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Abstract.  In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR 

(transparent thermoplastic) resin is inversely estimated by the field projection method using numerical 

solutions and experimentally measured displacements. Displacements in a region far away from the crack tip 

are measured by digital image correlation technique. An inverse analysis, the field projection method 

formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate 

a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, 

nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and 

separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the 

interface crack is also obtained from measured displacements in this study. 
 

Keywords:  cohesive laws; interface crack; mixed-mode singularity; inverse problem; field projection 

method 

 

 

1. Introduction 
 

The failure of an interface crack between bi-materials is an important issue in not only large-

scale structures but also micro-scale structures such as adhesive joints, composite materials and 

microelectronics packages. In order to evaluate the failure characteristics of the interface crack, it 

is necessary to understand knowledge of the mechanical behaviors of a crack propagating along 

the bi-material interface. Elastic solutions around an interface crack-tip can be derived and the 

definition of the stress intensity factors has been discussed by previous researches (Williams 

1959, Rice 1988, Erdogan 1965, England 1965, Rice and Sih 1965, Matos et al. 1989). In these 

solutions, the oscillatory stresses and the overlap of crack surfaces appear in the vicinity of a crack 

tip. In addition, it is necessary to define the phase angle of the mixed-mode singularity at the crack 

tip of bi-material interface, because it is considered that the mixed-mode fracture toughness 

depends on the phase angle (Hutchinson and Suo 1992). However, mixed-mode cohesive laws 

characterizing the failure behavior of a crack propagating along the interface between dissimilar 

materials have not been sufficiently investigated even though the evaluation of mixed-mode  
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cohesive laws is essential to simulate crack growth at bi-material interface. 

The fracture energy, i.e., the energy for the crack growth, can be implemented in a cohesive 

model which connects crack surfaces with cohesive tractions using a traction-separation relation to 

describe the separation process between two surfaces. For mode I crack problems, the cohesive 

energy and the cohesive strength represent the local fracture toughness and local strength, 

respectively (Xu and Needleman 1994, Camacho and Ortiz 1996). The cohesive zone model has 

been widely applied to simulate delamination, crack propagation and failure process by pre-

defining functional forms of cohesive laws (Ortiz and Pandolfi 1999, Mergheim et al. 2005). 

These previous studies showed successful results for simulating mode I fracture behavior 

efficiently in computational fracture mechanics. However, interface cracks between dissimilar 

materials require intrinsically mixed-mode cohesive laws which contain fracture energy, strengths 

in normal and shear separations. The normal and shear tractions on the crack surfaces between 

dissimilar materials should be related to the normal and shear separations as functions of loading 

conditions and material properties. Mixed-mode singularities at the crack tip are eliminated by 

applying cohesive tractions in the cohesive zone behind the crack tip of bi-material interface. The 

fracture energy of an interface crack is then implemented into the dissipation energy associated 

with normal and shear tractions and their separations. The interface fracture toughness under a 

loading condition has been measured by many researches (Xu and Tippur 1995, Ikeda et al. 1998, 

Liechti and Chai 1992, Yuuki et al. 1994). These researches reported that the fracture toughness 

increases with the phase angle and is closely dependent on the mode mixity. As a result, the phase 

angle of mixed-mode singularity at the crack tip of bi-material interface has been used as a 

parameter to determine mixed-mode cohesive laws. 

Experimental estimate of cohesive laws near the crack tip is still highly non-trivial because the 

process zone size is very small and stresses cannot be measured directly, which requires 

measurements of the tractions and separations with high resolution and accuracy (Tan et al. 2005, 

Zhu et al. 2009). Indirect measurements of cohesive laws require an inverse process for finding 

unknown tractions and separations along crack surfaces from measured displacements or strains. A 

functional form of the traction-separation relationship is often assumed a priori, with the 

associated shape parameters as well as the cohesive energy, the cohesive strength and the 

separation length fitted to the measurement data (Zhu et al. 2009, Guo et al. 1999, Shen and 

Paulino 2011). While such approaches have been demonstrated convincingly, the accuracy of the 

experimentally fitted parameters is highly sensitive to the assumed traction-separation profile and 

an object function to match experimental results with simulations. Although the shape 

optimization approach minimizing an object function with a number of control points on the 

traction-separation curve (Shen and Paulino 2011, Gain et al. 2011) can be an affordable way to 

extract the cohesive law without a pre-defined form, sophisticated regularization techniques and 

experimental measurements in a region near the crack tip may be required to prevent from 

obtaining unphysical solutions due to the ill-posedness of inverse problems (Kim and Lee 2009). 

One promising method for reconstructing traction-separation relations from measured 

displacements without any pre-assumption on the shape of cohesive laws and comparing measured 

behaviors with model predictions for various parameters is the field projection method (FPM) 

(Hong and Kim 2003). The FPM constructs an inverse system by combining the interaction J-

integral with analytical auxiliary fields along the contours in the cohesive zone and far-field 

region. The FPM was demonstrated to provide a systematic way of uncovering the shape of 

cohesive laws governed by the micro-mechanisms of the fracture process (Hong et al. 2009, Chew 

et al. 2009, Chalivendra et al. 2009). Numerical implementation of the FPM has been extended by 
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using numerical auxiliary fields (Kim et al. 2012). In this augmented FPM, discrete uniform 

tractions are systematically applied on each element face of the cohesive crack surfaces in turn to 

construct independent auxiliary fields. The use of both interaction J- and M-integrals in this 

method reduces the number of required auxiliary fields, compared to the previous method (Hong 

and Kim 2003). The cohesive laws for a crack in polymethly methacrylate (PMMA) double 

cantilever beam specimens have been successfully from experimentally measured displacements 

by using the augumented FPM (Oh and Kim 2013). 

In this paper, we use the augumented FPM to extract a mixed-mode cohesive law for an 

interface crack between dissimilar materials. The displacements in a bi-material specimen made of 

epoxy and transparent thermoplastic (TR) resin mixtures are measured by using digital image 

correlation (DIC) technique. DIC can efficiently measure displacements in a region far away from 

the crack-tip during the crack growth. The measured data are transferred from measurement 

locations to finite element (FE) nodes by using moving least square (MLS) approximation. Inverse 

analyses formulated from the interaction J- and M-integrals with numerical auxiliary fields are 

carried out to extract a mixed-mode cohesive law for a crack growing along the bi-material 

interface from measured displacements in a far-field. Moreover, the phase angle of mixed-mode 

singularities of the interface crack from measured displacements is obtained in this study. The 

present hybrid procedure combining experimental measurements and the augmented FPM using 

numerical auxiliary fields can be an efficient way to estimate mixed-mode cohesive laws for a 

crack growth at the bi-material interface. 

 

 

 
Fig. 1 Schematics of a cohesive zone of size c behind the cohesive crack tip. The interaction J- and M- 

integrals are taken over a remote path Γ, and are calculated using the domain integral method over the 

shaded region Am 
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2. Field projection method using numerical auxiliary fields 
 

In this study, a mixed-mode cohesive law for an interface crack is evaluated by using the FPM 

which inversely extracts tractions and separations on the crack surfaces from measured 

displacements in a far-field region. This algorithm has proven its usefulness for inversely 

extracting cohesive traction and separation values from measured displacements in a far-field 

region (Oh and Kim 2013). Fig. 1 illustrates an edge crack with a cohesive zone behind the crack 

tip. Since there is no singularity at the cohesive crack tip, J- and M-integrals at the cohesive crack 

surfaces Γc in Fig. 1 are equal to the values evaluated along arbitrary integral path Γ around the 

crack tip. 

In order to extract unknown tractions and separations in the cohesive zone, Kim et al. (2012) 

used the interaction J- and M-integrals between the measured real field ],[ , jiij uSS   and the 

auxiliary fields ]ˆ,ˆ[ˆˆ
, jiij uSS  . The interaction J- and M-integrals along a path in a far-field 

region can be written by 

     dsnununuSSJ ijijijijjiij 1,1,1,

int ˆˆˆˆ,               (1) 

     dsxnununuSSM kikjijikjijkjiij ,,,

int ˆˆˆˆ,              (2) 

Since the interaction integrals are path-independent and no singularity exists at the cohesive 

crack tip, the interaction integrals at the cohesive crack surfaces Γc can be rewritten as 
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where tj are the cohesive traction components on the lower crack surface, 
  jjj uuu  are the 

separation components along the cohesive crack surfaces, and c  is the length of the cohesive 

zone with the origin (x1=x2=0) located at the crack tip (see Fig. 1). By using the domain integral 

method (Shih et al. 1986) and the path independency of the interaction integrals such that 

],[],[ int

Γ

int

Γ c
SSJSSJ ˆˆ   and ]ˆ,[]ˆ,[ intint SSMSSM

c  , the relationship between the tractions and 

separations at the cohesive crack surfaces can be evaluated by 
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where q is an arbitrary continuous function with unit value on inner contour and zero value on 

outer contour, Am is the integration domain as shown in Fig. 1, and summation over repeated 
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indices is implemented. 

The J- and M-integrals can be defined for a cracked body with nonlinear deformation near the 

crack tip. As a result, the interaction integrals in Eqs. (1) and (2) give us characteristic values 

associated with nonlinear deformation and failure mechanisms at the crack tip. Hence, the 

cohesive laws extracted from measured displacements in a region far from the crack tip include 

both nonlinear material behavior near the crack tip and crack-bridging failure mechanisms, 

because the FPM in this study is based on a linear projection of far-fields data onto a local 

cohesive zone by using the conservation integrals in linear elastic materials. 

In order to obtain the tractions and separations in cohesive law with a finite set of functions, a 

set of independent auxiliary fields should be provided for the interaction J- and M- integrals. In 

this study, we model the entire crack geometry with FE method, and systematically apply discrete 

uniform tractions on the element faces along the cohesive crack surfaces to generate the numerical 

auxiliary fields. Fig. 2 illustrates uniform normal and shear tractions that are applied separately on 

the faces of pair elements on the cohesive crack surfaces to establish independent auxiliary fields. 

Let ),(ˆ iKS  denote the numerical auxiliary fields generated by imposing uniform tractions such 

that 

  
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ij
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where C
K
 denote the faces of K

th
 elements in the cohesive zone, δij is the Kronecker delta, and 

Kt  

are constant uniform tractions (see Fig. 2). Since the numerical auxiliary fields generated by 

different (K, i) combinations are mutually exclusive, we obtain independent auxiliary fields by 

applying discrete uniform tractions sequentially on cohesive crack surfaces in the finite element 

(FE) model. The objective of the inverse scheme is to determine the cohesive tractions and 

separations which are expressed as 

 

 

 
(a) 

 
(b) 

Fig. 2 Uniforn shear and normal tractions imposed on the crack surfaces of the K
th

 
element faces in the 

cohesive zone; the pseudo nodes are denoted by open circles 
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EE
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where 
E

jt  are the unknown tractions, ),,1( ME   are the element face numbers, N
I
(x1) are 

the shape functions of virtual nodes I, and M is the total number of element pairs in the cohesive 

zone. The virtual nodes are defined at the center points between the actual nodes on the cohesive 

crack surfaces as denoted in Fig. 2. Constant tractions and linear separations on element faces in 

the cohesive zone are assumed, since linear quadrilateral elements are used in the FE 

computations. According to interaction formula such as ]ˆ,[]ˆ,[ intint SSJSSJ
c  and 

]ˆ,[]ˆ,[ intint SSMSSM
c   that can be expressed as 
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Finally, by solving the above equations, we can obtain the cohesive law in terms of tractions 
E

jt  and separations 
I

ju  on cohesive crack surfaces. It should be noted that the solutions of Eqs. 

(10) and (11) are not affected by the magnitude of uniform tractions in the auxiliary fields. Finally, 

by solving the inverse equations, we can obtain the cohesive law in terms of tractions 
E

jt  and 

separations 
I

ju  on cohesive crack surfaces. 

 

 

3. Mixed-mode fracture at the crack tip 
 

An asymptotic analysis of stresses and strains near the crack tip between dissimilar linear 

elastic solids shows that mixed-mode stress singularities exist at the bi-material interface crack tip. 

When a cohesive zone is involved on crack surfaces near the crack tip, the stress singularities at 

the cohesive crack tip can be disappeared because of finite normal and shear stresses at the 

initiation of separation. Nonetheless, the mixed-mode stress singularities at the bi-material 

interface crack tip can be related to the mixed-mode cohesive law of the interface crack, because 

the cohesive zone is confined in a very small region close to the crack tip (Jin and Sun 2005). For 

this reason, the phase angle associated with the mixed-mode stress singularities at the bi-material 

interface crack tip is obtained to characterize the cohesive zone in this study. 

 

3.1 Stress intensity factors for an interface crack 
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Fig. 3 An interface crack between dissimilar elastic materials 

 

 

The stress field near the crack tip on the interface of two dissimilar elastic materials is defined 

as complex stress intensity factor K1+iK2 where i is the imaginary number. The stresses ahead of 

the interface crack on 02 x  (Rice 1988) can be expressed as 

  
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where i  are the shear moduli and i  are the Poisson’s ratios of two linear elastic materials 

indicated in Fig. 3.      13 /  for plane stress and  43  for plane strain. The 

Dundurs parameter β is defined to calculate   which is a bi-material constant causing oscillation 

stress singularity. As it is clear from Eq. (12), K1 and K2 do not longer reflect the cracking modes I 

and II because of the oscillatory term 
ir . When the two materials are identical, 0 , the 

factors K1 and K2 become identical to conventional stress intensity factors KI and KII, respectively. 

In order to separate the stress intensity factors in mode I and II, a similar stress intensity factors 

KI and KII which characterize the near tip stress field at an interface (Rice 1988) was introduced as, 

  iexpKlKiKK i

III  , 
2

2

2

1 KKK                 (15) 

where l  is the characteristic length ahead of the crack tip. The characteristic length can be chosen 

arbitrary. The state of stress near the crack tip is then characterized by the stress intensity factors 

41



 

 

 

 

 

 

Sung-Il Song, Kwang-Soo Kim and Hyun-Gyu Kim 

and the phase angle. The stress field in Eq. (12) can be rewritten as 
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3.2 Phase angle for a cohesive crack tip 
 

The phase angle expressed by ψ is defined as the ratio of the normal and tangential stress at a 

distance r=l such that 
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In order to obtain the phase angle associated with the characteristic length l, the interaction 

integral method is used to separate the mixed-mode stress intensity factors at the interfacial crack 

tip. In this study, the cohesive length is chosen as the characteristic length l. The factors K1 and K2 

can be decomposed by using the interaction integral technique (Matos et al. 1989, Stem et al. 

1976). It should be noted that the dimensions of the factors K1 and K2 are stress units time length 

units raised to the power 1/2-iε. When the Dundurs parameter is zero, the real and imaginary parts 

of the stress intensity factor are uniquely identified as the mode I and mode II components of the 

stress intensity factor. The conversion of   iexpKlKiKK i

III   can be performed to 

obtain the stress intensity factors at the characteristic length l  from the crack tip. 

When the material interface is a plane, the energy release rate, J-integral (Rice 1968) which is 

path independent for the crack segment including the tip at the interface, can be expressed by 
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1
KK

H
G                              (18)

 
where 

  








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where i

*

i EE   for plane stress and  21 ii

*

i /EE   for plane strain. 

Most materials show that mode I fracture energy is different from mode II fracture energy. In 

describing an interface crack propagation, one may prescribe a relation between K1 and K2, which 

in general gives the critical energy release rate Gc as a function of the phase angle 

 cc GG                               (20) 

 

3.3 Mixed-mode cohesive laws 
 

Cohesive zone models have been widely used in the numerical simulation of fracture processes 
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of materials for a variety of applications. Cohesive zone was originally proposed for the purpose of 

removing the crack-tip stress singularity (Barenblatt 1962). The fracture energy in a cohesive zone 

is the same as the critical energy release rate in linear elastic fracture mechanics when the stress 

singularity at the cohesive zone crack tip does not exist. Cohesive zone models can be applied to 

the interface crack between dissimilar materials by simply adding the shear traction and the 

corresponding shear separation in the cohesive law. 

Xu and Needleman (1993) extended the exponential form of cohesive laws to predict a mixed-

mode crack propagation combined normal and shear separations. Cohesive tractions are regarded 

as the function of uncoupled separations in normal and tangential directions. Fig. 4 illustrates a 

mixed-mode cohesive law expressed by normal and shear traction-separation relationships. Unlike 

this model, Tvergaard (1990) proposed a quadratic cohesive zone model with a coupling parameter 

in which the traction components are expressed as a function of the relative separations and this 

parameter. The parameter is introduced to characterize the interaction of normal and shear 

separations. Potential-based cohesive zone models (Needleman 1987, Freed and Banks-Sills 2008) 

have been proposed to impose different fracture energy with respect to the fracture mode. The 

derivatives of a potential with respect to the normal and shear separation result in the normal and 

shear cohesive tractions, respectively. Mixed-mode cohesive zone models provide a coherent 

analytical framework for fracture along interfaces that naturally incorporates both strength and 

energy criterion. The mode-I toughness (area under the normal traction-separation curve), and the 

mode-II toughness (area under the shear traction-separation) depend on the phase angle, which 

describe many of the important aspects of interfacial failure. 

 

 

 
(a) 

 
(b) 

Fig. 4 Schematics of mixed-mode cohesive laws: (a) normal traction and separation, (b) shear traction and 

separation 
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4. Extraction of a mixed-mode cohesive law from measured displacements 
 

In this section, the experimental and numerical processes are described to obtain a mixed-mode 

cohesive zone and the corresponding phase angle for a crack propagating along a bi-material 

interface. Cracked specimens were prepared by partially attaching epoxy and transparent 

thermoplastic (TR) resin mixtures. Displacements in a far-field region from the crack tip are 

measured by using digital image correlation (DIC) technique. Measured displacements are 

transferred from measurement locations to FE nodes by using moving least square (MLS) 

approximation. The same FE model is used to obtain numerical auxiliary fields of the interaction 

J- and M-integrals in the FPM. The inverse analyses are carried out to evaluate normal and shear 

cohesive tractions and separations in the cohesive zone at the interface. Mode mixity at the 

interfacial crack is also obtained by using the interaction integral technique. 

 

4.1 Specimen preparation and displacement measurements 
 

An interfacial crack between dissimilar materials is made by partially attaching two materials 

of epoxy and TR resin mixtures in a set of smooth cast. The geometry and dimensions of the 

double cantilever specimen with an interface crack between epoxy and TR resin mixtures is shown 

in Fig. 5. The thickness of the specimens is 2 mm. We choose that the mixture ratio of epoxy and 

hardener is 3:1 and the mixture ratio of TR resin-hardener is 10:8. The mechanical properties of 

epoxy and TR resin mixtures are obtained by taking tensile tests. Fig. 6 shows the stress-strain 

curves of the epoxy mixture and the TR resin mixture. The elastic modulus E and the Poisson’s 

ratio ν of the epoxy mixture are determined as E1=5923.1 MPa and ν1=0.33, respectively. The 

elastic modulus E and the poisson’s ratio ν of the TR resin mixture are E2=1836.3 MPa and ν2=0.3, 

respectively. In order to make a bi-material specimen, the epoxy mixture is poured into a mold 

made of silicon 1403. The epoxy mixture is cured at room temperature for 12 hours. Before TR 

resin mixture is poured into the other part, a laminating sheet made of aluminum is attached to 

debond some parts of interface between the two materials. The thickness of the laminating sheet is 

approximately 100 μm. TR resin mixture is then poured into the other mold to partially attach 

along the interface. In order to make a sharper interfacial crack, approximately 3000 cycles of a 

fatigue load are applied to the specimen. 

 

 

 
Fig. 5 Double cantilever specimen with an interface crack between dissimilar materials 
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(a) 

 
(b) 

Fig. 6 Stress-strain curves of epoxy and TR resin mixtures: (a) epoxy mixture (the mixture ratio of 

epoxy and hardener=3:1), (b) TR resin mixture (the mixture ratio of resin and hardener is 10:8) 

 

 

 
Fig. 7 Bi-material specimen with an initial crack and pin-holes for grips; the magnified 

image on the right is the initial crack shape observed by a microscope 

45



 

 

 

 

 

 

Sung-Il Song, Kwang-Soo Kim and Hyun-Gyu Kim 

The bi-material specimen with an initial crack is loaded by the micro-tensile test machine, as 

shown in Fig. 7. Displacement controlled loading is applied incrementally to the specimen. In 

order to measure displacement fields, we use a DIC system with two CCD cameras of full 0.8 

mega pixels which are shown in Fig. 7. 

 

4.2 A mixed-mode cohesive law extracted from measured displacements 
 

The measured displacements at the centers of subsets in the DIC system are transferred to FE 

nodes by using MLS approximation. The subsets in the DIC system do not match with the nodes 

of a FE model for extracting crack-tip cohesive laws. Additionally, the measured displacements 

contain local fluctuations or measurement noises, which cause a deterioration of inverse solutions 

due to an inherent ill-conditioning of the inverse system even though a large subset size is set to 

reduce measurement noises. MLS approximation takes space-varying coefficients in the least 

square method with a basis and weight functions defined on influence domains. Accordingly, MLS 

approximation can reduce measurement noises to make the inverse process stable. Fig. 8 shows 

von-Mises stress distribution in the FE model of the bi-material specimen by imposing measured 

displacements. Linear elastic materials with the properties obtained by uniaxial tensile tests are 

applied to the FE analysis using the commercial code ABAQUS/standard. Since nonlinear 

deformations near the crack tip are large, the stresses in the local region near the crack tip are also 

large compared to the stresses in other regions, as shown in Fig. 8. It should be noted that the 

stresses near the crack tip are not actual values, because linear elastic materials are used in the FE 

simulation. In order to make the auxiliary fields Ŝ , we give uniform traction to each element 

along the crack surfaces. A mixed-mode cohesive law can be then extracted by using the 

conservation of the interaction J- and M- integrals in Eqs. (5) and (6) with the numerical auxiliary 

fields. As indicated in Fig. 9, integral domains are taken by three different paths according to the 

distance from the crack-tip. Contour A includes non-linear deformations near the crack tip, which 

can result in different normal and shear cohesive laws from those obtained by using contours B 

and C. The size and the location of cohesive zone are determined to give positive normal tractions 

in the cohesive zone, which requires iterative computations of solving inverse equations. 

 

 

 
Fig. 8 von-Mises stress distribution in the finite element model of the bi-material 

specimen by imposing measured displacements; linear elastic properties of epoxy and 

TR resin mixtures are used in the finite element simulation 
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Fig. 9 Finite element mesh of the double cantilever specimen; the integration contours A, B 

and C are used for the calculation of the interaction J- and M- integrals 

 

 
(b) 

 
(c) 

Fig. 10 Mixed-mode cohesive laws for an interface crack between epoxy and TR resin 

mixtures: normal cohesive traction and separation; (b) shear cohesive traction and separation 
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The solutions of Eqs. (10) and (11), which are inverse solutions to extract cohesive tractions 

and separations from measured displacements, are plotted in Fig. 10. The mixed-mode cohesive 

laws obtained by using contour A are different from those obtained by using contours B and C, 

because nonlinear deformations in contour A affect the right terms in Eqs. (10) and (11). The 

inverse solutions using contours B and C are not much different, which shows the path 

independency of the interaction J- and M-integrals evaluated from measured displacements. As a 

result, the mixed-mode cohesive laws for the interface crack between epoxy and TR resin mixtures 

can be determined from tractions and separations estimated by using contours B or C. Note that 

the cohesive energy and the maximum strength of the normal cohesive law are much higher than 

those in the shear cohesive law. 

 

 

 
Fig. 11 Cohesive separations in the cohesive zone of the interface 

crack between epoxy and TR resin mixtures 

 

 
Fig. 12 von-Mises stress distribution in the finite element model of the bi-material 

specimen by applying loads in experiments 
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Cohesive normal and shear separations in the x-coordinate along the interface are plotted in 

Fig. 11. The normal and shear separations in the cohesive zone are similar regardless of contours 

for evaluating the interaction J- and M-integrals. As mentioned earlier, the size and the location of 

the cohesive zone are determined to give the positive normal cohesive tractions. The 

corresponding cohesive normal separations behind the cohesive crack tip are partially negative as 

shown in Fig. 11. Although the amount of penetration of the cohesive crack surfaces is very small, 

the possibility arises that mixed-mode cohesive laws with negative normal separations are required 

to remove singularities at the cohesive crack tip. A more sophisticated study is needed to elucidate 

mixed-mode cohesive laws for an interface crack between dissimilar materials. 

In order to obtain the phase angle of the interface crack, a FE model of the cantilever beam 

specimen is solved by applying the loads in experiments. Linear elastic properties are used in the 

FE analysis, and von-Mises stress distribution in the FE model is plotted in Fig. 12. Stress 

intensity factors K1 and K2 in Eq. (12) are obtained by using the interaction integral technique 

(Matos et al. 1989, Stem et al. 1976) in ABAQUS/Standard. The stress intensity factors of the 

interface crack are K1=21.91 MPa mm
1/2

 and K2=-4.713 MPa mm
1/2

. The characteristic length in 

Eq. (17) is chosen as the cohesive length in this study. Finally, the phase angle of the interface 

crack between epoxy and TR resin mixtures is calculated as ψ=-15.126°. 

 

 

5. Conclusions 
 

The extraction of crack-tip cohesive laws from measured displacements in a far field through 

an inverse analysis is a challenging problem, especially for a mixed-mode condition of interface 

crack between dissimilar materials. In this study, we use a hybrid method which is an efficient 

computational inverse analysis, using experimentally measured displacements and the numerical 

auxiliary fields by imposing uniform tractions along the crack face in a finite element model. The 

path-independent interaction J- and M-integrals between these auxiliary fields and the 

measurement displacements are used to extract the mixed-mode cohesive laws of an interface 

crack between epoxy and TR resin mixtures. It is emphasized that the contour path should not 

include nonlinear deformations near the crack tip in order to obtain proper cohesive tractions and 

separations in the cohesive zone. A penetration of cohesive crack surfaces behind the cohesive 

crack tip is obtained in this study, which remains a possibility of mixed-mode cohesive laws with 

negative normal separations for an interface crack to remove singularities at the cohesive crack tip. 

In addition, the phase angle of the mixed-mode cohesive law is evaluated to characterize the 

interface crack between epoxy and TR resin mixtures. The proposed procedure can be an efficient 

and effective method to estimate mixed-mode cohesive laws of interface cracks by combining 

experimental tests and numerical simulations. 
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