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Abstract.  In this paper, the effect of impulsive line on the propagation of shear waves in 
non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed 
to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform 
and Green's function technique. The study ends with the mathematical calculations for transmitted wave in 
the layer. These equations are in complete agreement with the classical results when the non-homogeneity 
parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear 
waves in the intermediate layer. 
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1. Introduction 
 

The Dirac delta function is also known as the unit impulse function. It is a mathematical 

abstraction and is often used to approximate some physical phenomenon. An idealized line source of 

wave can be described using the delta function. Of course, real points of wave will have finite width, 

but if the point is narrow enough, approximating it with a delta function can be very useful. Further, 

Green‟s function technique is very handy to solve inhomogeneous differential equations subject to 

certain boundary conditions. That is why; the author used this technique to solve the problem of 

wave propagation. The Green‟s function is a strong mathematical tool to carry out asymptotic 

approximations of solutions of differential equations.  

In solid materials, during rest position, the volume elements retain their relative positions and 

orientations alike. On the other hand, when the solid is under the action of external forces such as 

elastic stresses and strains, the volume elements get departed from the original position. Therefore, 

the subject of elasticity of crystals has its own importance in several circumstances. In recent years, 

the elastic behaviour of polycrystalline solids, used as the materials in engineering construction, are 

of great practical importance.  

Many authors have studied the problems of wave propagation in elastic and viscoelastic medium 

in the field of mechanics of solids, applied physics, applied mathematics, mechanical engineering 

and materials science by using various mathematically technique. Rommel (1990) presented a 

formulation for anisotropic medium, heterogeneity on the propagation of SH-waves with point 
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with point source was studied by Chattopadhyay et al. (2010) and also Chattopadhyay et al. (2011) 

discussed non-homogeneity, effect of point source on various shear waves in monoclinic medium. 

Kumar and Gupta (2010) studied wave motion in micropolar transversely isotropic thermoelastic 

half space without energy dissipation. Kakar and Kakar (2012) studied propagation of Love waves 

in a non-homogeneous elastic media. Kakar and Gupta (2012) also discussed propagation of Love 

waves in a non-homogeneous orthotropic layer under „P‟ overlying semi-infinite 

medium. Ponnusamy and Selvamani (2012) discussed wave propagation in a generalized thermo 

elastic plate embedded in elastic medium. Recently, Kakar and Gupta (2013) presented a note on 

torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space.  

Some papers on wave propagation using Green‟s function techniques are Vrettos (1991), 

and Robert (2002, 2005), Popov (2002), George and Christos (2003), Vaclav and Kiyoshi (1996), 

Jing et al. (2011), Kirpichnikova (2012). Matsuda and Glorieux (2007) used Green's function 

technique for dispersion relation of surface acoustic waves for functionally graded materials. 

Green function is widely used in investigating wave propagation in homogeneous medium without 

exception in inhomogeneous ones. With a view to initial and radiation condition, Li (1994) derived 

wave equation with Green function in inhomogeneous medium by Fourier transformation so that 

wave equation could be converted to Schrodinger equation and the method can be applied to 

resolve acoustic propagation in range-dependent inhomogeneous medium. Li et al. (2010) 

extended the method to settle Helmholtz equation with complex refractive index. Shaw (1997) 

used conformal mapping to obtain Green‟s function for two dimensional heterogeneous Helmholtz 

equations. It followed that the solutions can serve as a basis for developing Green‟s functions for 

use as kernels in boundary element methods used for numerical solution of complex physical 

problems. Daros (2013) derived a Green‟s function which can be used to model transient SH-wave 

in inhomogeneous and anisotropic media, with a power function velocity variation in one direction 

of Cartesian coordinate system.  

In this work, the problem of propagation of SH-wave in a non-homogeneous layer of variable 

rigidity and density which is lying in between the two homogeneous and isotropic half spaces has 

been studied. The SH-waves are excited in the layer due to the presence of an impulsive line 

source at the interface of the intermediate layer and the lower half-space. We have taken the 

quadratic variation in rigidity and density. The Dirac-delta function is taken as the source of 

impulse in the wave propagation. The dispersion equations are obtained for this generated line 

source. These equations are in complete agreement with the classical results when the 

non-homogeneity parameters are neglected. In the end of this study, the transmitted wave in the 

medium is also calculated. The effect of nonhomogeneity on the generated SH-wave is also shown 

graphically for the various values of material parameters (earth).   

 

 

2. Formulation of the problem 
 

We have assumed that the harmonic shear wave is travelling along x-axis and z-axis is taken 
vertically downwards. The impulsive line source of disturbance P is taken at the line of 
intersection of the interface and z - axis (Fig. 1). Let H be the thickness of the inhomogeneous 

isotropic intermediate layer. Let 1 1,   be the rigidity and density of the first half-space layer. Let 

3 3,   be the rigidity and density of the lower half-space layer. The variations in rigidity and 
density (inhomogeneous parameters) in the intermediate layer are 
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Fig. 1 Geometry of the problem 
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2 z                                (1a) 
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2 z                                (1b) 

where ε is small positive real constant. 

The equation of motion for line source can be written as  

jiij uF                                 (2) 

where ij are components of the divergence of stress tensor, ρ is the density of the medium and 

iF are body forces. 

For shear wave propagation along the x-axis, we have 

,0u ,0w ),,( tzxvv                            (3) 

where, u, v, w are the respective displacement components at time t. 

Therefore, the equation of motion for upper homogeneous isotropic medium is 
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Since rigidity „ 1 ‟ and density „ 1 ‟ are constant, thus (5) is a consequence of (4) for the case 

of constant density.  
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Assuming the source is time harmonic and taking the time dependence 
i te 

to be understood 
throughout i.e., 1 1( , , ) ( , ) i tv x z t v x z e  . Therefore, Eq. (5) reduces to 
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where,  2

1

11
1 


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k , kc   is the angular frequency, k the wave number and c is the phase 

velocity.  

Similarly, the equation of motion for lower homogeneous isotropic medium is 
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Let 3 3( , , ) ( , ) i tv x z t v x z e  . Therefore, Eq. (8) reduces to 
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where, 2

3

31
3 




k , kc   is the angular frequency, k the wave number and c is the phase 

velocity. 

Assuming the source is time harmonic and taking the time dependence 
i te 

to be understood 

throughout, such that the equation of motion for intermediate inhomogeneous isotropic medium is 
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Here „r‟ is the distance from the origin, where the force is applied to a point of coordinates, 
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' ( , ) 'r t  is the disturbances produced by the impulsive force at P and t is time.  

As per our assumption 2 2( , , ) ( , ) i tv x z t v x z e   and ( , ) ( )ei tr t r   , Eq. (12) reduces to 
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The disturbances caused by the impulsive force ' ( ) 'r  can be written in terms of Dirac-delta 

function at the source point as 

)()()( Hzxr                             (12) 

Therefore, Eq. (11) reduces to 
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Put Eq. (1) in Eq. (13), then we get 
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Dividing Eq. (14) throughout by and rearranging, we get 
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 , kc   is the angular frequency, k the wave number and c is the phase 
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3. Boundary conditions 
 
The geometry of the problem leads to the following conditions 
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4. Solution of the problem 
 

The following transforms are used to solve Eq. (7), Eq. (9) and Eq. (15) 
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Then the inverse Fourier transform is given as 
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Now using the above defining Fourier transforms for Eq. (7) and Eq. (9), we get 

 

2
21

12
0,

d V
V

dz
 

                                            

(18) 

where, 
2 2 2

1k    

2
23

32
0,

d V
V

dz
                             (19) 

where, 
2 2 2

3k    

Also, Eq. (15) can be written in terms of Fourier transforms as 

2
22

22
4 ( ),

d V
V z

dz
  

                       
 (20a) 

where, 
2

2 2 2 2 2 22 2
2 22

2
4 ( ) ( ) z 2( )

d V dV
k z z H z H z V

dz dz
and


    

 

  
         

   
 

In order to solve Eqs. (18)-(20) under the prescribed boundary conditions in Eqs. (16a), (16b), 

(16c) and (16d), we introduce the Green‟s Function technique. First of all take the intermediate 

inhomogeneous layer and it is solved with the help of Green‟s function 2 0( )G z z  (Stakgold, 

1979). The Eq. (20) will satisfy 2 0( )G z z as 
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together with the homogeneous boundary conditions 
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Here 0z is arbitrary line in the medium 2. Multiplying Eq. (20b) by 2 0( )G z z , Eq. (21) 

by 2 ( , )V z , subtracting and integrating over 0 z H  , we get 
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Similarly, if 1 0( )G z z and 3 0( )G z z are Green‟s functions corresponding to upper and lower 

homogeneous media, then Eq. (18) and Eq. (19) will satisfy as 
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Replacing z by 0z and using symmetry of Green‟s function, Eq. (23), Eq. (26) and Eq. (27) 
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where, 2 1

1

(0 / 0) (0 / 0)A G G



   

Similarly, using boundary condition (16b) in Eq. (28), we get 
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Eq. (33) is an integral equation and 2 ( )V z can be found from this equation by using 

approximations. First of all we neglect the terms having , we get 
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Now put Eq. (34) back in the right hand side of Eq. (33), we get 
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where, 
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We note that Eq. (35) completely represents the elastic displacements. These elastic 

displacements are due to a unit impulsive force in space and time. Also, the solution of Eq. (35) is 

incomplete because G1, G2 and G3 are not known. We adopt the following method to find the 

unknown Green‟s function. 

We have considered G1(z / z0) as a solution of Eq. (18). 

A solution of Eq. (18) can also be found as 

2
2

2
0

d L
L

dz
                                  (36) 

The two independent solutions of Eq. (36) will vanish at z    and z   are 

1 2( ) ( )z zL z e and L z e                      (37) 

Hence, the solution of Eq. (36) for an infinite medium is 

1 2 0
0

1 0 2
0

( ) ( )
,

( ) ( )
.

L z L z
for z z

M

L z L z
for z z

M




                    

 (38) 

where,
/ /

1 2 2 1( ) ( ) ( ) ( ) 2M L z L z L z L z     . 

So we can write the solution of Eq. (18) as 

0

.
2

z z
e





 

                (39) 

Since G1(z / z0) is to satisfy the condition (Eq. (24)) 
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1 0( )
0

dG z z

dz
  at z = 0; 1 0( )

0
dG z z

dz
  as ,z            (40) 

Therefore, we assume that 

0

1 0( ) .
2

z z

z ze
G z z Ae Be


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

 

                          (41) 

The conditions as mentioned in Eq. (40) give 

0 0( )

1 0

1
( ) ,

2

z z z z
G z z e e

 


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(42) 

Similarly 

0 0( 2 )

3 0

1
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G z z e e
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
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 

                     

(43) 

 

For the intermediate inhomogeneous layer, Green‟s function G1(z / z0) 
can be obtained in the 

similar manner as above by using the boundary conditions Eq. (16a) and Eq. (16b). 

0 0 0 0

0

( ) ( ) ( ) ( )

2 0

1
( ) .

2

z H H z H z H z
z z z z

H H H H

e e e e
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e e e e
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  

   
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       

     
  (44) 

Substitute the value of Eq. (42), Eq. (43) and Eq. (44) in Eq. (35), simplifying and neglecting 

square and higher powers of , we get 

 
1

2 2 2

1 3 2
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(46) 

296



 

 

 

 

 

 

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave  

5. Transmitted waves 
 
Taking inverse Fourier transform of Eq. (45), the displacement in the intermediate 

inhomogeneous layer is 

 
1

2 2 2

1 3 2

2( cosh sinh )
( , ) ,

( / 0) ( )sinh

ic i x

ic

z z e
v x z d
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
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or 
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where,  2 2

1 3 2( , ) ( / 0) ( )sinhJ H AB G H E H         

Eq. (48) is obtained by performing contour integration. The poles of the integrands are obtained 

byputting the denominator to zero. The resultant relation will give the dispersion of SH-wave in 

non-homogeneous elastic media subjected to impulsive line source.  

Replacing   by i


, the dispersion relation will become 
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   (49) 

In the absence of non-homogeneity i.e., ε = 0, the relation (49) reduces to 

3

2 2

1 3

( )
tan H

   


    









                         (50) 

The Eq. (48) is the dispersion relation for love waves in homogeneous media given by Ewing et 

al. (1957). 

In order to calculate transmitted waves we have to calculate Eq. (48), for that we note that the 

poles of the integrand are roots P 2, n (n = 1, 2, 3...) of 

 2 2

1 3 2( , ) ( / 0) ( )sinhJ H AB G H E H         

Calculate the pole contribution at these poles, we get 
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1
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n n n n
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         (51) 
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where, 
2,2,

2, 2,, .
nn

n npp 
   


 

 

 
Eq. (51) is the expression for SH-wave travelling in the x-axis. Beside the poles, we have 

branch points which give rise to the body waves, which is not important in the present study. 

 
 
6. Numerical analysis 
 

The effects of non-homogeneity in the intermediate layer are studied numerically by taking 

following parameters (Gubbins 1990).  

The various curves in Fig. 2 are plotted between H


 v/s   at various values of 

non-homogeneity parameter

 
/

2 24 k





  by taking values of 

/ = 0.0 to 0.4. Another graph is 

drawn between H


 v/s   at various values of another non-homogeneity factor

 
/ /

2 24

H

k





  

by taking / / = 0.0 to 0.4 (Fig. 3). It is clear from diagrams that the phase velocity of SH-waves is 

affected by non-homogeneity parameters. 

 

 

 
Fig. 2 Dispersion of SH-wave for 

/  

 

 
Fig. 3 Dispersion of SH-wave for 

/ /  
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Table 1 Material Parameters 

Layer Rigidity  Density 

Upper Homogeneous Layer µ1 = 11.77 × 10
10

 N/m
2
 ρ1 = 3409 Kg / m

3
 

Intermediate Inhomogeneous 

Layer 
µ  = 11.77 × 10

10
 N/m

2
 ρ = 4148 Kg / m

3
 

Lower Homogeneous Layer µ3 = 11.77 × 10
10

 N/m
2
 Ρ3 = 3944 Kg / m

3
 

 
 
7. Conclusions 
 

In this problem we assume the upper layer and lower layer is homogeneous, isotropic and semi 

infinite, whereas the intermediate layer is taken non-homogeneous isotropic with quadratic 

variation in rigidity and density. We have employed Green‟s function method to find the 

frequency equation due to a line source. Displacement in the intermediate layer is derived in 

closed form and the dispersion curves are drawn for various values of inhomogeneity parameters. 

Eq. (49) gives the dispersion of SH-wave in non-homogeneous elastic media subjected to 

impulsive line source. It is observed from Eq. (49), the inhomogeneity parameters affect the phase 

velocity of SH-wave and however their effects are negligible after a certain value of dimensionless 

wave number. 
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