A set of partial differential equations and boundary conditions describing motion of

the risers is presented based on balancing internal and external forces/moments. Using the

Lyapunov’s direct method, a boundary controller at the top end of the risers is designed. Proof of

existence and uniqueness of the solutions of the closed loop system is given. The proposed
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controller guarantees that when there are no environmental disturbances, the riser is globally

exponentially stabilized at its equilibrium position, and that when there are environmental

disturbances, the riser is stabilized in the neighborhood of its equilibrium position. 

2. Mathematical model and control objectives

2.1. Mathematical model 

In this section, we develop equations of motion of the riser. These equations will be used for the

boundary control design in the next section. In developing the equations of motion of the riser, we

make the following assumption: 

Assumption 2.1.

1. The riser can be modeled as a beam rather than a shell since the diameter-to-length of the riser

is small, i.e., we consider the riser as a slender structure. 

2. Plane sections remain plane after deformation, i.e., warping is neglected. 

3. The riser is locally stiff, i.e., cross sections do not deform and Poisson  effect is neglected. 

4. The riser material is homogeneous, isotropic and linearly elastic, i.e., it obeys Hookes’s law. 

5. The riser is initially straight and vertical. 

6. Torsional and distributed moments induced by environmental disturbances are neglected. 

Remark 2.1. Items 1)-4) mean that the riser will be modeled as a Bernoulli-type of beam and not a

Timoshenkotype, and that the extension of the riser axis small. Bernoulli-Euler models are satisfactory

for modeling low frequency vibrations of beams. Item 5) generally holds in practice, and is made to

simplify the development of the mathematical model and boundary controller. This item can be readily

removed. Item 6) implies that we consider fluid/gas transportation risers rather than drilling risers, and

that moment induced by the asymmetry of the relative flow due to vortex shedding is ignored.

Fig. 2 Riser coordinates
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2.1.1. Preliminaries

The riser coordinates are presented in Fig. 2. In this figure, we have two coordinate systems. The

earth-fixed system is (OXYZ), where O is the bottom ball-joint of the riser, and the OZ axis is along

the initial riser. Let r0(s0, t0) = [x0, y0, z0] be the position vector of the point P0 of the initial riser

centerline at the time t0 and the arc length s0 from the point O. Hence at the time t > t0, the point P0

moves to the point P of the deformed riser centerline, whose position is denoted by r(s, t)= [x(s, t),

y(s, t), z(s, t)] at the arc length s from the point O. Moreover, let w(s, t) = [wx(s, t), wy(s, t), wz(s, t))]
T be the

vector from the point P0 to the point P. Then we have 

r = r0 + w (1) 

where from now onward whenever it is not confusing, we drop the arguments (t, s) and (t0, s0) of r,

w and r0, respectively for clarity. The body-fixed system is ( ), whose axes are the tangent,

principal normal and binormal and unit vectors. These vectors can be expressed in terms of the

fixed system as 

(2)

where the subscript s denotes the partial derivative with respect to the arc-length s, and κ is

curvature of the riser center line at s depicting the rate of change of the orientation of the normal

plane ( ) defined by . The above definition of the body-fixed coordinate system means

that ( )form a right handed orthonormal triad. The derivatives of the unit body-fixed vectors

are given by the well-known Frenet-Serret relations Widder (1989): 

(3)

where τ is the geometric torsion of the riser centerline depicting the rate of change of the

orientation of the osculating plane ( ) defined by . Now from the right hand

side sub-figure of Fig. 2, balancing the forces and moments on a component ds of the deformed

riser results in 

(4)

where from now onward, we use the subscript t to denote the partial derivative with respect to the

time t, mo = ρA is the oscillating mass of the riser per unit length with A being the riser cross

section area, and ρ being the density of the riser, J = ρI with I being the second moment of the riser

cross section area about the  axis, F and M are internal force and moment vectors, q and m are

the external distributed force and moment vectors, and  is the angular

acceleration of a point on the centerline. The distributed moment vector m is induced by the

asymmetry of the relative flow due to vortex shedding. Let ( ) and ( ) be the

components of F and M along the  axes of the body-fixed system, respectively. We then can

write F and M as 

(5)

Since the riser is assumed to be straight at the initial time t0, we have the following constitutive

relations, see Love (1920) and Bernitsas (1982) 
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(6)

where E is Young’s modulus, T0 is the initial tension in the riser; Hw and Hm are the vertical

coordinates of the free surface of the water and mud, respectively; ρw and ρm are the density of the

water and mud, respectively; Do and Di are the external and internal diameters of the riser; z is the

vertical coordinate of the point P; B = EI is the bending rigidity of the riser; H is the initial torsional

moment around the axis; G = 2µI is the torsional rigidity of the riser with µ being the shear

modulus,  is the extension of the riser centerline given by Dill (1992) 

(7)

It is noted that since we assumed that extension of the riser centerline is small and the riser

centerline is stretched, hence 0 ≤ ≤ 1. The case where = 0 corresponds to an inextensible riser.

Moreover,  in (6) is referred to as the effective tension, while the actual tension is EA . 

Remark 2.2. In Dill (1992), a local coordinate system (a1, a2, a3) where a3 coincides with ,

different from the local coordinate  in this paper is used. Using the local coordinate (a1, a2,

a3) results in complexities in calculating the curvatures of the riser in the (a1, a3) and (a2, a3) planes.

Indeed, one can rotate the coordinate system (a1, a2, a3) round the  axis a angle to have the

coordinate system , which has nice properties in (3). In Bernitsas (1982), the constitutive

equation for the moment in the normal direction, , is misgiven, since  is always zero for the

riser under consideration. 

2.1.2. Equations of motion 

From (5) and the second equation of (6), we have 

(8)

where H = H + Gτ and we have used the vector algebra properties given in (A.1). Now substituting

(8) into the second equation of (4) results in 

(9)

Now producting vector both sides of (9) with  gives 

(10)

where we have used the vector algebra properties given in (A.1) and the definition of  in (2). On

the other hand, vectoring both sides of (9) with  gives 

(11) 

Let us calculate the first three terms of the right hand side of (11) using the vector algebra
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properties given in (A.1) and the definitions of  and  in (2) as follows 

(12)

Substituting (12) into (11) gives 

(13)

Now substituting F from (13) into the first equation of (6) and combining the second equation of

(10) result in the equations of motion of the riser as follows 

(14)

It is noted that we have assumed the torsional moment  and the distributed moment m are

negligible, and that the riser has a constant cross section. Furthermore, since the riser is initially

straight, we have rss = wss, rssss = wssss and ws = rs −  where we take  due to the small

extension assumption, see Dill (1992). With these in mind, we now have the equations of motion of

the riser from (14) for the boundary control design in the next section 

(15)

Remark 3. The riser dynamics (14) or (15) is one dimensional (with respect to the spatial

variable s). This means that a point on the riser cross section, other than the point on the centerline,

cannot be traced after deformation takes place. In this paper, we consider the deformation of the

riser centerline, which is, in general, a three-dimensional space curve. 

2.1.3. Initial and boundary conditions 

The initial conditions of the riser consist of the initial position and velocity functions. They are 

(16)

where g1(s) and g2(s) are sufficiently smooth and bounded function vectors of s, and compatible

with the boundary conditions. Next, we will apply Hamilton’s principle to derive the boundary

conditions for the riser under consideration.We first provide the kinetic and potential energies, then

use the first variation of the Lagrangian of the system to derive the boundary conditions. As such,

the kinetic energy KE and the potential energy PE of the riser with a length of L are 

(17)

where we have used rt = wt and rss = wss. The Lagrangian LA of the riser is 
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(18)

where t1 and t2 denote time. Moreover, the riser response must satisfy the kinetic constraint of the

unit tangent vector . In terms of deformation, this constraint is expressed by 

(19)

The above constraint is applied along the riser by modifying the Lagrangian of the riser and by

embedding a continuous multiplies . As such, the modified Lagrangian LMA is 

(20)

It is noted that including the term  in the modified Lagrangian

physically means that the modified Lagrangian takes the contribution of the axial deformation into

account in the potential energy. From (20), the first variation of LMA is given by 

(21)

Since δr is arbitrary over the domain 0 < s < L, letting δLMA = 0 results in 

(22)

and

(23)

and

The Eq. (22) is exactly the same as (15). The Eqs. (23) and (24) specify the boundary conditions

of the riser at top and bottom ends. Choosing proper conditions from (23) and (24) depends on the

riser configuration. For the riser considered in this paper, ball joints at both ends imply that the

moments acting at both ends are zero, i.e., M(L, t) = M(0, t) = 0, and the force vector U(t) as the

boundary control inputs at the top end. With this observation in mind, the boundary conditions (23)

and (24) for the riser considered in this paper become 

(25)

where (L, t) is calculated from (6) as follows 

(26)

2.1.4. Environmental disturbance vector q 
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effective riser weight defined as the weight of the riser plus contents in water. It is noted that the

effective rather than the actual riser weight is used because the effective tension is used instead of

the actual tension. In this paper, we do not consider cables or buoys attached to the riser. The fluid

drag force is found by the use of a generalization of Morison’s formula to account for cylinders,

which are not oriented normal to the relative flow Borgman (1958). Taking the effective riser

weight into account, we have 

(27)

where CLD and CND are the linear and nonlinear drag coefficients, respectively; DH is the local riser

hydrodynamic diameter; Wre = −[0 0 wre]
T with wre is the effective riser weight per unit length; Vn is

the component of the relative flow velocity normal to the riser centerline. Letting V be the

(bounded) liquid flow velocity due to waves and currents. Then taking the riser motion into

account, the relative flow velocity normal to the riser centerline, Vn, is given by 

(28)

where  is the three dimensional identity matrix. Substituting (28) into (27) results in the equation for

external disturbance vector q as follows 

(29)

2.2. Control objectives 

Under Assumption 2.1, design the boundary control U(t) for the riser dynamics given by (15)

subject to the boundary conditions given by (25) to globally stabilize the riser at its vertical

position, i.e., finding the boundary control U(t) of the form U(t) = Ω(ws(L, t), wt(L, t)) such that: 

1. when the external disturbance vector q is ignored, all the terms ,

 and  exponentially converge to zero for all s ∈ [0, L] and

,

2. when the external disturbance vector q is present, all the terms ,

 and  exponentially converge to some small positive constants for
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It is seen that the control objective imposes on both the displacement and integration of square of

the slop, velocity, and curvature of the riser along the riser length. 
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where λ and α are positive constants to be specified later. In comparison with the conventional

Lyapunov, the, Lyapunov function candidate (C.7) contains the constant λ and the term

, which together with Lemmas B1 and B2 in Section Appendix B play important role

in designing boundary controllers later. Since for all 

(31)

where ρ 0 is a positive constant, the function W satisfies 

(32) 

Hence if we choose λ, α and ρ 0 such that 

(33)

where c1 and c2 are strictly positive constants, then the function W defined in (C.7) is a proper

function of , , and . We do not detail the conditions (33) at the moment,

but deal with them after the boundary control U(t) is designed since the constants λ, α and ρ0 need

to satisfy some more conditions later. It is noted that we do not include the riser displacement w,

like , in the function W because this term causes difficulties in designing the boundary

control U(t) later. As such, after proof of convergence of ,  and , we

will use Lemma B.1 in Appendix B to prove convergence of  and the riser displacement w.
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Since rs.rs = 1, we have . wst = 0, which is substituted into (36) to yield 

(37)
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w
s
.( ) and . From (6), we have 
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where we have used  and  for all  and . On the other

hand, from (7) we have 
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where we have used the fact that the angle θ between the vectors r and r0 is in the range [-π/2, +π/2] due

to the initial straight and vertical position of the riser. Using (43) and (44), and  > 0, which

holds when T0 is sufficiently large, i.e.,
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where k1 and k2 are positive constants to be specified later. It is recalled from (25) that U(t) =

−Bw
sss

(L, t) + . Hence from (48), we have 

(49) 

Now substituting (48) and (49) into (47) gives 

(50)

From (50), we specify the positive constants ρ1, λ, α, k1 and k2 such that 

(51)

where c3, c4 and c5 are strictly positive constants. Using the conditions given in (51) and the upper

bound of W given in (32), we can write (50) as follows

(52)

where

(53)

where  is the strictly positive constant in (45). Before going further, we show that there always

exist constants ρ0, ρ1, λ, α, k1 and k2 such that the conditions specified in (33) and (51) hold with ci,

i = 1, ..., 5 strictly positive constants. For simplicity, we choose 
 
and .

Acalculation shows that as long as the positive constants λ, α, k1 and k2 are chosen such that the

following inequalities strictly hold 

(54)

then there exist strictly positive constants ci, i = 1, ..., 5 satisfying the conditions specified in (33)

and (51). For given practical values of B, L and m
o
, it is not hard to find the constants λ, α, k1 and

k2 such that all equalities in (54) strictly hold. For example, we can take

(55)

F
t̂

L t,( ) w
s

L t,( ) r
s

0
L( )+[ ]

Bw
sss

L t,( )– k1w
t

L t,( )– k2w
s

L t,( )– F
t̂

L t,( ) w
s

L t,( ) r
s

0
L( )+[ ]–=

W
·

k1

αL

2
-------–⎝ ⎠

⎛ ⎞– w
t

L t,( ).w
t

L t,( )
αLk2

mo

------------w
s

L t,( ).w
s

L t,( )– λ k2–
αLk1

mo

------------–⎝ ⎠
⎛ ⎞w

s
L t,( ).w

t
L t,( )+≤

      
α

2
--- λρ1–⎝ ⎠

⎛ ⎞ wt.wt s
αB

2mo

---------
λ

4ρ1

--------–⎝ ⎠
⎛ ⎞ wss.wss s

αF
t̂

min

2mo

-------------- ws.ws sd
0

 L

∫–d
0

 L

∫–d
0

 L

∫–

     + wt.q s
α

m
o

------ sws.q sd
0

 L

∫+d
0

 L

∫

k1

αL

2
-------– c3 λ k2–

αLk1

mo

------------–, 0
α

2
--- λρ1–, c4

αB

2mo

---------
λ

4ρ1

--------–, c5= = = =

W
·

c3wt L t,( ).wt L t,( )–
αLk2

mo

------------ws L t,( ).ws L t,( ) cW– wt.q s
α
mo

------ sws.q sd
0

 L

∫+d
0

 L

∫+–≤

c

min c4 c5

αT0

2m
o

---------, ,⎝ ⎠
⎛ ⎞

max
mo

2
------ αLρ0+⎝ ⎠

⎛ ⎞ B

2
---

λ

2
---

αL

4ρ0

--------+⎝ ⎠
⎛ ⎞, ,⎝ ⎠

⎛ ⎞
-----------------------------------------------------------------------------=

T0

ρ0 L m
o

B⁄= ρ1 m
o

4B⁄=

α
1

2L
2

-------- B

mo

------  
α

2
--- B

mo

------
αLk1

mo

------------ k2 α
B

mo

------<+<,<  k1

αL

2
-------  λ,>,

αLk1

mo

------------ k2+=

  k1

1

3L
------ Bmo  k2,

α

3
--- B

mo

------  α,
1

2
---min

1

2L
2

-------- B

mo

------
2

3L
2

-------- Bmo,⎝ ⎠
⎛ ⎞   λ,

2α

3
------- B

mo

------= = = =

 c1⇒
m

o

2
------ min

1

4
---

m
o

3
------,⎝ ⎠

⎛ ⎞  c2,–
α

12
------ B

m
o

------  c3,
Bm

o

L
--------------

1

3
--- min

1

8mo

---------
1

6
---,⎝ ⎠

⎛ ⎞–⎝ ⎠
⎛ ⎞  c4,

α

6
---  c5,

Bα

6mo

---------= = = = =



184 K.D. Do

We are ready to state the main result of our paper in the following theorem. 

Theorem 3.1. Under Assumption 1, the boundary control U(t) given in (48) solves the control objective

provided that the initial tension T0 is suciently large, i.e., the condition (45) holds, and the design constants

k1 and k2 are chosen such that the conditions given in (54) hold. In particular, the solutions of the closed

loop system consisting of (15), (25) and (48) exist and are unique. Moreover, when the external

disturbance vector q is zero, all the terms  and

 exponentially converge to zero for all  and , and when the

external disturbance vector q is dierent from zero but bounded, all the terms , ,

 and  exponentially converge to some small positive constants

for all  and . In addition, the boundary control U(t) is bounded. 

Proof. See Appendix C. 

4. Simulations

In this section, we carry out some numerical simulations to illustrate the effectiveness of the

proposed boundary controller. The riser parameters are taken from Bernitsas et al. (1985) as

follows: L = 2000 m, Do = 0.61 m, Di = 0.575 m, DH = 0.87 m, we = 1.132 KN/m, ρw = 1025 kg/

m3, ρm = 1250 kg/m3, CD = 0.7, ρ = 8200 kg/m3, E = 2 × 
1010 kg/m, Hw = L, Hm = L/3. The initial

conditions are taken as w(s, t0)= [0, 0, 0]T, wt(s, t0)= [0, 0, 0]T. The design constants k1 and k2 are taken

according to (55), i.e., k1 = 17.37 and k2 = 0.0032. The ocean current velocity vector is assumed to

w s t,( ) ws s t,( ).ws s t,( ) s wt s t,( ).wt s t,( ) sd
0
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Fig. 3 Simulation results without control: Displacements wx, wy, wz

Fig. 4 Simulation results with control: Displacements wx, wy, wz
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be generated from wind at the ocean surface and dropped to zero at the sea bed Gaythwaite (1981):

V = [ ]T. The initial tension is assumed to be T0 = 2.15 ×
 
106 N. Hence from (45),

we have  = 29 × 103 N. We run simulations without the proposed boundary controller, i.e., k1 = 0

and k2 = 0, and with the proposed boundary controller, i.e., k1 = 17.37 and k2 = 0.0032. The length

of simulation time for both cases is 500 seconds. Displacements w = [wx, wy, wz]
T for the uncontrolled and

controlled cases are displayed in Figs 3and 4, respectively. The displacements r = [x, y, z]T for the

uncontrolled and controlled cases are plotted in the left and right of Fig. 5, respectively. Moreover,

the displacements wx for the uncontrolled and controlled cases are plotted in the left and right of

Fig. 6, respectively. It is seen from these figures that the proposed boundary controller can reduce

deflections of the riser in all directions (x, y, z) significantly, i.e., the displacement magnitudes are

significantly reduced. For example, in the x direction, the displacement magnitude reduces from 27

m to 1.2 m at the top end of the riser. This illustrates the effectiveness of the proposed boundary

controller in the sense that it is able to drive the riser to the small neighborhood of its equilibrium

position. 

1 L⁄( )s 0.5 L⁄( )s 0,,

T0

Fig. 5 Simulation results without and with control: Displacements in 3D at t = 500 second

Fig. 6 Simulation results without and with control: Displacements in x-direction at s = 0.1L, s = 0.2L and s = 0.5L
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5. Conclusions

Based on the Kirchho’s rod theory, the equations of motion of a flexible marine riser were

presented. The equations of motion were then used for the design of the boundary controller at the

top end of the riser based on Lyapunov’s direct method. The proposed boundary controller

guaranteed that when there are no environmental disturbances, the riser is be globally exponentially

stable at its equilibrium position, and that environmental disturbances are present, the riser is

stabilized in the neighborhood of its equilibrium position. Proof of existence and uniqueness of the

solutions of the closed loop system was given. Future work focuses on relaxing items made in

Assumption 1, and carrying out experiments to test the effectiveness of the proposed boundary

controller. Particularly, an immediate task is to consider an arbitrarily initial position of the riser and

to take the effect of the torsional moments into account in the boundary control design. 

Appendix A. Vector algebra

For convenience of the reader, we here present some basic vector algebra, which will be used in

the development of the equations of motion of the risers. Let r, s, t, u be three dimensional vectors,

i.e., r = [r1 r2 r3]
T , s = [s1 s2 s3]

T , t = [t1 t2 t3]
T and u = [u1 u2 u3]

T with (● )T being the transpose of (●

). We will use r.s and r
 

×
 

s to denote the inner (or dot) and vector (or cross) products, respectively,

of vectors r and s. We have the following properties of vector inner and cross products 

1) r.(s × 
t) = s.(t × r) = t.(r × 

s) 2) r × s = −s × r 

3) r × (s × t) = −(s.r)t + (t.r)s 4) (r × s) × t = (r.t)s−(s.t)r 

5) (r × s).(t × 
u) = (r.t)(s.u)−(r.u)(s.t) (A.1)

Appendix B. Useful lemmas

Lemma B.1 For any y = [y1, ...yi, ..., yn]
T with yi ∈C1[0, L], i = 1, ..., n, the following inequalities

hold 
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Proof. We prove (B.2). The proof of (B.1) is similar by using a change of coordinate ξ = L − s.

Using integration by parts, we have 
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which gives (B.2). □

Lemma B.2 For any y = [y1, ...yi, ..., yn]
T with yi ∈ 

C1[0, L], i = 1, ..., n, the following inequalities

hold

(B.4)

(B.5)

Proof. We prove (B.4). The proof of (B.5) is similar by using a change of coordinate ξ = L − s.

From fundamental of calculus, we have 

(B.6)

where we have used the Cauchy-Schwartz inequality. 

Appendix C. Proof of Theorem 3.1

C.1 Existence and uniqueness Let H2(0, L) be the usual Hilbert space Adams and Fournie. Our

analysis is based on the Sobolev spaces 

VS = w ∈ 
H2(0, L)|w(0, t) = 0 (C.1) 

equipped with the norm , and 

(C.2) 

equipped with the norm  where  denotes the Lp norms. From the

Poincare’ inequality, it follows that  and  are equivalent to the standard norms of H2 (0,

L) and H4 (0, L), respectively. Next, we consider φ ∈ 
VS. Now inner producting both sides of the

first equation of (15) by φ then integrating from 0 to L by parts result in 

(C.3) 

where we have used (48).We will use the Galerkin approximation to show that for all φ
  ∈ 

VS there

exists w ∈ 
WS such that (C.3) holds. Let φ j be a vector whose each component is a complete

orthogonal system of WS for which {w(s, t0), wt(s, t0)}. Span{φ1, φ2}. For each n ∈ 
N, let WSn =

Span {φ1, φ2, ..., φn}. We search for a function wn(s, t) = kj(t)φ j such that for any φ ∈ 
WSn, it

satisfies the approximate equation 

(C.4) 
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where  and κn2 denote  and κ with w and wss replaced by wn and , respectively, and with

the initial conditions 

(C.5) 

which are possible since each element of (w(s, t0), wt(s, t0)) belongs to WSn for n ≥ 
2. Noticing that

(C.4) and (C.5) are in fact a 3n
 

×
 

3n system of ordinary dierential equations in the variable t, which

has a local solution in [0, tn). After the estimates below, the approximate solution will be extended

to the interval [0, T] for any given T > 0. 

Estimate I: Upper bound of . In (C.4), taking φ = wt

n results in 

(C.6)

We consider the following Lyapunov function candidate 

 (C.7)

where λ and α are positive constants specified as in Section 3. Indeed, as in Section 3, the function
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where the positive constants ρ0, c1 and c2 are specified in Section 3. We use the same technique in
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Since , i.e.,  is bounded by 1, there exists an arbitrarily positive constant  such that

(C.12)

where the nonnegative constant Q depends on the maximum value of . Substituting (C.12) into

(C.9) results in 

(C.13)

Now picking  such that 
 

is strictly positive, we can write (C.13) as 

(C.14)

Hence from (C.8) and (C.14), we deduce that there exists a nonnegative constant M1 such that 

(C.15)

Estimate II: Upper bound of wtt(s, t0) in L2-norm. In (C.4), taking  and t = t0 gives 
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Estimate III: Upper bound of wtt(s, t) and wsst(s, t) in L2-norm. To estimate the upper bound of

these terms, we use difference approach. Let us fix t and ξ such that ξ < T − t. Now taking the

difference of (C.4) with t = t + ξ and t = t, and then letting φ = wt

n(t + ξ)
  

 result in 

(C.19)

where 

(C.20)

Since the initial values w(s, t0) and wt(s, t0) are sufficiently smooth, w(0, t) + r0 = 0, wss(0, t) = 0, wss(L, t)

= 0 for  and all the terms ,  are

bounded, see Estimate I section, using the Mean Value Theorem and Lemmas B.1 and B.2 shows that

there exist nonnegative constants M31 and M32 such that 
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Using (C.21), we can write (C.19) as 
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where M33 is a nonnegative constant, and 
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Dividing both sides of the last inequality in (C.22) by ξ2 then taking the limit  gives 

(C.24)

for all . Now from the estimates given in (C.15) and (C.18), we can deduce from (C.24)
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(C.25)

From the estimates given in (C.15), (C.18) and (C.25), we can use the Lions-Aubin theorem to

get the necessary compactness to pass the nonlinear system (C.4) to the limit. Then it is a matter of

routine to conclude the existence of global solutions in [0, T]. 

Uniqueness. Let u and v be two solutions of the closed loop system consisting of (15), (25) and

(48). Letting z = u − v, we have z(s, t0)= 0 and zt(s, t0)= 0 and from (C.3) we have 

(C.26)

By taking φ = zt(s, t) in (C.26) and using the Mean Value Theorem and passing of the limit of all

the estimates given in (C.15), (C.18) and (C.25) previously, we readily have 
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exponentially converge to zero. Next, we use Lemmas B.1 and B.2 to show that 

and  are bounded and exponentially converge to zero. An application of Lemma B.1 gives 

(C.31)

Since w(0, t) = 0 and we have already proved that  is bounded and exponentially

converges to zero, (C.31) implies that  must be bounded and exponentially

converges to zero. On the other hand, an application of Lemma B.2 shows that 

(C.32) 
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s
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and . This constraint implies that 
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for all   and . Hence  is bounded for all  and . To

show that wt(L, t) is bounded, we consider the following Lyapunov function candidate 
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where

(C.37)

Since , i.e.,  is bounded by 1, there exists an arbitrarily positive constant  such that 

 (C.38)

where the nonnegative constant Q depends on the maximum value of . Hence, substituting

(C.38) into (C.36) results in 

(C.39)

where we have used (32) and (33) to yield . Now

picking  such that 
 

is strictly positive, we can write (C.40) as 

(C.40)

Hence W(t) exponentially converges to the nonnegative constant . This in turn implies that

all the terms  and  exponentially converge

to some nonnega tive constant less than  due to (32) and (33). Proof of boundedness

(not exponential convergence to zero of) , and the

boundary control U(t) can be carried out in the same lines as in the case where q= 0. □
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