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Abstract.  In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large 
deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the 
element formulation is established by introducing a meshfree convex approximation into the linear triangular 
element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear 
formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction 
with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the 
integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A 
modified variational formulation using the smoothed deformation gradient is developed for path-dependent 
material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in 
the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the 
meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus 
requires no special treatments in the enforcement of essential boundary condition as well as the contact 
conditions. As a result, this approach can be easily incorporated into a conventional displacement-based 
finite element code. Two elasto-plastic problems are studied and the numerical results indicated that 
ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the 
large deformation problems in metal forming analysis. 
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1. Introduction 

 

Metals are typical examples with nearly incompressible material behavior: isochoricity of the 

plastic deformation presents incompressibility constraints in metal plasticity. On the other hand, 

metals often experience excessive strains in the practice which could be in the order of several 

hundred percent in forging and extrusion analysis. The incompressibility constraints and large 

material deformation have presented tremendous difficulties in the numerical simulation using the 

standard displacement-based finite element formulation. 

The incompressible locking in finite element methods has been studied extensively and many 

special numerical techniques have been proposed to resolve this difficulty. Among them are 

reduced/selective integration (Hughes 2000), reduced integration and hourglass control method 
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(Belytschko et al. 2001), Taylor expansion method (Liu et al. 1986), mixed formulation 

(Zienkiewicz and Taylor 1987), pressure projection method (Chen et al. 1996) and average nodal 

pressure element (Bonet and Burton 1998). The approach based on mixed formulation has a close 

link with Hughes’s reduced/selective integration (Malkus and Hughes 1978) where the 

displacement and pressure interpolant spaces are subjected to an inf-sup condition (Babuska 1973) 

for the stability requirement. In Taylor expansion method, an assumed strain field (Simo and 

Hughes 1986) is obtained by the Taylor expansion of displacement gradient matrix and the 

resulting discrete equation can be expressed explicitly by one-point quadrature terms and their 

stabilization (Liu et al. 1986). In pressure projection method, the pressure computed from the 

displacement field is projected onto a lower-order space by a least-squares projection at the 

element level. The resulting equilibrium equation is equivalent to the perturbed Lagrangian 

formulation (Chen et al. 1997). Since the pioneering work (Bonet and Burton 1998), various 

average nodal pressure formulations (Andrade Pires et al. 2004, Krysl and Zhu 2008) have been 

developed to overcome incompressible locking. A priori error estimate (Lamichhane 2009) using 

primal and dual meshes reveals that original average nodal pressure formulation does not satisfy a 

uniform inf-sup condition (Babuska 1973). In order to have a stable formulation, the linear 

displacement space needs to be enriched with bubble functions as in the mini-element (Arnold et 

al. 1984). This analysis leads to a consistent variational framework for the stabilized nodally 

integrated tetrahedral elements (Puso and Solberg 2006). Another pressure averaging approach 

(Guo et al. 2000, Hauret et al. 2007) based on macroelement technique (Stenberg 1990) also has 

been developed for near-incompressible elasticity problems leading to the uniform convergence in 

the nearly incompressible case.           

Alternatively, several non-traditional numerical methods such as meshfree methods 

(Belytschko et al. 1994, Liu et al. 1995) and generalized finite element methods (Babuska and 

Melenk 1997, Duarte and Oden 1996) have been proposed to solve the incompressible locking 

problem. A pseudo-divergence-free interpolation for Element-free Galerkin method (Belytschko et 

al. 1994) was proposed (Vidal et al. 2003) to diffuse the divergence-free constraint which can be 

imposed a priori in a displacement-based Galerkin meshfree formulation. Another locking-free 

displacement-based Galerkin meshfree formulation which is an extension of finite element 

projection method (Chen et al. 1996) was presented (Chen et al. 2000) for the nonlinear analysis 

of rubber-like materials. Subsequently, various meshfree approaches have also been developed to 

alleviate the incompressible locking (De and Bathe 2001, Dolbow and Belytschko 1999, Ortiz et al. 

2010) in the framework of B-bar or mixed formulations. Dolbow and Devan (2004) presented a 

geometrically nonlinear assumed strain method for the nonlinear analysis of hyperelastic materials 

involving displacement discontinuity where the strain is enriched based on the generalized finite 

element approach. Similar idea of using generalized finite element approach was presented 

(Srinivasan et al. 2008) in the framework of mixed finite element method for nonlinear analysis of 

near-incompressible rubber compounds. Recently, the iso-geometric discretization based on 

Non-Uniform Rational B-Splines (NURBS) (Hughes et al. 2005) has presented a promising 

alternative to solve the incompressible or near-incompressible problems. The high continuity of 

the NURBS interpolation allows us to solve the incompressible elasticity as an elliptic fourth-order 

problem in terms of a scalar stream function whose curl gives the displacement field (Auricchio et 

al. 2007). A nonlinear F-bar projection method (Elguedj et al. 2008) using the higher-order 

NURBS interpolation was also proposed for the nonlinear analysis of near-incompressible 

elasticity. Recently, a meshfree-enriched finite element method (ME-FEM) was proposed (Wu and 

Hu 2011) to overcome the incompressible locking problem. The meshfree-enriched linear element 
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is established by introducing a first-order convex meshfree approximation (Park et al. 2011, Wu 

and Koishi 2009, Wu et al. 2011) into a linear element with an enriched meshfree node. Additional 

strain smoothing procedure (Wu and Hu 2011) is developed in corporation with the 

meshfree-enriched finite element interpolation to acquire the discrete divergence-free property for 

the locking-free analysis. An equivalent mixed formulation was also derived in (Wu and Hu 2011) 

for the stability study of triangular and tetrahedral elements. Their numerical inf-sup (Bathe 1996) 

study indicates the pair of spaces in displacement and pressure fields is inf-sup stable. More 

recently, the ME-FEM has been extended for the study of large deformation problem in 

path-independent elastomers (Hu et al. 2012). Same strain smoothing technique was also applied 

to the linear finite elements leading to a two - level mesh re-partitioning scheme (Wu and Hu 2012) 

for the near-incompressible analysis.   

The purpose of this paper is to present a nonlinear version of the meshfree-enriched finite 

element formulation using triangular elements and tetrahedron elements for general nonlinear 

metal forming analysis in path-dependent materials including contact. The reminder of the paper is 

outlined as follows: In the next Section, we provide an overview on the meshfree-enriched 

triangular element. In addition, a smoothing procedure on deformation gradients is introduced. In 

Section 3, we present a Lagrangian formulation of the meshfree-enriched finite element method 

for the nonlinear quasi-static and explicit dynamic analysis. A modified variational formulation is 

described and the discrete equation is derived. Mortar contact algorithm is also implemented to 

impose normal and tangential contact constraints. Two numerical examples are presented in 

Section 4 to demonstrate the accuracy and robustness of the proposed method. Final remarks are 

given in Section 5. 

 

 

2. Experimental 
 

2.1 Meshfree-enriched finite element triangular elements  
 

This Section provides an overview on the construction of meshfree-enriched finite element 

interpolations in triangular elements. Same element construction technique was applied to 

tetrahedron elements leading to a linear 3D formulation which can be found in (Wu and Hu 2011) 

and thus is omitted in this paper. Let’s consider a locally quasi-uniform triangulation h  of the 

polygonal domain  , where h  consists of simplexes and is denoted by eeh  .  Each 

simplex or triangle e  contains three corner nodes ,  1 3I I x  and one enriched meshfree 

node 4x . Let  1e e F P  be the affine transformation that maps the reference triangle e  onto 

to the triangle he M  as depicted in Fig. 1 and defined by   

       
4 4

1 2

1 1

: , , ,   e e e e e e I I I I

I I

F F x Ψ ξ,η y Ψ ξ,η
 

 
      

 
 F  x F ξ   e ξ     (1) 

where 
Tyx ],[x , 

T],[ ξ and    1 1 ,4e Ispan Ψ , I ,   P denotes the space contains 
a set of basis functions in e . 

In Fig. 1the reference element e  is an equilateral triangle, with dark circles denoting the 
finite element node and open circles denoting the enriched meshfree node. The location of the 
enriched meshfree node in reference element e  is given by 
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Fig. 1 Isoparametric mapping in the 4-noded meshfree-enriched triangular finite element 

 

 

 
3 3

4 4

1 1

,  3,   3I I

I I

/ /   
 

 
  

 
                         (2) 

which is the centroid of the reference element.  , , 1,2,3,4I I I I  ξ are nodal co-coordinates 

of the reference element. The shape functions , 1,2,3,4IΨ I  of the reference element are 

constructed using a meshfree convex approximation. In this study, we employ the Generalized 

Meshfree Approximation (GMF) method (Wu et al. 2011) to obtain the meshfree convex 

approximation. The convex GMF approximation constructed using the inverse tangent basis 

function is denoted by GMF(atan). The cubic spline window function is chosen to be the weight 

function in GMF method. In this study, each node in Fig. 1 is assigned to a weight function with 

same circular support in the reference element e . The element mapping in the meshfree-enriched 

finite element method has been proven (Wu and Hu 2011) to be bijective. In other words, the 

determinant of the Jacobian matrix computed using Eq. (1) in the element mapping is positive 

everywhere in the element. A detail derivation of GMF method and the corresponding 

mathematical properties can be found in (Wu et al. 2011). 

Giving the four-noded ME-FEM shape functions, we define the following approximation space 

for the displacement field 

      1 1

0 1: , ,    
e

h h h h h h

T e e e hM         V v v H v v F v P        (3) 

which consists of functions in Sobolev space  1 H  vanish on the boundary. Since the shape 

functions constructed using the GMF method are convex, they exhibit the following convexity 

properties which are not mutually   hV , - orthonormal 
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(a)  shape function of corner node              (b) shape function of central node 

Fig. 2 GMF(atan) convex approximation in a 4-noded meshfree-enriched finite element 

 

 

 

 

 

   

4

4

4 4 4

   1 , 3

0  

0  

0 1 3

I J IJ

e

e

I

Ψ I J

Ψ

Ψ

Ψ    I    and  Ψ 1 

  

  

  

   

ξ

ξ ξ

ξ ξ

ξ ξ

                  (4) 

Fig. 2 shows the shape functions of a four-noded ME-FEM element using GMF(atan) 

approximation where the Kronecker-delta property is satisfied at the boundary (Wu et al. 2011). 

The shape functions of the ME-FEM element reduce to the standard linear finite element shape 

functions along the element edge that exhibit the convex approximation property. 
 

2.2 Smoothing of deformation gradient in meshfree-enriched finite element triangular 
elements 

 

In order to provide a locking-free analysis for the elastomers using meshfree-enriched 

triangular elements, an area-weighted strain smoothing scheme originally introduced (Wu and Hu 

2011) in the near-incompressible linear elastic problem is adopted in this study for the smoothing 

of deformation gradient for the nonlinear hyperelastic problem. The strain smoothing technique 

was firstly proposed (Chen et al. 2001) and has been widely used in meshfree methods to enforce 

the linear exactness in Galerkin approach as well as to improve the computational efficiency. The 

strain smoothing technique in meshfree methods was also applied to finite element method 

providing a softening effect to improve the solution accuracy and led to various node-based, 

element-based and edge-based smoothed finite element formulations (Chen et al. 2010, He et al. 

2009, Liu and Nguyen-Thoi 2010). The deformation gradient smoothing scheme is described in 

the following:      

Let ,  1 3J

I I x  be the three vertices of a triangular element J hM  . 4

J
x  is the centroid 

of the triangular element J . We connect 4

J
x  to the three vertices of the triangle by straight 

lines to divide the triangle into three sub-triangles nml SandSS   ,  as shown in Fig. 3 Each sub 
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Fig. 3 Strain smoothing in ME-FEM triangle elements 

 

 

-triangle Sm shares the element edge m of the triangle and carries one integration point. Since each 

sub-triangle occupies the same area, all three integration points are assigned to the same weight for 

the numerical integration. The location of the integration points ,  1 3gk k ξ  is chosen to form a 

symmetric pattern in the reference co-coordinate system such that for the enriched meshfree node I, 

one has 

 3

1

0
I gk

k

Ψ

ξ







ξ
                              (5) 

and 

 3

1

0
I gk

k

Ψ

η







ξ
                             (6) 

By doing that, the integration point of each sub-triangle can be chosen to any point locating on 

the extension of the straight line associated with that sub-triangle as illustrated by the dashed line 

in Fig. 3. For simplicity, we choose the integration point to locate at the end of the extension line 

which is the midpoint of the element edge in this study. An eigenvalue analysis verifies that the 

proposed ME-FEM triangular element with this three-point integration rule does not contain 

spurious zero energy modes. The smoothing domain m  corresponding to the edge m for the 

adjacent elements is defined as S
mSSm   and the smoothed deformation gradient is given 

in terms of its components by 

     
1

 
m

ij gk ij gk m
Ω

m

F F Φ dΩ
A

 X X X                     (7) 
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where mA  is the area of the smoothing domain m , Xgk ,k=1,2,3 is the integration point of the 

element J  that corresponds to the 
gkξ of 

J . 
h

iu is the approximation of displacement u  in 

i-component and is obtained by the linear combination of Lagrangian shape function of 

meshfree-enriched triangular element. It can be expressed by 

   
4

1

h

i I iI

I

u Ψ u


X X , i=1,2                        (8) 

where uiI is the nodal coefficient needs to be determined.  mΦ x  in Eq. (7) is the characteristic 

or smoothing function of the smoothing domain m  defined by 

 
1

0

m

m

,   if  
Φ

,      else      


 


X
X                           (9)                                               

Subsequently, Eq. (7) can be rewritten using Eq. (8) to yield 

   

 
4

1

1 1

1
      

m m

m

h h
h i i

ij ij m m ij
Ω Ω

m j m j

hI
iI m ij ij ij

Ω
Im j

u u
F Φ dΩ Φ dΩ

A X A X

Ψ
u Φ dΩ

A X

 

  


    
             

 
      

 



X X

X

        (10) 

where 

 
4

1

1

m

h I
ij iI m

Ω
Im j

Ψ
u Φ dΩ

A X




 
    

 X                 (11) 

Since the smoothed deformation gradient is defined locally on each smoothing domain m  

and no continuity conditions are applied to the boundaries of m , the approximation space of 

smoothed deformation gradient can be defined by 

    hm

hhhh M constants piecewise containsL    FFFΞ ,: 2
     (12) 

In linear elastic problem, an assumed strain method (Simo and Hughes 1986) can be employed 

to formulate the discrete equations (Wu and Hu 2011) where pressure is calculated via 

post-processing from the following constitutive relation 

       
__________

  
m

h h h h

m
Ω

m

1
p div tr tr Φ dΩ

A
         

 u ε u ε u X          (13) 

The symbol λ is the Lamé constant or bulk modulus which is related to the Young’s modulus E 

and Poisson ratio v by λ = (vE)/| (1 + v)(1−2v) |. 

Although the pressure does not directly involve in the computation, the well-posedness of the 
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problem in near-incompressible regime is still subject to a stability condition between the 

displacement space V
h
 and an implicit pressure space P

h
 induced by Eq. (13). Alternatively, an 

equivalent mixed formulation was derived (Wu and Hu 2011) for the stability study of 

meshfree-enriched finite element method in the near-incompressible limit. Their numerical inf-sup 

results indicate the pair of spaces (V
h
, P

h
) is inf-sup stable. 

 

 

3. Nonlinear ME-FEM formulation for large deformation analysis 
 

Consider the following equation of motion with boundary and initial conditions 

,             in i ij j iu b                      (14) 

            on h

ij j in h                            (15) 

            on d

i iu d Γ                            (16) 

   

   

0

0

,0

,0

i i

i i

u u

v v





X X

X X
                            (17) 

where ρ is material density, ni is the surface normal in the deformed configuration, 
0

iu  and 
0

iv  is 

the initial displacement and velocity. The variational equation is formulated to find 

  1,i du t HX , such that for all 
1

0iu H  , the following equation is satisfied 

, 0
hi i i j ij i i i iU u u d u d u b d u h d

   
                       (18) 

with the initial condition (17) 

 

3.1 Modified variational functional and material nonlinearity in quasi-static analysis 
 

For path-independent material, the energy function is established in the current configuration 

using the updated Lagrangian formulation. By introducing the Lagrangian strain smoothing, we 

can obtain the modified variational equation similar as in the assumed strain method 

,

h h

i j ij extU u d W


                               (19) 

where ij  is the smoothed Cauchy stress, ,i j i ju u x    is the smoothed strain, x  is the 

spatial coordinate calculated from material coordinate X  and displacement  u X and   

represents the domain of the current configuration. The linearization of Eq. (19) is  

 , ,

h h h

i j ijkl ijkl k l extU u C T u d W


       
σ σ

                (20) 

244



 

 

 

 

 

 

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm 

where ijklC σ
 is the material response tensor and ijklT σ

 is geometric response tensor. Considering 

that the ME-FEM shape function and the smoothed gradient of displacement approximation are 

defined in the original configuration, we transform the variational Eqs. (19) and (20) to the 

undeformed configuration as 

 
0

1

0 0

h
h i

kj ij ext

k

u
U F J d W

X


   

 
                   (21) 

 
0

1 1

0 0

h h
h i k

mj ijkl ijkl nl ext

m n

u u
U F C T F J d W

X X


    

   
 

σ σ
            (22) 

where 0  is undeformed domain,  0 detJ  F . ijF  is the smoothed deformation gradient. In 

the computation, 
1

F  in Eqs. (21) and (22) is calculated only at the integration points, which can 

be obtained by taking the direct inverse of F  point-wise. 

The smoothed incremental strain ,i ju  at the integration point gkX  is computed by 

     1 1

,
i

i j gk mj im gk mj gk

m

u
u F F F

X

 
   


X X X             (23) 

where  im gkF X  is smoothed deformation gradient computed by Eq. (10). Subscribing Eqs. (10) 

and (23) into Eq. (22) leads to the following linearization of variational equation 

     
0 0

1 1

0 0 0

h h h h h h h h

i i im mj ijkl ijkl nl kn extU u u d F C T F J d W
 

               
   σ σ

F F F   (24) 

Introducing the approximations of displacement in Eq. (8) and smoothed deformation gradient 

in Eq. (10) into Eq. (24) yields the stiffness matrix and internal force vector 

   
0

0 0

T T h h

IJ I J J d


  
 

σ σ
K B G C F T F GB               (25) 

 
0

0 0

int T T h

I I J d


 f B G σ F                       (26) 

where, in two-dimensional problem 

-1 -1

11 21

-1 -1

22 12

-1 -1 -1 -1

12 21 22 11

0 0

0 0

 
 
 
 
 

F F

G = F F

F F F F

, 

11

22

12







 
 


 
  

σ                   (27) 

and IB  is the smoothed gradient matrix given by 
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 

 

 

 

1

2

2

1

0

0
1

0

0

m

m

m

m

I
m

Ω

I
m

Ω

I

m I
m

Ω

I
m

Ω

Ψ
Φ dΩ

X

Ψ
Φ dΩ

X

A Ψ
Φ dΩ

X

Ψ
Φ dΩ

X

  
  

  
  
  

  
  

  
    

  
  

   









X

X

B

X

X

               (28) 

 
3.2 Discrete formulation for explicit dynamic analysis with mortar contact algorithm 
 
For explicit dynamic analysis of general metal forming problem involving contact, the 

modified variational Eq. (21) is extended as follows 

0 0

1

0 0 0 0

h
h h h i

i i kj ij ext c

k

u
U u u d F J d W W

X 


       

   
         (29) 

where 0  is the material density in the undeformed configuration and cW  denotes the 

variational potential energy due to contact constraints. For simplicity, we consider one deformable 

body contacting with rigid counterparts in forming analysis so that cW  can be expressed by 

c

h c

c i iW u t d


                             (30) 

where 
c  is the contact surface of deformable body and 

c

it  is contact traction. Introducing the 

ME-FEM approximation (8) and the smoothed deformation gradient (10) into (29) leads to the 

matrix form of explicit equation 

 
intext c  Ma f f f                            (31) 

where a  is the nodal acceleration vector. The nodal lumped mass and force vectors are given as 

 
0

0

0 0

int

0 0

h

c

I I

T T h

I I

ext

I I I

c c

I I

m Ψ d

J d

Ψ d Ψ d

Ψ d





 



 



 







 







 



f B G σ F
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              (32) 

where, for tow-dimensional problem, IB  and G  are defined in Eqs. (28) and (27),  
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respectively. The contact traction 
c

t  remains to be computed by imposing contact constraints 

through the mortar contact algorithm (Puso and Laursen 2004, Yang et al. 2005), which is briefly 

summarized as below.  

Let 
r

u  denote the displacement of rigid master contact part. We start from two-body mortar 

contact virtual work defined on the non-mortar slave contact surface 
c  

  0
c

h h r d


      u u                        (33) 

where λ is the mortar multiplier representing the contact traction. The mortar contact interpolation 

is performed as follows 
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 







 x x X X

u x x X u X

u x x X u X

              (34) 

where sn  and mn  are numbers of nodes on the slave and master surfaces, respectively; IN  and 
r

IN  are finite element interpolation functions defined on the current configuration of piece-wise 
contact segments of 

c  and master contact surface 
rc , respectively. Substituting (34) into (33) 

leads to the following discrete form 

1 1 1

0
s s mn n n

r r

I IJ J IJ J

I J J

w w 
  

 
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   u u                   (35) 

where IJw  and 
r

IJw  are referred as mortar integrals: 

     
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


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

 

x X x X

x X x X
,             (36) 

 x X  defines the closest point projection from slave contact point  x X  to master surface. 

In order to impose the normal and tangential contact constraints, the nodal mortar multiplier is 

decomposed by 

Normal Tangential

I I I   n                   (37) 

where In  is unit averaged normal vector at slave node I. The definition of In on a discretized 
contact surface can be found in the literature (Yang et al. 2005). Substituting (37) into (35) yields 
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 
1

0
sn

Normal Tangential

I I I I

I

 


     s                  (38) 

where, in three-dimensional problem, the mortar projected and slip gaps at slave node I are 

obtained as 
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                (39) 

I  is unit tensor and A  is a normalization parameter. In mortar contact algorithm, the 

penalty regulization (Kikuchi and Oden 1988) of augmented Lagrangian scheme is often used to 

impose the contact constraints, which requires the computation of the incremental tangential slip 

gap (Puso and Laursen 2004) 

  , 1 , ,

1

, 1 , , ,

1

                                

s

m

n

I I I A IJ k IJ k J k

J

n
r r r

IJ k IJ k J k A k A

J

w w

w w














        




     






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            (40) 

where subscripts k and k+1 indicate the k-th and (k+1)th time steps, respectively. Note that (40) is 

an invariant form in rigid body rotation. The mortar contact normal pressure 
Normal

A  is subject to 

Kuhn-Tucker conditions 

0, 0, 0Normal Normal

A A A A                          (41) 

Imposing (41) by penalty regularization leads to the following contact pressure 

0
       

0 otherwise

Normal

Normal I I

I

  


 
 


                (42) 

where 
Normal  is normal penalty parameter. In the tangential contact direction, we first assume no 

slip from the k-th time step to the (k+1)th and trial frictional traction can be expressed by 

   
1

trial
Tangential Tangential Tangential

Ik k  

    s                   (43) 

where 
Tangential  is frictional penalty parameter. The frictional contact traction is then corrected 
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based on the slip condition. If the Coulomb frictional contact model is used, the corrected 

frictional contact traction at the (k+1)th time step is given by 

 

   

 

 
 

1 1

1 1
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 
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


  

 
  



      (44) 

where μ is Coulomb frictional parameter. 

 

 
4. Numerical examples 

 
In this Section, the nonlinear performance of the meshfree-enriched triangular and tetrahedron 

elements with area-weighted strain smoothing (ME-Tri-AW) is evaluated in two examples: (1) 

two-dimensional punch problem using triangular elements in quasi-static analysis; (2) 

three-dimensional forming problem using tetrahedron elements in explicit dynamic analysis. In 

constructing the ME-FEM approximation, the GMF kernel is chosen to be the cubic B-spline 

function. Since the Kronecker-delta property of ME-FEM shape functions is preserved, no special 

essential boundary condition and contact condition treatments are required in the computation. A 

standard Newton-Raphson method is employed to solve the nonlinear equation in quasi-static 

analysis. 

 
4.1 Punch problem 

 

The punch example considers an elaso-plastic material subjected to displacement-controlled 

rigid footing under highly constrained boundaries as shown in Fig. 4. The contact between the 

rigid tool and workpiece is assumed to be frictionless. The material properties are: Young’s 

modulus 2.0GPaE  , Poisson’s ratio 0.3   and an isotropic hardening rule is given by 

   0 1p p

y ye e


                            (45) 

 

 

 
Fig. 4 Strain smoothing in ME-FEM triangle elements 
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Fig. 5 Strain smoothing in ME-FEM triangle elements 

 

 

     

     

     

     
 

(a) discretization              (b) deformation          (c) hydrostatic pressure 

Fig. 6 ME-Tri-AW results using four different discretizations (dy = 0.35cm) 

 

where y  is yield radius and 
pe  is effective plastic strain, respectively and

0 0.02GPay  , α = 

1.0GPa, β = 1.1. 

The load-displacement responses from ME-Tri-AW using five different mesh refinements are 

shown in Fig. 5. These results depict the convergence of ME-Tri-AW as the mesh is refined. Fig. 6 

shows the deformation and pressure contour of ME-Tri-AW results when the rigid tool reaches 

vertical displacement of dy = 0.35cm. As we can see, ME-Tri-AW achieves desirable deformation 

and smooth pressure results. The convergence study in Fig. 5 also indicates that the ME-Tri-AW 

solutions are insensitive to the mesh irregularity. 

 

4.2 Sphere compression analysis 
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Fig. 7 Description of sphere compression problem 

 

 
Fig. 8 Normal contact force comparison 

 

 

This sphere compression test is conducted using a quarter model with symmetric boundary 

conditions, as shown in Fig. 7. The undeformed sphere radius is 0.1m. The material properties are: 

Density ρ = 2750kg/m
3
, Young’s modulus E = 70.0GPa, Poisson’s ratio ν = 0.3 and an isotropic 

hardening rule with 
0 0.1GPay  , α = 0.1GPa, β = 1.0. The discretization has 19,562 ME-FEM 

elements. Two analyses are performed using frictionless contact model and Coulomb frictional 

contact model (μ = 0.2), respectively. 

Fig. 8 compares the normal contact force results from two analyses. Both results match very 

well in the initial stage where the contact surface is limited. As expected, the frictional contact 

model is more constrained and results in large normal contact force as compression operation 

proceeds. No oscillated contact forces are observed in both analyses. 

Rigid 

Rigid 

40 /v m s
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(a) frictionless contact model                 (b) frictional contact model 

Fig. 9 Effective plastic strain contour at 

 

       
(a) frictionless contact model                 (b) frictional contact model 

Fig. 10 Pressure contour at 

 

 
 

Fig. 11 Progressive deformations of sphere compression with frictional contact 

 

 

The effective plastic strain and pressure contours are compared in Fig. 9 and Fig. 10 

respectively. The frictional solution shows a higher effective plastic strain level subjected to the 

frictional contact constraint. The higher effective plastic strain result yields to a larger contact 

force as reported in Fig. 8. Both frictionless and frictional solutions are free of pressure oscillation 

as shown in Fig 10. Fig. 11 shows the sphere progressive deformations of the frictional contact 

model. As we can see, ME-FEM generates smooth results even in very severe deformation. There 

is no unstable deformation mode observed in the ME-FEM solution.  

 

 
5. Conclusions 
 

A nonlinear formulation of meshfree-enriched finite element method (ME-FEM) is presented 
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for metal forming analysis. We start with an introduction of smoothed deformation gradients 

constructed using a convex meshfree approximation (Wu et al. 2011) based on a 

meshfree-enriched finite element triangulation proposed in Wu and Hu (2011). The introduced 

smoothed deformation gradient allows us to degenerate the three-fields Hu-Washizu-de Veubeke 

variational formulation to a displacement-based modified variational formulation that can be 

solved with relatively ease in the nonlinear analysis. As an advanced and robust contact algorithm, 

the mortar method is implemented in the explicit nonlinear formulation for dynamic analysis. The 

presented nonlinear formulation has demonstrated its accuracy and robustness through benchmark 

examples and proven it is free of volumetric locking and free of pressure oscillation for the 

path-dependent materials involving contact. In summary, the proposed nonlinear 

meshfree-enriched finite element formulation offers the following main attractions for the large 

deformation analysis in path-dependent materials: (1) its simplicity to be fitted into the 

conventional displacement-based finite element code and solved by the standard direct solver; (2) 

its convenience in enriching the meshfree nodes without redefining the boundary and contact 

conditions; (3) its accuracy and robustness in delivering volumetric locking-free and pressure 

oscillation-free solution in nonlinear finite strain analysis.  
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