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1. Introduction 
 

The growth and propagation of microbial reduces the 

hydraulic conductivity k of porous media, which is a 

common phenomenon in nature and this phenomenon is 

referred to as biological clogging (Tang et al. 2005, 2018, 

Jeong et al. 2019). A number of investigations have been 

performed on evaluating the biological clogging (Dennis 

and Thrner 1998). The biological clogging phenomenon 

was first discovered in the penetration test to compare the 

permeability of sterile soil samples with bacterial soil 

samples, and found that the inherent bacteria in the soil can 

effectively reduce the permeability coefficient of the soil by 

1-2 orders of magnitude (Allison 1947). Kalish et al. (1964) 

carried out a series of trails of bio-clogging involving the 

use of different microbial activities and observed that the k 

values of porous medium reduced in different degrees. 

Shaw et al. (1985) and Cunningham et al. (1991) conducted 

a column experiment with glass beads and reported that a 

remarkable reduction in k was observed with micro- 

organism adhesion and community aggregates on glass 

beads. Marshall et al. (1971) and Costerton et al. (1978) 

reached the same result from a micro perspective by 

scanning electron microscope (SEM). They found that 

microorganisms adhere to the surface of porous media by 

producing extracellular polymeric substances (EPS), which  
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completely filled the pore spaces, and further reduced the 

permeability. Previous microbial studies confirmed the k in 

porous media column reactors decreased by factors of 

5×10-4 and concluded that the reduction in permeability can 

be described as a function of the bulk biomass density for a 

given porous medium (Taylor and Jaffe 1990a, b, Childs 

and Collis-George 1950, Marshall 1958, Millington and 

Quirk 1959, Mualem 1976, Song et al. 2018). In the aspect 

of the change in unsaturated hydraulic properties of porous 

media due to biofilm presence, early researchers have 

proved that a moderate increase in retention, a reduction of 

saturated hydraulic conductivity by about one order of 

magnitude, and a reduction in hydraulic conductivity by 

about a factor of four in the tension range between 60cm 

and 600cm of water (Volk et al. 2016). 

Soil is one of the most widely studied natural porous 

media materials in the development of human society. Due 

to the existence of a certain amount of pore space in porous 

materials, the pore characterization characteristics will 

change under various clogging materials, such as asphalt 

mixture pavement (Cheng and Hussain 2020, Cheng 2017, 

Lei and Cheng 2017, Tang et al. 2015). Soil is also a 

generally favorable habitat for the proliferation of 

microorganisms with micro-colonies (Atlas and Bartha 

1997). The term ‘‘bio-barrier’’ is used to describe a 

biological technology that relies on Extraccllular Polymeric 

Substances (EPS) excreted by microorganisms to cause 

severe plugging and hydraulic conductivity decrease 

(Cunningham 1993, Rijnaarts et al. 1997). In this 

technology, microorganisms are injected into the soil, 
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together with an appropriate substrate. Zhang et al. (2021) 

systematically studied the effects of bio-clogging on 

hydraulic conductivity of soils in terms of microbial 

adhesion, bio-logical clogging mechanism, and different 

experimental conditions. They found biofilm is resistant to 

various environments, biofilm is resistant to various 

environments, and demonstrated that a potential for using 

biofilm to create waste barriers. 
Biofilms form in porous media when cells attach firmly 

to the soil surface. The cells produce EPS that act as a 
shield to prevent biofilm damage. Biofilm is the overall 
result of communities of bacteria attaching and developing 
on surfaces embedded in a matrix of EPS (Wingender et al. 
1999). Cunningham (1993) performed experiments for a 
constant hydraulic head difference between the inlet and 
outlet of their columns, they observed the homogenous 
growth of a biofilm, which reduced the porosity of the 
media by 50-96%. Recently, some researchers have 
evaluated the effect of bacterial activity on hydraulic 
conductivity for the remodeled loess, and found the 
variation of hydraulic conductivity was divided into the 
unaffected stage, linear reduction stage and stable stage 
(Chen et al. 2021). 

The simplified mathematical model is established to 

simulate the relationship between accumulated bio-volume 

and Ks reductions in the extreme complexity of the 

microbial clogging process has been a research hotspot in 

recent years. These studies are based on the hypothesis that 

bacteria colonizing natural porous media cover the pore 

walls with continuous biofilms (Zhang et al. 2018, Kim et 

al. 2017, Zhao et al. 2019). Some researchers view porous 

media as bundles of straight, circular capillary tubes with a 

constant diameter and embedded in a solid matrix, 

assuming that the effective diameter of the capillary tubes 

decreases uniformly as a result of biological activity and 

using the Hagen-Poiseuille equation to evaluate the total 

cross-sectional flux (Okubo and Matsumoto 1979). More 

recently, researchers develop a number of mathematical 

models based on the concept of biofilm and on the 

assumption that the geometrically complex interstices in 

natural porous media may be approximated by much 

simpler configurations (e.g., voids in regular packings of 

spheres, cylindrical capillaries), several of these models 

account satisfactorily for the permeability reductions 

observed in yearlong experiments in sand columns (Taylor 

et al. 1990, Tang et al. 2019). 
In the present study, the original Kozeny-Carman 

permeability model and biofilm growth function models 
were used as basis for developing the model which includes 
biological clogging possesses (biofilm fills the pores of 
porous media and reduces the permeability). The new 
mathematical model was used to predict the correlation 
between the permeability of porous media and the biofilm 
thickness, and provide a theoretical basis for the research of 
microbial clogging in saturated porous media. 

 

 

2. Model description 
 

2.1 Permeability models 
 

The permeability of a porous medium saturated with 

water is defined by Darcy’s law. 

𝑉 = −(
𝑘𝜌𝑤𝑔

𝜇𝑤
) (
𝑑ℎ

𝑑𝑥
) (1) 

where V is the specific discharge or Darcy velocity (m·s-1), 

k is the permeability (m2), ρ w is the water density 

(kg·m-3), g is the acceleration of gravity (m·s-2), μw is the 

water viscosity (kg· (mt)-1), and h is the piezometric head 

(m). Permeability is considered an intrinsic property of the 

porous medium, depending on pore size distribution, pore 

shape, tortuosity, specific surface, and porosity (Bear 1979). 

The literature describes many different modeling 

methods for dealing with single-phase permeability. Dullien 

(1979) has categorized the various modeling approaches 

into what he terms phenomenological flow models, models 

based on conduit flow, and techniques based on a more 

direct application of the Navier-Stokes equations to flow 

through a porous medium. The phenomenological approach 

is based upon experimental determination of the relation 

among the dimensionless parameters. Given that the most 

important parameter, i.e., biofilm thickness, is very difficult 

to measure, these relationships cannot be sufficiently 

defined. At the other end of the spectrum lies the possibility 

of solving numerically the Navier-Stokes equations at the 

pore level. For the present problem, this would require an 

inordinate amount of effort, particularly given the crude 

assumptions we shall be forced to accept regarding the 

geometry of the biofilm. Consequently, only conduit flow 

models will be considered here, i.e., models based on 

steady, laminar flow through bundles of capillary tubes 

(Dullien 1979). 

The simplest approach based on the idea of conduit flow 

does not consider the irregular way in which different 

capillary sizes are interconnected with one another and are 

termed “geometrical” permeability models by Dullien 

(1979). The Kozeny-Carman model exemplifies the 

geometrical conduit approach (Kozeny 1927, Carman 1937, 

Fair and Hatch 1933). This theory assumes the porous 

medium to be equivalent to a conduit, the cross section of 

which has a complicated shape but a constant area. 

Borrowing from hydraulic theory, the conduit diameter is 

taken to be 4 times the hydraulic radius, defined as the flow 

cross-sectional area divided by the wetted perimeter. 

Combining the Hagen- Poiseuille equation for laminar flow 

in a conduit with Darcy’s law yields the Kozeny-Carman 

equation (Tang et al. 2016). 

𝑘 = 𝑐0 (
𝑛3

(1 − 𝑛)2𝑀2
) (2) 

where n is the porosity, M is the specific surface (m2/m3), 

and c0 is a constant for which Carman (1937) suggests a 

value of 1/5. 

 

2.1.1 Sphere model  
Values for porosity and specific surface are readily 

obtained when assumptions regarding the structure of the 

porous medium are made. Here we assume that the solid 

phase can be represented by regular packings of uniform 

spheres. Graton and Fraser (1935) and Cadle (1965)  

218



 

Modeling of biofilm growth and the related changes in hydraulic properties of porous media 

 
Fig. 1 The cubic arrangement of equal sphere 

 

 
Fig. 2 The oblique hexagonal arrangement of equal 

sphere 

 

Table 1 the value of porosity under different characterize 

the packing arrangement 

Arrangent  

name 

Parametes 

Cubic 
Ortho- 

rhombic 

Tetragonal-

spheroidal 
Rhombohedral 

m 6 8 10 12 

αm 1 
√3

2
 3/4 

1

√2
 

n 47.64% 39.54% 30.19% 25.96% 

 

 

analyzed the porosity of the various arrangements in which 

uniform spheres may be packed in a stable manner. In any 

given arrangement, each sphere tangentially contacts a 

certain number of neighboring spheres, and the number of 

contact point m can be used to characterize the packing 

arrangement. Table 1 shows the value of porosity under 

different characterize the packing arrangement. The cubic 

arrangement of equal sphere is shown in Fig. 1 and the 

oblique hexagonal arrangement of equal sphere is shown in 

Fig. 2. From geometric considerations, a general expression 

for porosity was obtained 

𝑛 = 1 − (
𝜋

6𝛼𝑚
) (3) 

and for specific surface 

𝑀 =
𝜋

𝛼𝑚𝑑
 (4) 

where αm is a packing arrangement factor, and d is the 

sphere diameter. For the packing arrangements described 

above, α6 = 1, α8 = 
√3

2
, α10 = 3/4, α12 = 

1

√2
. 

 

2.1.2 Random distribution model 
Permeability models which consider the random nature 

of the interconnectedness of the pores are termed 

“statistical” by Dullien (1979). The cut-and-random-rejoin- 

type model introduced by Childs and Collis-George (1950) 

and later modified by Marshall (1958) and Millington and 

Quirk (1959) are examples of this approach. It is assumed 

that a porous medium contains pores of various radii which 

are randomly distributed in space and that when adjacent 

planes of the medium are brought into contact the overall 

hydraulic conductance across the plane depends statistically 

upon the number of pairs of interconnected pores and 

geometrically upon their configurations. The conductance 

of each pair of interconnected pores is controlled by the 

pore having the smaller radius, while unconnected pores are 

neglected. Under this assumption, the Hagen-Poiseuille 

equation combined with Darcy’s law can be made to yield a 

relationship between the permeability and the pore size 

distribution. 

The cut-and-random-rejoin model proposed by Marshall 

can be expressed in integral form as 

𝑘 =
1

4
∫ 𝑟2[𝑛 − 𝜃(𝑟)]
𝑅

𝑟0

𝑓(𝑟)𝑑𝑟 (5) 

in which r is a pore radius (m), r0 is the minimum pore 

radius (m), R is the maximum pore radius (m), θ(r) is the 

unsaturated moisture content when all pores of radius r or 

smaller are filled, and f(r) is the pore size distribution 

function defined by 

𝑑𝜃 = 𝑓(𝑟)𝑑𝑟 (6) 

Hence f(r)dr represents the volume of full pores of radii 

[r, r+dr] per unit volume of medium. The f(r) is nonzero 

only in the interval r0≤r≤R. The earlier work of Childs and 

Coilis-George (1950) arrived at a result that is essentially 

equivalent to Eq. (5). In a later analysis, Millington and 

Quirk (1959) found 

𝑘 =
𝑛−𝑞

4
∫ 𝑟2[𝑛 − 𝜃(𝑟)]
𝑅

𝑟0

𝑓(𝑟)𝑑𝑟 (7) 

with the constant q taking a value of 2/3. If q = 0, then Eq. 

(7) reduces to the Eq. (5). 

It is useful to note that the moisture content, porosity, 

and specific surface may also be expressed in terms of f(r). 

From Eq. (6) we obtain 

𝜃(𝑟) = ∫ 𝑓(𝜌)
𝑟

𝑟0

𝑑𝜌 (8) 

and in particular, 

𝑛 = ∫ 𝑓(𝑟)
𝑅

𝑟0

𝑑𝑟 (9) 

assuming long tubular pores, specific surface can be found 

from a cross section normal to the pores as the ratio of total 

pore circumference to total area. If g(r)dr is the number of 

pores having radii [r, r+dr] intersecting a unit area of the 

medium, then 

𝑀 = ∫ 2𝜋𝑟𝑔(𝑟)
𝑅

𝑟0

𝑑𝑟 (10) 

g(r) is related to f(r) by 
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𝑓(𝑟)𝑑𝑟 = 𝜋𝑟2𝑔(𝑟)𝑑𝑟 (11) 

Hence 

𝑀 = 2∫
𝑓(𝑟)

𝑟

𝑅

𝑟0

𝑑𝑟 (12) 

The foregoing equations allow us to determine porosity 

and specific surface and to make various estimates of the 

permeability for porous media represented as uniform 

spheres or bundles of capillary tubes. For the sphere model 

the problem of determining changes in permeability due to 

changes in biofilm thickness becomes one of specifying the 

variation of n and M with biofilm thickness for a given 

packaging arrangement. In the case of the cut-and-random- 

rejoin-type model, the problem is reduced to specifying the 

variation of f(r) with biofilm thickness. Both avenues are 

explored below. 

 

2.2 Treatment of the biofilm 
 
2.2.1 Sphere model 
Firstly, it is assumed that the porous medium is 

composed of spheres of equal diameter, which are filled in 

the arrangement described above. Suppose a biofilm 

develops in such a way that all spheres are covered by a 

layer of impermeable biofilm with a constant thickness Lf. 

Under the latter assumption, the growth of the biofilm 

effectively increases the volume of the solid phase and 

reduces the surface area of the solid phase. The expression 

of biofilm influence porosity nb and specific surface Mb area 

can be derived from the geometry of the coated ball. 

The volume of a solid sphere and its biofilm coating is 

given by Deb (1969) as 

𝑉𝑏
𝑠 =

4𝜋

3
(
𝑑

2
+ 𝐿𝑓)

3

−𝑚{
𝜋𝐿𝑓

2

3
[3 (

𝑑

2
+ 𝐿𝑓) − 𝐿𝑓]} (13) 

while the bulk media volume V occupied by the sphere is 

𝑉 = 𝛼𝑚𝑑
3 (14) 

Substituting these expressions into 

𝑛𝑏=1-
𝑉𝑏
𝑠

𝑉
 (15) 

and rearranging yields 

𝑛𝑏 = 1 −
𝜋

𝛼𝑚
[
 
 
 
(2 − 𝑚)

12
(
𝐿𝑓

𝑅
)
3

+
(4 − 𝑚)

8
(
𝐿𝑓

𝑅
)
2

+
1

2
(
𝐿𝑓

𝑅
) +

1

6 ]
 
 
 

 (16) 

An expression for specific surface of the biofilm-fluid 

interface can be derived along similar lines. Deb (1969) 

gives the area of a film coating a sphere as 

𝐴𝑏
𝑠 = 4𝜋 (

𝑑

2
+ 𝐿𝑓)

2

−𝑚 [2𝜋 (
𝑑

2
+ 𝐿𝑓) 𝐿𝑓] (17) 

Substituting Eq. (14) and Eq. (17) into the definition of 

specific surface, i.e., 

𝑀𝑏 =
𝐴𝑏
𝑠

𝑉
 (18) 

results in the following 

𝑀𝑏 =
𝜋

𝑑
[
(2 − 𝑚)

2
(
𝐿𝑓

𝑅
)
2

+
(4 − 𝑚)

2
(
𝐿𝑓

𝑅
) + 1] (19) 

The biofilm-affected permeability kb for the sphere 

model is found by substituting nb and Mb into the 

Kozeny-Carman relation given by Eq. (2), assuming c0 does 

not change with biofilm growth. Hence 

𝑘𝑏 = 𝑐0 (
𝑛𝑏

3

(1 − 𝑛𝑏)
2𝑀𝑏

2) (20) 

where nb and Mb are given by Eqs. (16) and (19). 

 

2.2.2 Cut and random rejoin type model 
Considering the absence of biofilm, Taylor et al. (1990) 

used f(r) to describe the changes in permeability for 

cut-and-random-rejoin-type conduit model of the porous 

medium. Assuming that an effectively impermeable biofilm 

of uniform thickness Lf coats all solids, biofilm growth will 

completely plug pores having a radius less than Lf, if they 

exist, and reduce the radius of those larger. fb(r) was 

expressed to describe the pore size distribution of the void 

space not filled by biomass. Pores with a new radius r 

previously have a radius r+Lf, and their volume is reduced 

by the ratio of conduit volume r2/(r+Lf)2, then the 

distribution of fb(r) and f(r) is as follows (Taylor et al. 

1990), 

𝑓𝑏(𝑟) =
𝑟2

(𝑟 + 𝐿𝑓)
2 𝑓(𝑟 + 𝐿𝑓) (21) 

which is defined for r0-Lf＜r＜R-Lf. Other biofilm-affected 

parameters follow by substitution of fb(r) for f(r) in the 

earlier equations. The biofilm-affected porosity, moisture 

content and specific as 

𝑛𝑏 = ∫
𝑟2

(𝑟 + 𝐿𝑓)
2 𝑓(𝑟 + 𝐿𝑓)𝑑𝑟

𝑅−𝐿𝑓

𝑟𝑜𝑏

 (22) 

𝜃𝑏(𝑟) = ∫
𝜌2

(𝜌 + 𝐿𝑓)
2 𝑓(𝜌 + 𝐿𝑓)𝑑𝜌

𝑟

𝑟𝑜𝑏

 (23) 

𝑀𝑏 = 2∫
𝑟

(𝑟 + 𝐿𝑓)
2 𝑓(𝑟 + 𝐿𝑓)𝑑𝑟

𝑅−𝐿𝑓

𝑟𝑜𝑏

 (24) 

where rob = max[r0-Lf,0] and the Millington and Quirk 

permeability model embodied in Eq. (7), become 

𝑘𝑏 =
𝑛𝑏

−𝑞

4
∫ [𝑛𝑏 − 𝜃𝑏(𝑟)]

𝑟4

(𝑟 + 𝐿𝑓)
2 𝑓(𝑟 + 𝐿𝑓)𝑑𝑟

𝑅−𝐿𝑓

𝑟𝑜𝑏

 (25) 

Taylor et al. (1990) confines the analysis to the case 
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where is f(r) given by a power function, 

𝑓(𝑟) =
𝛽

𝑅
(
𝑟

𝑅
)
𝜆−1

 (26) 

in which β and λ are constants. Porosity is obtained from 

Eq. (9), the moisture content is obtained from Eq. (8), and 

the specific surface is found from Eq. (12) as 

𝑛 =
𝛽

𝜆
[1 − (

𝑟0
𝑅
)
𝜆

] (27) 

𝜃(𝑟) =
𝛽

𝜆
[(
𝑟

𝑅
)
𝜆

− (
𝑟0
𝑅
)
𝜆

] (28) 

 
(29) 

Permeability formulae are obtained as follows: From the 

Kozeny-Carman equation Eq. (2), 

 (30) 

From the Millington and Quirk equation Eq. (7), 

𝑘 =
𝛽2𝑅2

4𝜆𝑛𝑞

{
 
 

 
 

1

2 + 𝜆
[1 − (

𝑟0
𝑅
)
2+𝜆

]

−
1

2 + 2𝜆
[1 − (

𝑟0
𝑅
)
2+𝜆

]
}
 
 

 
 

 (31) 

By substituting Eq. (26) into the expressions of moisture 

content Eq. (23), porosity Eq. (22), specific surface Eq. (24) 

and permeability Eq. (20), Taylor deduced the expression of 

the influence parameters of biofilm, and introduce 

convenient notation (Taylor et al. 1990). 

𝜃𝑏(𝑟) = 𝛽 (
𝐿𝑓

𝑅
)
𝜆

[𝐼2 (
𝑟

𝐿𝑓
, 𝜆) − 𝐼2 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)] (32) 

𝑛𝑏 = 𝛽 (
𝐿𝑓

𝑅
)
𝜆

[𝐼2 (
𝑅

𝐿𝑓
− 1, 𝜆) − 𝐼2 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)] (33) 

𝑀𝑏 =
2𝛽

𝐿𝑓
(
𝐿𝑓

𝑅
)
𝜆

[𝐼1 (
𝑅

𝐿𝑓
− 1, 𝜆) − 𝐼1 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)] (34) 

In which 𝐼𝑛(𝑢, 𝜆) and 𝐽(𝑢, 𝜆)is introduced notation to 

facilitate calculation and 𝐼𝑛(𝑢, 𝜆) = ∫
𝑥

(1+𝑥)3−𝜆

𝑢

0
𝑑𝑥 ; 

𝐽(𝑢, 𝜆) = ∫
𝑥4𝐼2(𝑥,𝜆)

(1+𝑥)3−𝜆

𝑢

0
𝑑𝑥, Millington and Quirk permeability 

is obtained from Eq. (25) as 

𝑘𝑏 =
𝛽2𝐿𝑓

2

4𝑛𝑏
2 (
𝐿𝑓

𝑅
)
2𝜆

{
 
 
 

 
 
 𝐼2 (

𝑅

𝐿𝑓
− 1, 𝜆) ⋅

[𝐼4 (
𝑅

𝐿𝑓
− 1, 𝜆) − 𝐼4 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)]

− [𝐽 (
𝑅

𝐿𝑓
− 1, 𝜆) − 𝐽 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)]

}
 
 
 

 
 
 

 (35) 

The Mualem-based model of Taylor (Taylor et al. 1990) 

assumes that the relationship between the volumetric 

moisture content θv(r) of the porous medium and the radius 

r of the largest pores filled with water is described by 

𝜃𝑣(𝑟) =
𝛾

𝜆
[(
𝑟

𝑅
)
𝜆

− (
𝑟0
𝑅
)
𝜆

] (36) 

where λ and γ are constants, R and r0 are the maximum and 

minimum pore radii (In the cut-and-random-rejoin-type 

model, in the initial stage of microbial plugging, the 

original radius of uneven distribution of pores is between r0 

and R). Taylor et al. (1990) considered that the parameter λ 

can theoretically range from zero to infinity, larger values 

being associated with more homogeneous pore sizes. 

On the basis of Eq. (21) and of the additional 

assumption that a biofilm of thickness Lf uniformly coats 

the internal surfaces in the clogged porous media, the 

Mualem-based model of Taylor (Taylor et al. 1990) yields 

relationships for the biovolume ratio φ and for the ratio kb/k 

that can be expressed. 

𝜑 ≡ 1 −
𝑛𝑏
𝑛0
= 1 − 𝜆 [1 − (

𝑟0
𝑅
)
𝜆

] (
𝐿𝑓

𝑅
)
𝜆

[𝐼2 (
𝑅

𝐿𝑓
− 1, 𝜆)

− 𝐼2 (
𝑟𝑜𝑏
𝐿𝑓
, 𝜆)] 

(37) 

𝑘𝑏
𝑘
= (

𝐿𝑓

𝑅
)
2+2𝜆

(

 
 
[𝐼3 (

𝑅
𝐿𝑓
− 1, 𝜆) − 𝐼3 (

𝑟𝑜𝑏
𝐿𝑓
, 𝜆)]

2

{
1

1 + 𝜆
[1 − (

𝑟0
𝑅
)
1+𝜆

]}
2

)

 
 
(1 − 𝜑)

1
2 (38) 

From the Eqs. (37) and (38) formulas and the 

Kozeny-Carman model described earlier, the same feature 

can be obtained that regardless of the value of R , the 

change in kb/k is only related to the ratio of kb/k. 
 

 

3. Computational results 
 

3.1 Sphere model with biofilm growth 

 

Fig. 3 shows the relationship between porosity reduction 

nb/n and Lf/R for various filling arrangements of a 

homogeneous sphere. It can be seen that under the condition 

of a certain biofilm thickness, the values of Lf/R depend on 

the filling arrangement. In the case of uniformity, nb/n 

decreases with the number of contact points of the sphere, 

reflecting that the remaining pore space decreases with the 

increase of the density of the sphere. The correlation 

function in Fig. 3 is truncated when the porosity decreases 

to a certain extent, and the truncated range is from 0.04 to 

0.21, this is due to the decomposition of the biofilm sphere 

model on the larger Lf/R porous medium. When the biofilm 

fills the narrow channel between the adjacent spheres and 

isolates the closed pore space from the adjacent pores, the 

pore space is no longer continuous. If there is an 

impermeable biofilm, the fluid is not allowed to flow 

through the medium. In this case, Lf/R value can be 

determined from purely geometric considerations. For  
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Fig. 3 Relative porosity as a function of the normalized 

biofilm thickness (Sphere model with biofilm growth) 

 

 
Fig. 4 Relative permeability as a function of the 

normalized biofilm thickness 

 

 
Fig. 5 Relative permeability as a function of relative 

porosity 
 

 

example, with a cubic stacking arrangement, hole 

discontinuities can occur for Lf/R ≥ √2 − 1. 

Fig. 4 shows the relationship between relative 

permeability kb/k and Lf/R for various filling arrangements 

of a homogeneous sphere. It can be seen that under a certain 

thickness of the biofilm, the value of the relative 

permeability also depends on the arrangement of the filling. 

Under uniform conditions, it decreases with the increase of 

the number of sphere contact points, reflecting that the fluid 

is difficult to flow through porous medium. At the same 

time, there is also a cut-off value for the relative porosity in 

Fig. 4. In fact, when the biofilm growth and model 

decomposition reach dynamic equilibrium, it is the cut-off 

state.  

Fig. 5 shows the decrease in permeability based on the 

Kozeny-Carman permeability relationship, kb/k as a 

correlation function image of nb/n, all functions are drawn 

in a narrow range defined by the curves of m = 6 and m = 

12, which indicates that it is insensitive to the filling  

 
Fig. 6 Relative porosity as a function of the normalized 

biofilm thickness (Cut and random rejoin type model 

with biofilm growth) 

 

 
Fig. 7 Relative permeability as a function of the 

normalized biofilm thickness in Childs and Collis- 

George model 

 

 

arrangement assumed in the spherical model. In addition, 

form ≥ 8, there is no practical difference between homo- 

geneous and heterogeneous models (which m = 6 is the 

homogeneous model and m ≥ 8 are all the heterogeneous 

models). As mentioned earlier, due to the beginning of the 

discontinuity of the pore space, the relationship of kb/k can 

be ignored for smaller nb/n values. 

 
3.2 Cut and random rejoin type model with biofilm 

growth 
Fig. 6 shows the functional relationship between nb/n 

and the normalized biofilm thickness Lf/R. In this paper, it 

has been assumed that there is a certain inhomogeneity in 

the pore channel, then the initial radius of all pores in the 

porous media (which has not been affected by biological 

plugging) ranges from 0 to R, and the minimum value of r0 

is 0, for r0=0 and for different λ. When λ is very small, for a 

large range of pore diameter, most of the porosity is formed 

by pore diameter with radius less than R. Therefore, with 

Lf/R increasing from zero, nb/n begins to decrease rapidly. 

For medium with relatively uniform pore diameter, the 

decrease is smaller. When r0 is nonzero, the above 

relationship is the same. But with the increase of r0/R, the 

curve with lower λ value approaches the curve with higher λ 

value as a whole. 

Fig. 7 displays the relationship between relative 

permeability kb/k and Lf/R in the Childs and Collis-George 

model. With the increase of the relative biofilm thickness 

Lf/R, the relative permeability kb/k coefficient of porous 

media also decreases rapidly, which is basically consistent  
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Fig. 8 Relative permeability as a function of relative 

porosity in Childs and Collis-George model 

 

 
Fig. 9 Relative permeability as a function of relative 

porosity in Millington and Quirk model 

 

 
Fig. 10 Relative permeability as a function of relative 

porosity in Kozeny-Carman equation 
 
 

with the results shown in the above spherical model in Fig. 

7. However, the change of λ value has little effect on the 

relative permeability of porous media. 

The Childs and Collis-George permeability reductions 

for r0 = 0 are shown in Fig. 8. The permeability decreases 

monotonically with porosity for a given medium as the 

biofilm grows. Quantitatively, the kb/k predicted by this 

model for relatively uniform pore sizes, i.e., λ = 2, is similar 

to that given by the sphere model. Millington and Quirk 

model is the general expression form of Childs and 

Collis-George model, and Fig. 9 shows the Millington and 

Quirk permeability reductions with r0 = 0. An analysis of 

Eq. (35) in the vicinity of Lf  = 0, however, shows kb to be 

proportional to nb
-q. 

Finally, Fig. 10 shows the relationship between kb/k 

based on the Kozeny-Carman equation and nb/n for the case 

when r0/R = 10-2. Obviously, this result is quite different 

from the previous sphere model, In the probability model, 

all the intermediate variables in the Kozeny-Carman 

expression, including porosity n, specific surface M, are 

probability functions, which leads to large distortion of the 

final result. This is because this study found that the partial 

filling of biomass to the pore space will lead to the increase 

of permeability. From the intermediate results during the 

study period, it is shown that the decrease of M is much 

faster than that of n with the formation of biofilm. 

Therefore, the concept of a hydraulic radius defined with 

respect to specific surface in a porous medium having a 

wide pore size distribution is obviously inadequate. 
 

 

4. Discussion 
 

The above calculation results show that the correlation 

function between the spherical model of porous media and 

the permeability of Kozeny-Carman provides a reasonable 

result for the problem of reducing the permeability of 

biofilm to some extent. Compare Fig. 3 with Fig. 7, the 

permeability reduction predicted by the sphere model is 

quantitatively similar to the cut-and-random-rejoin-type 

model of Childs and Collis-George, with relatively uniform 

pore size (λ = 2), this is physically consistent with the 

spherical model, the uniform accumulation of uniform 

spheres results in uniform aperture. However, the sphere 

model cannot represent all kinds of apertures in porous 

media. After all, porous media is complex and diverse, and 

a single sphere model cannot reflect the sufficiency of the 

results. 

The computational results of the cut-and-random- 

rejoin-type model show that, although all agents produce 

physically reasonable results for the medium with uniform 

pore size, only the permeability relationship based on Child 

and Collis-George seems to have universal applicability. 

The flow in porous media is usually laminar, so the results 

obtained by Kozeny-Carman equation are relatively 

unreasonable (Dullien 1979). Although the similarity 

between Millington and Quirk model and Kunze (Kunze et 

al. 1968) and these comparisons are made with matching 

factors and Kunze model will not solve the problem, it's 

generally agreed that the Millington and Quirk model is 

superior to Child and Collis-George. Finally, it is noted that 

the cut-and-random-rejoin-type is better than the spherical 

models, because the former is suitable for porous media 

with wide pore size, and when the pore space is full of 

biomass, they show appropriate asymptotic behavior, i.e., 

kb→0 as nb→0 and Lf→R. 
Most studies show that the permeability of porous media 

decreases with the decrease of porosity in the process of 
pore clogging. In fact, when the porosity is reduced to a 
certain extent, the permeability will eventually be truncated, 
and the microbial growth cannot last forever in the pores, 
and the pore permeability coefficient can only drop to a 
critical value. In this state, the growth and decline of 
organisms are in a dynamic equilibrium state. In short, the 
pores will not be completely blocked, but the migration 
capacity of large particles may be greatly reduced. 

 
 

5. Conclusions 
 

This article mainly studies the influence of biofilm 
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growth in porous media on the relative permeability of the 

media and uses multiple models for analysis and 

comparison, including the original Kozeny-Carman 

equation model, Childs and Collis-George model, 

Millington and Quirk model, and a certain functional 

correlation between the biofilm thickness and permeability 

reduction is determined through analysis, 
𝑘𝑏

𝑘
= 𝑓 (

𝐿𝑓

𝑅
). In 

the research process, the sphere model and Cut and random 

rejoin type model of porous media are used. The 

conclusions of this paper are as follows: 

• In special cases, when the porous medium has a 

uniform pore diameter (sphere model or λ = 2), all the 

permeability models can get physical reasonable results. 

Moreover, the classical original Kozeny-Carman equation 

combined with the biofilm activity equation can get the 

correlation function relationship of the relative permeability 

of the porous medium under the corresponding biofilm 

growth, and when the medium has a uniform pore diameter, 

the given volume the permeability of biomass decreased the 

most. 

• Under the condition of non-uniform pore size 

distribution in porous media, the classical original Kozeny- 

Carman model has considerable deviation. Only the models 

based on Childs and Collis-George and Mualem can 

provide physical results for large-diameter media. The 

asymptotic properties of the shear stochastic reconnection 

model show that when the pore volume is zero, the 

permeability is close to zero. 
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