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Abstract. In this paper, the wave propagation in a generalized thermo elastic plate embedded in an
elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL)
generalized two dimensional theory of thermo elasticity. Two displacement potential functions are
introduced to uncouple the equations of motion. The frequency equations that include the interaction
between the plate and foundation are obtained by the traction free boundary conditions using the Bessel
function solutions. The numerical calculations are carried out for the material Zinc and the computed non-
dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with
thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and
realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the
results for the case with no thermal effects shows well agreement with those by the membrane theory.

Keywords: wave propagation; vibration of thermal plate; plate immersed in fluid; generalized thermo
elastic plate; Winkler foundation.

1. Introduction 

Cylindrical thin plate plays a vital role in many engineering fields such as aerospace, civil,

chemical, mechanical, naval and nuclear engineering. The dynamical interaction between the

cylindrical plate and solid foundation has potential applications in modern engineering fields due to

the fact that their static and dynamic behaviors will be affected by the surrounding media. The

analysis of thermally induced wave propagation of a cylindrical plate embedded in an elastic

medium is a problem that may be encountered in the design of structures such as atomic reactors,

steam turbines, submarine structures subjected to wave loadings, or for the impact loadings due to

superfast trains, or for jets and other devices operating at elevated temperatures. Moreover, it is

recognized that the thermal effects on the elastic wave propagation supported by elastic foundations

may have implications related to many seismological applications. This study can be potentially

used in applications involving nondestructive testing (NDT) and qualitative nondestructive

evaluation (QNDE). 
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The generalized theory of thermo elasticity was developed by Lord and Schulman (1967), which

involves one relaxation time for isotropic homogeneous media, and is called the first generalization

to the coupled theory of elasticity. Their equations determine the finite speed of wave propagation

of heat and the displacement distributions. The corresponding equations for an isotropic case were

obtained by Dhaliwal and Sherief (1980). The second generalization to the coupled theory of

elasticity is known as the theory of thermo elasticity with two relaxation times, or as the theory of

temperature-dependent thermoelectricity. A generalization of this inequality was proposed by Green

and Laws (1972). Green and Lindsay (1972) obtained an explicit version of the constitutive

equations. These equations were also obtained independently by Suhubi (1975). This theory

contains two constants that act as the relaxation times and modifies not only the heat equations, but

also all the equations of the coupled theory. The classical Fourier’s law of heat conduction is not

violated if the medium under consideration has a center of symmetry. Erbay and Suhubi (1986)

studied the longitudinal wave propagation in a generalized thermoplastic infinite cylinder and

obtained the dispersion relation for the cylinder with a constant surface temperature. Ponnusamy

(2007) has studied wave propagations in a generalized thermo elastic solid cylinder of arbitrary

cross sections using the Fourier expansion collocation method. Later, Ponnusamy and Selvamani

(2011) obtained mathematical modeling and analysis for a thermo elastic cylindrical panel using the

wave propagation approach. 

Sharma and Pathania (2005) investigated the generalized wave propagation in circumferential

curved plates. Modeling of circumferential waves in a cylindrical thermo elastic plate with voids

was discussed by Sharma and Kaur (2010). Ashida and Tauchert (2001) presented the temperature

and stress analysis of an elastic circular cylinder in contact with heated rigid stamps. Later, Ashida

(2003) analyzed the thermally induced wave propagation in a piezoelectric plate. Tso and Hansen

(1995) studied the wave propagation through cylinder/plate junctions. Heyliger and Ramirez (2000)

analyzed the free vibration characteristics of laminated circular piezoelectric plates and discs by

using a discrete-layer model of the weak form of the equations of periodic motion. The thermal

deflection of an inverse thermo elastic problem in a thin isotropic circular plate was presented by

Gaikward and Deshmukh (1979). The study about a plate embedded in an elastic medium is

important for design of structures such as atomic reactors, steam turbines, submarine structures with

wave loads, or for the impact effects due to superfast train, or for jets and other devices operating at

elevated temperatures. Selvadurai (2005) has presented the most general form of a soil model used

in practical applications. Kamal (1983) discussed a circular plate embedded in an elastic medium, in

which the governing differential equation was formulated using the Chebyshev-Lanczos techniques.

Paliwal (1996) presented an investigation on the coupled free vibrations of an isotropic circular

cylindrical shell on Winkler and Pasternak foundations by employing a membrane theory. The

vibration of a circular plate laterally supported by an elastic foundation was investigated by Leissa

(1981), which indicates that the effect of the Winkler foundation merely increases the square of the

natural frequency of the plate by a constant. Bernhard (1999) studied the buckling frequency for a

clamped plate embedded in an elastic medium. Recently, Wang (2005) studied the fundamental

frequency of a circular plate supported by a partial elastic foundation using the finite element

method. 

In this paper, the in-plane vibration of a generalized thermo elastic thin plate embedded in an

elastic medium composed of homogeneous isotropic material is studied. The solutions to the

equations of motion for an isotropic medium is obtained by using the two dimensional theory of

elasticity and Bessel function solutions. The numerical calculations are carried out for the material
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Zinc. The computed non-dimensional frequency and attenuation coefficient are plotted as dispersion

curves for the plate with thermally insulated and isothermal boundaries. 

2. Formulation of the problem

We consider a thin homogeneous, isotropic, thermally conducting elastic plate of radius R with

uniform thickness d and temperature  in the undisturbed state initially, totally embedded in a

two-parameter elastic medium with the spring layer K and shear layer G is shown in Fig. 1. The

system displacements and stresses are defined in the polar coordinates r and θ for an arbitrary point

inside the plate, with u denoting the displacement in the radial direction of r and ν the displacement

in the tangential direction of θ. The in-plane vibration and displacements of the plate embedded in

the elastic medium is obtained by assuming that there is no vibration and a displacement along the z

axis (normal to the plate) in the cylindrical coordinate system .

The two dimensional stress equations of motion and heat conduction equation in the absence of

body force for a linearly elastic medium are 

 

 (1) 

where  is the mass density,  is the specific heat capacity,  is the diffusivity, k is the

thermal conductivity,  is a thermal relaxation time, and  is the reference temperature. The

strain-displacement relations for the plate are

 (2)
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Fig. 1 Geometry of the problem
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where  are the strain components,  is the thermal stress coefficients,  is the

coefficient of linear thermal expansion, T is the temperature, t is time,  and  are Lame’

constants,  is a thermal relaxation time, and the comma in the subscripts denotes the partial

differentiation with respect to the variable following. Here  is the Kronecker delta function. In

addition, we can replace  for the LS theory and  for the GL theory. The thermal

relaxation times  and  satisfies the inequalities  for the GL theory only. 

The strain  are related to the displacements as given by

,     ,     (3)

in which u and  are the displacement components along the radial and circumferential directions,

respectively.  and  are the normal stress components and  and  the shear stress

components,  and  the normal strain components, and  and  the shear strain

components. 

By substituting Eqs. (3) and (2) into Eq. (1), the following displacement equations of motions are

obtained 

(4) 

The above coupled partial differential equations are also subjected to the following non-

dimensional boundary conditions at the surfaces . 

(1) Stress free boundary (Unclamped edge)

 (5a)

(2) Rigidly fixed boundary (Clamped edge)

 (5b)

(3) Thermal boundary 

 (5c) 

where h is the surface heat transfer coefficient. Here  corresponds to a thermally insulated

surface and  refers to an isothermal one. 

2.1 Lord-Schulman (LS) theory

Based on the Lord-Schulman theory of thermo elasticity, the three dimensional rate dependent
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temperature with one relaxation time is obtained by replacing k = 1 in the heat conduction equation

of Eq. (1), namely, 

(6a) 

The stress-strain relation is replaced by

(6b)

By substituting the preceding stress-strain relations into Eq. (1), we can get the following

displacement equation

(6c) 

The symbols and notations involved have the same meanings as defined in earlier sections. Since

the heat conduction equation of this theory is of the hyperbolic wave type, it can automatically

ensure the finite speeds of propagation for heat and elastic waves. 

2.2 Green-Lindsay (GL) theory 

The second generalization to the coupled thermo elasticity with two relaxation times called the

Green-Lindsay theory of thermo elasticity is obtained by setting k = 2 in the heat conduction

equation of Eq. (1), namely, 

(7a)

The stress-strain relation is replaced by

(7b) 

By substituting the preceding relations into Eq. (1), the displacement equation can be reduced as
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(7c) 

where the symbols and notations have been defined in the previous sections. In view of available

experimental evidence in favor of the finiteness of heat propagation speeds, the generalized thermo

elasticity theories are considered to be more realistic than the conventional theory in dealing with

practical problems involving very large heat fluxes and/or short time intervals, such as those

occurring in laser units and energy channels.

To uncouple Eq. (7), the mechanical displacement  along the radial and circumferential

directions given by Sharma (2010) are adopted as follows

      (8)

Substituting Eq. (8) into Eq. (7) yields the following second order partial differential equation

with constant coefficients

(9a)

(9b)

(9c)

where .

3. Solutions of the problem 

The equations are given in Eq. (9) are coupled partial differential equations with two

displacements and heat conduction components. To uncouple these equations, we assume the

vibration and displacements along the axial direction z to be zero. Hence, the solutions of Eq. (9)

can be presented in the following form

(10a)

(10b)

(10c) 

where ,  is the angular frequency, p is the angular wave number, ,  and
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 , we can get the following partial differential equation with constant

coefficients

(11a)

(11b)

and  (11c)

where  and  , , η2 = 1 +  iω

δ2kτ1 Eq. (11c) in terms of ψ gives a purely transverse wave. This wave is polarized in planes

perpendicular to the z-axis. We assume that the disturbance is time harmonic through the factor eiωt.

Rewriting Eq. (11) yields the following fourth order differential equation

  (12) 

where , , 

By solving the partial differential Eq. (10), the solutions is obtained as 
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where  (14)

Eq. (11c) is a Bessel equation with possible solutions given as 

(15)

where  and  are Bessel functions of the first and second kinds, respectively, while  and 

are modified Bessel functions of first and second kinds, respectively.  are

arbitrary constants. Since , thus the condition  will not be discussed in the

following. For convenience, we will pay attention only to the case of  in what follows.

The derivation for the case of  is similar.
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4. Boundary conditions and frequency equations

In this section we shall derive the frequency equation for the three dimensional vibration of the

cylindrical panel subjected to stress free boundary conditions at the upper and lower surfaces at

. Substituting the expressions in Eqs. (1)-(3) into Eq. (5), we can get the frequency

equation for free vibration as follows

           (17) 

Obviously  can be obtained by just replacing the Bessel functions of the first kind

in  with those of the second kind, respectively, while  can be

obtained by just replacing a in  with b. Now we consider the coupled free vibration

problem. Allowing for the effect of the surrounded elastic medium, which is treated as the Pasternak

model, the boundary conditions at the inner and outer surfaces r = a, b can considered as follows

,           (18)

           (19)

where , K is the foundation modulus and G is the shear modulus of

the foundation. It is mentioned here that the elastic medium can be modeled as the Winkler type by

setting G = 0 in Eq. (19). From Eqs. (18)-(19) and the results obtained in the preceding section, we

get the coupled free vibration frequency equation as follows
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      (20)

 

   where      and   

5. Numerical results and discussion

The coupled free wave propagation in a simply supported homogenous isotropic thermo elastic

cylindrical plate embedded in a Winkler type of elastic medium is numerically solved for the Zinc

material by setting  and Winkler elastic modulus . The material properties of

Zinc are given as follows

       

       

 and     

The roots of the algebraic equation in Eq. (12) were calculated using a combination of the Birge-

Vita method and Newton-Raphson method. For the present case, the simple Birge-Vita method does

not work for finding the root of the algebraic equation. After obtaining the roots of the algebraic

equation using the Birge-Vita method, the roots are corrected for the desired accuracy using the

Newton-Raphson method. Such a combination can overcome the difficulties encountered in finding

the roots of the algebraic equations of the governing equations. Here the values of the thermal

relaxation times are calculated from Chandrasekharaiah (1986) as  sec and τ1 =

0.5 × 10−13 sec.

Because the algebraic Eq. (11) contains all the information about the wave speed and angular

frequency, and the roots are complex for all considered values of wave number, therefore the waves

are attenuated in space. We can write , so that , where R = ω / ν, ν

and q are real numbers. Upon using the above relation in Eq. (17), the values of the wave speed (ν)

and the attenuation coefficient (q) for different modes of wave propagation can be obtained.
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A comparison is made for the non-dimensional frequencies among the Generalized Theory (GL),

Lord-Schulman Theory (LS) and Classical Theory (CT) of thermo-elasticity for the clamped and

unclamped boundaries of the thermally insulated and isothermal circular plate in Tables 1 and 2,

respectively. From these tables, it is clear that as the sequential number of the vibration modes

increases, the nondimensional frequencies also increases for both the clamped and unclamped cases.

Also, it is clear that the nondimensional frequency exhibits higher amplitudes for the LS theory

compared with the GL and CT due to the combined effect of thermal relaxation times and damping

of the foundation.

In Figs. 2 and 3, the dispersion of frequencies with the wave number is studied for both the

thermally insulated and isothermal boundaries of the cylindrical plate in different modes of

vibration. From Fig. 2, it is observed that the frequency increases exponentially with increasing

wave number for thermally insulated modes of vibration. But smaller dispersion exist in the

frequency in the current range of wave numbers in Fig. 3 for the isothermal mode due to the

combined effect of damping and insulation. 

In Fig. 4, the variation of attenuation coefficients with respect to the wave number of the

cylindrical plate is presented for the thermally insulated boundary. The magnitude of the attenuation

coefficient increases monotonically, attaining the maximum in  for first four modes of

vibration, and slashes down to become asymptotically linear in the remaining range of wave

0.1 δ 0.8≤ ≤

Table 1 Comparison of non-dimensional frequencies among the Generalized Theory (GL), Lord-Schulman
Theory (LS) and Classical Theory (CT) of thermo-elasticities for clamped and unclamped boundaries
of thermally insulated circular plate

Mode
Un clamped clamped

 LS  GL  CT  LS  GL  CT

1 0.1672 0.0765 0.0139 0.1508 0.1342 0.1152

2 0.3335 0.2719 0.0541 0.2255 0.1969 0.1564

3 0.5337 0.4977 0.1174 0.5773 0.3248 0.2444

4 0.8292 0.4385 0.1994 0.5941 0.5593 0.3487

5 1.1408 0.6952 0.2964 0.6303 0.8050 0.6584

6 1.4579 0.8714 0.4051 0.7070 0.8512 0.7551

7 1.7707 1.1350 0.6478 1.2007 1.0230 0.9038

Table 2 Comparison of non-dimensional frequencies among the Generalized Theory (GL), Lord-Schulman
Theory (LS) and Classical Theory (CT) of thermo-elasticities for clamped and unclamped boundaries
of isothermal circular plate

Mode
Un clamped Clamped

LS GL  CT  LS  GL CT

1
2
3
4
5
6
7

0.1781
0.5747
0.6492
0.5391
1.7853
1.9288
2.0824

0.1336
0.2736
0.2928
0.3727
0.4036
0.5308
0.7015

0.0532
0.1801
0.2063
0.3967
0.5010
0.6400
0.9025

0.1084
0.2130
0.3220
0.3295
0.4752
0.6349
0.9142

0.1049
0.1213
0.2563
0.3732
0.4831
0.6422
0.8231

0.0259
0.1702
0.2950
0.3837
0.5129
0.8727
0.9308
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Fig. 2 Variation of nondimensional frequency of thermally insulated cylindrical plate with wave number on
elastic foundation (ν = 0.3, K = 1.5 × 107, p2 = 0)

Fig. 3 Variation of nondimensional frequency of isothermal cylindrical plate with wave number on elastic
foundation (ν = 0.3, K = 1.5 × 107, p2 = 0)

Fig. 4 Variation of attenuation of thermally insulated cylindrical plate with wave number on elastic foundation
(ν = 0.3, K = 1.5 × 107, p2 = 0) 
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number. The variation of attenuation coefficients with respect to the wave number of the isothermal

cylindrical plate is presented in Fig. 5, where the attenuation coefficient attains the maximum in

 with a small oscillation in the starting wave number, and decreases to become linear

due to the relaxation times. From Figs. 4 and 5, it is clear that the effects of stress free thermally

insulated and isothermal boundaries of the plate are quite pertinent due to the combined effect of

thermal relaxation times and damping effect of the foundation.

Fig. 6 reveals that the variation of non dimensional frequency with the foundation parameter p1
for the first and second modes without the thermal effect. The exact theory is compared with the

membrane theory by Paliwal (1955), it is clear that the present exact theory agrees well with the

membrane theory for the first and second modes. This is identical to the well-known property of the

membrane theory for the uncoupled problem. However, for the thinner panel, when the effect of the

foundation is obvious, the frequency of membrane becomes smaller than the exact one. From the

comparison of the dispersion curves in Fig. 4, it is quite clear that due to the damping effect of the

foundation on the outer sides of the plate, the non dimensional frequency varies significantly and

becomes steady for . The dispersion curves become smoother in this case than those in the

absence of foundation parameter because of the shock absorption nature of the foundation.

0.1 δ 0.8≤ ≤

p1 0.5≥

Fig. 5 Variation of attenuation of isothermal cylindrical plate with wave number on elastic Foundation
(ν = 0.3, K = 1.5 × 107, p2 = 0)

Fig. 6 Variation of the foundation parameter p1 versus Non-dimensional frequency (ν = 0.3, p2 = 0)
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6. Conclusions 

The two dimensional wave propagation of a homogeneous isotropic generalized thermo elastic

cylindrical plate embedded on the Winkler-type elastic foundation was investigated in this paper.

For this problem, the governing equations of three dimensional linear theory of generalized thermo

elasticity have been employed in the context of the Lord and Schulman theory and solved by the

modified Bessel function with complex arguments. The effects of the frequency and attenuation

coefficient with respect to the wave number and the foundation parameter p1 on the natural

frequencies of a closed Zinc cylindrical plate was investigated, with the results presented as the

dispersion curves. By comparing the present results with those of the membrane theory by Paliwal

(1955), it is clear that the present exact theory with respect to the foundation agrees well with the

membrane theory. In addition, a comparative study is made among the LS, GL and CT theories and

the frequency change is observed to be highest for the LS theory, followed by the GL and CT

theories due to the thermal relaxation effects and damping. 
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