
 
 
 
 
 
 
 

Interaction and Multiscare Mechanics, Vol. 6, No. 2 (2013) 137-156 
DOI: http://dx.doi.org/10.12989/imm.2013.6.2.137                                                 137 

Copyright © 2013 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=imm&subpage=7        ISSN: 1976-0426 (Print), 2092-6200 (Online) 
 
 
 

 
 
 
 

A meshfree adaptive procedure for shells in the sheet metal 
forming applications 

 
Yong Guo 1, C.T. Wu1 and C.K. Park2 

 
1Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94551, USA 

2National Crash Analysis Center (NCAC), The George Washington University, 45085 University Drive, 
Ashburn, VA 20147, USA 

 
(Received March 5, 2013, Revised April 5, 2013, Accepted May 5, 2013) 

 
Abstract.  In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet 
metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell 
theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. 
For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is 
considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the 
centroids of the adaptive cells and their shape functions are computed using a first-order generalized 
meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and 
non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside 
the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on 
this concept, a multi-level refinement procedure is developed which does not require the constraint equations 
to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree 
approximation with least computational cost. Two numerical examples are presented to demonstrate the 
performance of the proposed method in the adaptive shell analysis. 
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1. Introduction 
 

Recent developments in the meshfree methods add an additional dimension to computational 
mechanics (Belytschko et al. 1994, Liu et al. 1995a, Atluri and Zhu 1998, Chen et al. 1996, Wang 
and Chen 2004, Liu and Zhang 2008). Those methods do not rely on the traditional mesh-based 
approach to define the approximation functions. In comparison with the conventional finite 
element methods, the characteristics of smoothness and naturally conforming of the approximation, 
p-version of the intrinsic basis and higher convergence rate make the meshfree methods attractive 
alternative numerical techniques for industrial applications (Wang et al. 2009, Wu and Koishi 
2009). Meshfree method using Moving Least-squares (MLS) (Lancaster and Salkauskas 1981, 
Belytschko et al. 1994) or Reproducing Kernel (RK) (Liu et al. 1995a, b) approximation has been 
successfully applied to the solid and structural analyses in the past decade (Chen and Wang 2006, 
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Wang and Wu 2008, Wang and Lin 2011). However, the high computational cost of the meshfree 
approximations limits their applications to large-sized industrial problems, such as sheet metal 
forming simulations.  

One way to solve large-sized industrial problems with desired accuracy and minimum cost is to 
adopt adaptive procedures in the simulation. In the nonlinear analysis of shell structures, the error 
introduced by the Galerkin method can be reduced to acceptable levels by means of suitable 
adaptation methods. Compared to the finite element method, the mesh-free method constructs the 
shape functions without the need of an explicit mesh. These shape functions are naturally 
conforming; therefore do not require the constraint equations to enforce the compatibility. Using 
the smooth approximation, the mesh-free method also provides a better fit to the real shell 
geometry. The error caused by the geometric approximation in the discretization of the curved 
shell is minimized and thus the meshfree approximation is ideal for adaptive computation.  

Error indicators are used to control the adaptive procedure. There are two major errors in the 
discretization of a shell structure. The first error is caused by the finite functional approximations 
to the infinite dimensional functional space. This source of error is presented in any Galerkin 
method including the 2D and 3D finite element method and mesh-free method. The second error is 
related to the geometric approximation. Several error estimators have been developed and proved 
to be economical and effective in the work of solid finite element and mesh-free analysis (Deb 
1996, Chung and Belytschko 1998). Some attempts of adaptivity for the finite element analysis of 
shells have also been developed (Baumann and Schweizerhof 1997, Riccius et al. 1997). Most of 
the works have been done using the recovery-based error estimators (Zienkiewicz and Zhu 1987) 
for the adaptive procedure. Nevertheless, they lack a sound theoretical background and are 
difficult to justify in the adaptive shell analysis. This is because the error estimators based on the 
projection or averaging procedures in the curved geometry have less physical meaning and may 
not be effective. The Babuska-Rheinboldt (BR) (Babuska and Rheinboldt 1978) and 
Zienkiewicz-Zhu (ZZ) (Zienkiewicz and Zhu 1987) criterions in the conventional error estimation 
are no longer appropriate due to the fact that the elements or projection planes are in general not 
on the same plane. A direct sampling procedure (Ortiz and Quigley 1991) does not require nodal 
projection and therefore does not ensure continuity of the internal variables. However, for bilinear 
quadrilaterals, the solution by the direct sampling procedure suffers serious noise and becomes 
corrupted. In addition, the error in the geometric approximation of a smoothed shell also needs to 
be minimized in the adaptive procedure. In the finite element method, the use of paving technique 
(Blacker and Stephenson 1991), local surface fitting, or any analytical description of the shell 
geometry can improve the geometric approximation in curved shells with considerable costs. 
Therefore, neither the residual type estimator nor the projection type estimator is rigorous and 
reliable. In this work, an error indicator based on the geometric change of the shell structure, for 
example, angle change (Hallquist 2003), will be adopted in the adaptive mesh-free shell method 
for its simplicity and robustness. 

Three types of adaptivity are well developed, namely p-adaptivity, r-adaptivity and h-adaptivity. 
In p-adaptivity, higher order approximation functions or special enrichment functions are added in 
the numerical scheme. This type of adaptivity is widely used for simulating crack propagation 
problems (Moes et al. 1999, Pannachet et al. 2008). In r-adaptivity, the whole problem domain or a 
local region is remeshed and the new mesh is initialized from the old mesh using a least squares 
approximation (Liu and Tu 2002). In h-adaptivity, an element in the old mesh is divided into 4 
elements in the refinement. The h-adaptivity is more suitable in 2D and shell problems because it 
is easy to maintain the mesh quality even with multiple levels of refinements. The advantage of 

138



 
 
 
 
 
 

A meshfree adaptive procedure for shells in the sheet metal forming applications 

h-adaptivity in meshfree approximations also lies in the ease of implementation and the simplicity 
of the data structures (Rabczuk and Belystchko 2005). However, high computational cost is 
usually involved in the meshfree adaptivity. After the insertion of new nodes into the adaptive 
discretization, the shape functions at the added nodes and integration points, as well as at the 
affected original nodes and integration points have to be reconstructed. This requires extra loops 
for the neighboring searching. In addition, the global transformation matrix and its inverse have to 
be recomputed at each adaptive refinement. To reduce the high computational cost in the 
reconstruction of mesh-free shape functions as well as to pass the integration constraint (Wu and 
Guo 2002), Wu and Guo (2004) proposed a local enrichment on the adaptive mesh-free shape 
functions where the added points are finite element nodes that are enriched inside the adapted 
background cell. However, the solution accuracy is found to deteriorate when multiple levels of 
adaptivity are adopted, especially when the initial meshfree node distribution is coarse. 

Recently several convex approximations were introduced (Sukumar 2004, Arroyo and Ortiz 
2006) to improve the essential boundary condition treatment in the meshfree methods. The 
meshfree convex approximation guarantees the unique solution inside a convex hull with a 
minimum distributed data set and poses a weak Kronecker-delta property at the boundaries and 
therefore avoids the special treatments on the essential boundaries. Wu et al. (2011) provide a 
unified approach that is able to generate specific convex approximations as well as to reproduce 
several existing meshfree approximations, which is referred to as the generalized meshfree (GMF) 
approximation. In addition, they also found out that meshfree convex approximation behaves more 
robust than the conventional MLS approximation in terms of nodal support size, order of 
quadrature rule and discretization effects. It was shown that one can use larger time step for the 
meshfree convex approximation in the explicit dynamic analysis (Park et al. 2011). More recently, 
the meshfree convex approximation was introduced to the finite element method for solving the 
near-incompressible problems (Wu and Hu 2011, Wu et al. 2012) where an enriched point is added 
inside the finite element and its shape function is constructed by the meshfree convex 
approximation with the finite element nodes on its boundary. The resulting shape function of the 
enriched node has no influence outside its enriched element.  

The objective of this work is to introduce a new meshfree adaptive procedure for shear 
deformable shells in industrial sheet metal forming applications. This paper is organized as follows: 
Section 2 reviews the basic theories. First the shear deformable shell model is given. Then the 
meshfree RKPM approximation is described and used to obtain the discrete equations for the shell 
model. The last part of this Section is to describe the generalized meshfree (GMF) convex 
approximation. In Section 3, the new meshfree h-adaptive procedure is presented. The GMF 
convex approximation is used to compute the shape functions at the added independent nodes. In 
Section 4, two numerical examples are presented. Final remarks are drawn in Section 5. 

 
 

2. Basic theories 
 

2.1 Shear deformable shell model 
 
Consider a domain   of a shell which is consisted of the mid-plane reference surface 

2  with boundary   and a thickness t occupying the region  2/,2/ tt  as shown in 
Fig. 1. The geometry and the kinematical fields of the shell can be described with the reference 
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surface and the fiber direction. The modified Mindlin-Reissner assumption requires that the 
motion and displacement of the shell are linear in the fiber direction (Belytcshko et al. 2000). The 
global coordinates and displacements at an arbitrary point within the shell body are given by 

        32
Vxx

h                                (1) 

Uuu
2

h                                (2) 

where x  and u  are the position vector and translation displacement of the reference surface, 
respectively. 3V  is the fiber director and U  is the displacement resulting from the fiber rotation 
(see Figs. 1-2). h is the length of the fiber. 

The mid-plane reference surface can be projected to a two-dimensional parametric plane. For 
an arbitrary shell surface defined by a finite element mesh, a parameterization algorithm, for 
example, the angle-based triangular flattening algorithm (Sheffer and de Sturler 2001), can be used 
to obtain the parametric representation of the shell surface. 

With the parametric representation of the shell surface, a local co-rotational coordinate system 
( x̂ , ŷ , ẑ ) can be defined on the shell reference surface, with x̂  and ŷ  tangent to the reference 

surface and ẑ  in the thickness direction (see Fig. 1). The base vectors are given as 
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Fig. 1 Geometry of a shell 
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Fig. 2 Deformation of a shell 

 
 

Let x̂  and y̂  be the rotations of the fiber director in the local co-rotational coordinate 

system, the displacement from the fiber rotation is expressed as 
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The local rotations of the fiber director can be obtained from the global rotations by 
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Further let 0û , 0v̂  and 0ŵ  denote the translation displacements of the mid-plane shell in the 

local x̂ , ŷ  and ẑ  directions, the displacement field  Twvu ˆ,ˆ,ˆˆ u in the local 

co-rotational system at a at a typical point (, , ) may be represented as 
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The strain components in the local co-rotational system can be decomposed into three parts by  
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where mε̂ , bε̂  and sε̂ denote the membrane strain, bending strain and shear strain, respectively. 

The potential energy of a shell that undergoes deformations due to membrane, bending and shear 
can be written as 
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where Dm is the membrane rigidity, Db is the bending rigidity and Ds is the shear rigidity.   is the 

density of the material and extW  is the energy from the external forces. 
The variational equation of a shear deformable shell can be expressed as 
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2.2 Coupled FEM/ RKPM approximation 
 
In the two dimensional case, a smooth function u at a point x  is approximated using the 

following coupled FEM/RKPM method (Wang et al. 2009) given by 
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where   denotes a mesh-free domain bounded in 2 .   is an interface between meshfree 
domain and finite element domain or an essential boundary, where we set the nodes on the 

interface or boundary as finite element nodes (Wang et al. 2009). ][n
aw  is called the reproducing 

kernel function (Liu et al. 1995a) where n denotes the order of the basis functions and ‘a’ is the 

support size of the kernel. ][m
LN  is the standard finite element shape function with interpolation 

order m. IP is the number of mesh-free particles that influence the solution at point x. iId  is the 

coefficient of the approximation and in general, is not equal to the value of the function at the node. 
MP is the number of interface or boundary nodes that influence the approximation. The 
reproducing kernel function has to satisfy the nth-order reproducing conditions 
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Therefore, the solution approximation can be expressed in the following form 
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with NP being the total number of mesh-free and interface nodes that influence the solution at 
point x and 
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where )(xI  is the conventional mesh-free shape function, )(][ xM n  is the moment matrix and 

)(][
I

n xxH   is a vector of polynomials up to order n. 
When the finite element interpolation order m is equal to the reproducing order n, we have 

0)(  xI  for all nodes   )Isupp(:I  and x           (14) 

The shape functions on the interface or essential boundary are reduced to the standard finite 
element shape functions and possess the Kronecker-delta property. 

 
2.3 Discrete equations of meshfree shell 
 
With the meshfree approximation described in the previous Section, the motion of the 

mid-plane surface and the displacements of the shell in the local co-rotational coordinate system 
are approximated by 
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The meshfree shape functions are constructed in the parametric plane. To satisfy the linear 
exactness in the approximation, the Lagrangian smoothed strains (Chen et al. 2001) are used and 
given by 
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where the smoothed strain operators are calculated by averaging the consistent strain operators 
over an area A around the evaluated point 
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and Id̂  is a vector consisting of the five local degrees-of-freedom 

 TyIxIIIII u  ˆˆˆˆˆˆ
000 wvd                        (19) 

The local consistent membrane, bending and shear strain operators m
IB̂ , b

IB̂  and s
IB̂  can be 

computed from Eq. (7).  
Substituting Eqs. (16) and (17) into the variational equation Eq. (9) and transforming the results 

from the local co-rotational coordinate system to the global system, we have the discrete equations 
of the shear deformable meshfree shell in the global coordinate system 

extFFdM  int                             (20) 

where M is the consistent mass matrix, which needs to be lumped in the transient dynamic explicit 

analysis, extF  is the nodal force resulting from the external loading and intF  is the internal 
nodal force which, in the local co-rotational coordinate system, is given by 
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In order to avoid shear locking in the analysis of thin shells, the shear nodal force (third term in 
Eq. (21)), should be under-integrated by using one integration point in each background cell (Wu 
and Guo 2002). 

Since the meshfree shape functions do not possess Kronecker-delta property, the real 
displacements at the meshfree nodes have to be computed with the meshfree approximation, Eq. 
(12) as 
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or in matrix form as 

Add h                                (23) 

where A is called the transformation matrix and is used to transform both the displacements and 
nodal forces between the real values and the meshfree nodal values. 
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2.4 Generalized meshfree (GMF) convex approximation 
 
In this Section, a first-order generalized meshfree (GMF) convex approximation is introduced 

to the enriched nodes as will be described in Section 3.2 for the h-adaptive procedure. The 
fundamental idea of the GMF approximation (Wu et al. 2011) is the introduction of an enriched 
basis function in the Shepard function (Shepard 1968) to achieve the linear consistency. The 
choice of the basis function determines whether the GMF approximation has convexity property.  

Assume a convex hull conv ( ) of a node set   nii ,1,x 2  defined by (Wu et al. 
2011)  
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The GMF method is to construct the approximation of a given function u in the form 

    i
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i
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                            (25) 

with the generating function    conv:i  satisfying the following polynomial 

reproduction property 

   


convxx  xx  
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i

n

i
i                       (26) 

The first-order GMF approximation in multiple dimensions is expressed as 
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Fig. 3 First-order convex shape function at center node with four boundary nodes 
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subjected to the following linearity constraints 

0),(
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where  ia Xx, is the weight function of node i  with support size    iia asupp Xx; , 

),( ri X is the basis function of the GMF approximation, ii xxX   and 

),();( riiiai  XXx                           (29) 
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n is the number of nodes within the support size )( xa  at fixed x , )(xr ( mr ,,2,1  ) are 

constraint parameters which have to be decided and m  is the number of constraints ( 1m   in 
1D, 2m   in 2D and 3m   in 3D). 

In the GMF approximation, the property of the partition of unity is automatically satisfied by 
the normalization in Eq. (27). The completion of the GMF approximation is achieved by finding 

r  to satisfy Eq. (28). To determine r  at any fixed x in Eq. (28), a root-finding algorithm is 
required for the non-linear basis functions. Usually, the Newton-Raphson method is considered for 
the equation solving of the objection function in Eq. (28).  
 

 

 

(a) Center node N1 (b) Mid-edge node N2 

Fig. 4 First level adaptivity 
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The convexity of the GMF approximation is determined by the selection of a positive basis 
function in Eq. (27). Another property of the convex approximation is that the shape functions of 
the interior points will vanish at the boundary nodes. The proof of the weak Kronecker-delta 
property at the boundaries in convex approximation can be found in Wu et al. (2011). A typical 
first-order meshfree convex shape function at the center point is shown in Fig. 3. In this paper, a 
convex GMF approximation is constructed by using an inverse tangent basis function and a cubic 
spline function with a rectangular support is chosen to be the weight function in Eq. (27). 
 
 

3. Meshfree adaptive procedure for shells 

 
In this Section, we describe a meshfree adaptive procedure for the applications in the sheet 

metal forming simulation. The challenges in the adaptive refinement procedure include the 
satisfaction of compatibility in approximation (shape function) and satisfaction of integration 
constraint in spatial integration. Finite element method with linear approximation enforces both 
compatibility and integration constraint using the so-called “constraint of compatibility” 
(Belytschko and Tabbara 1993). For mesh-free method, although the compatibility is naturally 
enforced during the adaptive refinement, the integration constraint is difficult to impose. 

Since the mesh-free shape functions are reconstructed, the constraints of compatibility after 
enrichment are not required. In this work, the proposed local enrichment in the adaptive 
refinement not only improves the computational cost, it also enforces the integration constraint 
during the mesh-free adaptive procedure. 

 
3.1 Error indicators 
 
In order to control the adaptive procedure the error indicators must be available. There are two 

major errors in the discretization of a shell structure. The first error is caused by the finite 
functional approximations to the infinite dimensional functional space and the standard error 
estimators are available. The second error is related to the geometric approximation. The 
Babuska-Rheinboldt (BR) (Babuska and Rheinboldt 1978) and Zienkiewicz-Zhu (ZZ) 
(Zienkiewicz and Zhu 1987) criterions in the conventional error estimation are no longer 
appropriate due to the fact that the elements or projection planes are in general not on the same 
plane. Thus neither the residual type estimator nor the projection type estimator is rigorous and 
reliable.  

On the other hand, in the sheet metal forming process, the blank is compressed by the dies and 
undergoes geometric changes. More severe the geometry of the blank shell changes, finer mesh it 
requires to capture the large deformation. Therefore, the geometric change of the blank serves as 
an indicator when and where the mesh refinement should be. 

In this work, an error indicator based on the geometric change such as the angle change 
(Hallquist 2003) is adopted in the adaptive mesh-free shell method for its simplicity and 
robustness. 

 

3.2 Refinement procedure 

In the meshfree shell formulation, the shell surface is mapped to a parametric reference plane. 
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The background cells are defined on the parametric plane and they serve as integration cells for the 
computation of the stiffness matrices and internal nodal forces. The meshfree adaptive process is 
conducted on the background cells.  

In a meshfree refinement procedure, the background cell that is identified by the error indicator 
is divided into four sub-cells. New nodes are added at the center and at the mid-points of four sides 
as shown in Fig. 4(a). In a first level adaptivity, an original background cell P1-P2-P3-P4 is 
divided into four sub-cells by inserting one center node N1 and four mid-points C1, C2, C3 and C4. 
The center node N1 is an enriched point inside the background cell P1-P2-P3-P4. The four 
mid-points are called constraint points in this paper but they are different from the constraint 
points in the finite element adaptivity, which we will show later. The mid-point between two 
neighboring adapted background cells becomes an enriched point as shown in Fig. 4(b), where the 
mid-point C2 becomes N2 which is an enriched node in the adaptive cell formed by C1-C5-C7-C3. 
In Figs. 4 and 5, the circular green dots indicate the original meshfree nodes, blue squares are the 
enriched nodes and red triangles the constraint nodes. 

Multiple level of refinement is shown in Fig. 5. In the second level adaptivity, sub-cell A1 is 
divided into four cells and the center node N6 is the enriched node in cell A1. In order to maintain 
mesh quality, the adaptive level of any neighboring cells should not be greater than 1. Background 
cells B and C have to be adapted (first level adaptivity) and constraint nodes C3 and C4 become 
new enriched nodes N3 and N2.  

The shape function of the enriched nodes is computed using GMF convex approximation 
described in Section 2.4, with the enriched node at the center and the four corner nodes of the 
enriched background cell being the boundary nodes. For example, the shape function of node N1 is 
computed with nodes P1, P2, P3 and P4 as its boundary nodes. However, the convex shape 
function does not have the Kronecker-delta property but it can be normalized as in the following 
equation to possess the property 

)(/)()(
~

LLLL ξξξ                           (31) 

 

 
Fig. 5 Multiple level adaptivity 
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where )(ξL  is the shape function of the enriched node L computed from the GMF convex 

approximation, )( LL ξ  is the shape function at node Lξ . ξ  is the parametric coordinate. Since 
the normalized shape functions of the enriched nodes have the Kronecker-delta property, the real 
displacements at the enriched nodes and the nodal displacements are the same so the 
transformation matrix in Eq. (23) does not need to be re-computed. Also the influence domain of 
the enriched nodes is limited to the enriched background cells, the shape functions outside the 
enriched background cells do not need to be re-constructed. These properties will save tremendous 
computational time.  

At the constraint nodes the mesh-free shape functions are chosen to be the average of the shape 
functions of the two nodes on the edge to satisfy the integration constraints (Wu and Guo 2002, 
Wang et al. 2009) in order to pass the constant stress patch test, as following  

 )(
~

)(
~

2

1
)( 21 PIPICII ξξξ                          (32) 

where CI is a constraint node and P1 and P2 are two edge points.  
In each adaptive cell the meshfree shape functions need to be re-constructed. Similarly as in 

Section 2.2, the approximation of a function u is expressed as 
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where 2  is the domain of the shell in the parametric reference plane, C  is the adaptive 

cell, EP is the number of enriched points influencing on the evaluating point ξ  and ][~ n
L  is the 

normalized enrichment shape function in Eq. (31), CP is the number of constraint nodes 

influencing on ξ  and ][n
K  is the shape functions of the constraint nodes. The kernel function 

][n
aw  has to satisfy the reproducing conditions 
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The approximation Eq. (33) is then derived to be  
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where the shape functions of the original meshfree nodes are 
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The locations of the new nodes in the real geometry can be computed by using the mesh-free 
approximation 

  II xξx 



NP

I 1

~
                               (37) 

Correspondingly a four-noded background element in the shell surface is adapted into four 
sub-elements. Unlike the finite element adaptivity, the sub-planes defined by the four sub-elements 
are not necessarily on the same plane of the original element in the real geometry due to the fact 
that the geometric approximation is no more linear in the mesh-free shell formulation. Therefore, 
the geometry can be better described by the adaptive mesh-free shells. This is one of the major 
differences between the adaptive mesh-free and finite element shells. 

 
3.3 Transfer of variables 
 
During the process of transfer, the stresses and internal variables at the stress points of the 

original discretization are subjected to a ‘smoothing’ operation before being transferred to the new 
adaptive discreatization. In finite element method, the smoothed continuous stress field is derived 
from the discontinuous finite element stress. Usually a “stress projection method” (Zienkiewicz 
and Zhu 1987) is adopted and an averaged C0-nodal stress (Mar and Hicks 1996) is required.  

Typically a nodal projection is used in the smoothing operation. Similar to the finite element 
method, a simple weighted averaging procedure within the co-rotational configuration is used for 
the nodal projection. After the stresses and internal variables have been transferred to the nodes,  

 
 

(a) Regular mesh (b) Regular mesh with constraints 

Fig. 6 Two meshes used in plate necking problem 
 

150



 
 
 
 
 
 

A meshfree adaptive procedure for shells in the sheet metal forming applications 

they will be recovered at the new stress points on the adaptive discretization using the newly 
constructed mesh-free interpolation and the continuity will be ensured. 
The transfer of variables involves the attainment of smoothed variable fields by projection onto the 
mesh-free shape function ~ . For example, the new stresses can be obtained using the expression 

* *σ σ                                  (38) 

where *σ are the smoothed nodal stresses using a weighted averaging given by 

IE
* j j

I I
I=1

= w                                (39) 

* jσ  is the j-th component of the smoothed nodal stresses, j
Iσ is the j-th component of the local 

stress evaluated at the stress point of co-rotation plane I and Iw is the weight. 
 
 

4. Numerical examples 
 

4.1 Plate stretching 
 
The first example is a benchmark of a plate under stretching. This benchmark is selected to 

ensure that the mesh-free local enrichment can represent the continuous stress state without 
deterring the physics due to the adaptive procedure. An aluminum plate is fixed on the bottom and 
subjected a prescribed displacement on the top. Only half of the specimen is modeled and two 
mesh densities are used in this problem as shown in Fig. 6: a regular mesh and an adaptive mesh 
with constrained nodes. In these models the bottom nodes are constrained and the top nodes are 
subjected to pulling displacements. 

Fig. 7 shows the predicted load responses by the finite element and meshfree methods. As 
shown in Fig. 7(a), the necking behavior is suppressed in the adaptive model due to the constraint  

 
 

  
(a) Load responses by finite element (b) Load responses by mesh-free 

Fig. 7 Load responses of the necking plate 
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Fig. 8 Final shape and stress contour of the necking plate 
 

Fig. 9 Model setup for door panel forming 
 

(a) Initial discretization (b) Final discretization 

Fig. 10 Initial and final discretizations of the work piece 
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(a) Meshfree adaptivity (b) Finite element adaptivity 

Fig. 11 Comparison of effective plastic strain in final shape 
 
 
effect imposed by the finite element compatibility. On the other hand, the load response from the 
mesh-free adaptive model is compared well with the regular mesh. This is because no “constraint 
of compatibility” is required in the mesh-free adaptive procedure and the necking phenomena can 
be properly captured. The final deformation and stress contour are also displayed in Fig. 8 for the 
present method. 
 

4.2 Door panel forming 
 
Forming of an automobile door panel is simulated in this example. The model setup is shown in 

Fig. 9. The work piece, a blank (the red part in Fig. 9) with a length of 860 mm, a width of 605 
mm and a thickness of 0.66 mm, is held by the upper and lower binders (the brown and green parts) 
over the die (the blue part) and deformed by the punch (the yellow part) when the punch moves 
down. The work piece is made of mild steel and is modeled by a transversely anisotropic 
elastic-plastic constitutive law (Hill 1948) with the following material constants: density 

39 ton/mm108.7  , Young’s modulus 25 N/mm 1007.2 E , Poisson’s ratio 28.0 , yield 
stress 2N/mm 166y , plastic hardening modulus 2N/mm 524pE  and anisotropic hardening 
parameter (the ratio of the in-plane plastic strain rate to the out-of-plane plastic strain rate) R=1.65. 
The binders, the die and the punch are modeled as non-deformable rigids.   
Both the meshfree adaptivity presented in this paper and the finite element adaptivity are used to 
simulate the forming process. Cubic spline kernel function with rectangular support domain and 
normalized support size of 1.2 in both    and   directions is used for the construction of the 
meshfree shape functions. In the meshfree model, the work piece is discretized with 962 uniformly 
distributed meshfree nodes (see Fig. 10(a)) while it is discretized with 900 regular elements in the 
finite element model. The maximum level of adaptivity is 4 and in the final formed panel, the 
number of nodes is increased to 34,084 for the meshfree adaptivity as shown in Fig. 10(b) while 
the number of elements is increased to 32,943 for the finite element adaptivity. The CPU time of 
the meshfree adaptivity is 54% more than the finite element adaptivity, which is acceptable by the 
industrial standard. 

A comparison of the effective plastic strain in the final formed shape is given in Fig. 11. The 
maximum effective plastic strain obtained from the meshfree adaptivity is 0.38 and from the finite  
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(a) Meshfree adaptivity (b) Finite element adaptivity 

Fig. 12 Comparison of zoom-in effective plastic strain in final shape 
 
 

element adaptivity 0.55. For the most part of the panel, both methods can capture the deformed 
geometry with good accuracy and the effective plastic strain contours from the two methods agree 
well with each other. However, in some areas with tight angle, the effective plastic strain from the 
finite element adaptivity shows non-smoothness distribution as presented in Fig. 12. This is 
unrealistic and demonstrates that the finite element adaptivity has difficulty handling geometry 
with tight angle change. On the other hand, the present meshfree adaptivity generates better results 
in the complex geometry because of the smooth approximations and a better fit to curved shell 
structures. 
 
 
5. Conclusions 
 

This paper presents a meshfree adaptive procedure for dynamic shell structure analysis. The 
meshfree shell formulation is based on shear deformable shell theory and employs the degenerated 
continuum and updated co-rotational approach for the finite deformation and large rotation 
problems. The present meshfree shell formulation is suitable for thin to medium thick shell 
structures, which often occur in industrial applications. The present meshfree shell adaptive 
procedure is an h-adaptivity based on the background cells defined on the original configuration. 
The shape functions of the enriched nodes within the adaptive cells are constructed with the 
generalized meshfree (GMF) convex approximation and are normalized to possess the 
Kronecker-delta property. Only the shape functions inside the adaptive cells need to be 
re-constructed and the transformation matrix does not need to be re-computed, improving the 
computational efficiency. The proposed meshfree adaptive procedure also ensures compatibility in 
approximation and satisfaction of integration constraint in spatial integration.   

Two numerical examples are employed to demonstrate the performance of the proposed 
meshfree adaptive procedure. The benchmark reveals that the constraint nodes in the finite element 
adaptivity prevent it from capturing the necking phenomena in a stretched plate. The sheet metal 
forming simulation shows that the proposed method has better accuracy than the finite element 
adaptivity in solving problems with critical geometric feature such as tight angle. The conforming 
and smooth approximations in the meshfree adaptivity produce smoother stress/strain distribution 
and fit better to the complex geometry in the shell structures. 
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