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Abstract. The present paper is concerned with vibrations of an elastic bridge loaded by a moving
elastic beam of a finite length, which is an extension of the authors’ previous study where the second
beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a
constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a
rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic
stiffness and the mass of the train are taken into account. The differential equations are developed
according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is
developed for the flexural vibrations, bending moments and shear forces in the bridge by means of
symbolic computation. When the train travels across the bridge, concentrated forces and moments are
found to take place at the front and back side of the train.
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1. Introduction

The vibration analysis of structural elements such as elastic beams loaded by moving distributed

loads has a considerable importance and has been the subject of numerous investigations in various

areas, such as the response of bridges to moving vehicles (Fryba 1999) or the transportation of

masses along a carrier structure, e.g. of metal slabs in steel fabrication. Usually, a single force, a

train of single forces or a force loading with constant distribution was used as a simplified model

for the train to determine the dynamical effects of the traveling loads (Pesterev et al. 2003). Some

of these studies took also into account the inertial effect of the load masses (Fryba 1999, Lee 1996,

Yang 2005, Esmailzadeh 1995). Other works did not take it into account but treated aspects such as

the effects of dampers on the dynamic response of bridges (Greco and Santini 2002), the distribution

of the loads due to sleepers and ballast layer (Museros 2002), or the resonant vibration under high-

speed trains (Li 1999). In more complicated models, when the riding comfort or vehicle response is

of concern, the dynamic train-bridge interaction was modeled by a series of lumped masses or

bodies connected by springs and dashpots, such as in Fryba (1996), Majka and Hartnett (2008), Xia
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et al. (2003), Zhang (2001), Yang (2001) and Yau (2009).  

In reality, the moving masses themselves which represent the train could be considered as

structures with an own stiffness. The stiffness of the old trains is often small, but the modern

railway trains show an increasing overall stiffness. To this stiffness only little attention has been

paid so far in the literature. For this reason the authors started a few years ago a series of studies,

which considered the bending stiffness of the train such as Cojocaru et al. (2003, 2004). More

recently, Zhang and Zheng (2010) considered the traveling beam as to be connected to the bridge by

flexible springs at discrete points.

In the present study, the case of a finite elastic beam, called “the train”, is treated, which moves

with constant speed along a simply-supported elastic beam, called the bridge. This paper is an

extension of the case of a semi-infinite train from Cojocaru et al. (2004). The train is connected to

the bridge by means of an interface, which is modeled by the limiting case of a rigid connection

such that the deflections of the bridge and the train are forced to be equal. The rigid interface is a

first step in modeling the real interface between the bridge and the train and is considered from

computational reasons. In extension of the usual model of distributed forces, both the elastic

stiffness and the mass of the train are taken into account. In this case the vibrations of the bridge

are mainly governed by velocity, bending stiffness and mass of the train, besides the parameters of

the bridge. In the present paper, the interest of study is focused on the following phenomenon: when

the train travels across the bridge, then at the locations of front and end of the train, the

concentrated forces and moments turn out to occur, and bending moments and shear forces in the

bridge show a jump at these moving locations. 

As also in the authors’ other studies, the problem was described in a non-dimensional form in

order to cover all possible cases by a single formulation. The non-dimensionalised problem is governed

by three similarity- or Pi-numbers, that is the bending stiffness ratio, mass ratio and non-dimensional

velocity. For the notion of a Pi-number in similarity methods in engineering dynamics, see e.g.

Baker et al. (1991). Two sets of fourth-order partial differential equations was developed according

to the Bernoulli-Euler theory of beams (Ziegler 1991), one set being valid for the unloaded part of

the bridge, the other for the region loaded by the train. The two sets are coupled by means of

transition conditions at the location of the front and end of the train. To obtain a rapid convergence,

the fourth-order partial differential equations were split into a static and a dynamic part. Only the

part of the train that moved on the bridge was considered. The influence of the rest of the convoy

was taken into account through a system of loadings which consisted of a transversal force and a

couple that acted at the location of the bridge entrance and bridge exit. This system depends on the

elastic stiffness of the rail outside the bridge and could be obtained by a substructure method similar

to the one given in Cojocaru et al. (2003). In order to simplify the computational effort of the

problem under consideration, the influence of the rest of the convoy is neglected in the present

study, setting the respective transversal force and couple equal to zero. 

The symbolic computer codes Maple 9.5 and MatLab 7.3 are used to solve the problem under

consideration, where the methods of real analysis, linear algebra and numerical methods are combined,

as described e.g. by Hirsch and Smale (1974) and Kucharski (2000). The Laplace transform is used

to solve the quasi-static boundary value problem. To solve the dynamic part of the problem the

Galerkin method is applied, where a Ritz approximation with the modes of the natural bridge

vibrations as shape functions is used to express the dynamic deflection of the bridge. Non-dimensional

deflection, bending moments and shear forces are depicted, and special emphasis is laid on the

concentrated force and moment at the front and the end of the train.
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2. Elastic beam travelling on a bridge

A simply-supported straight beam of span L is considered in the bridge model. An Euler-Bernoulli

beam model is used to describe the deformation of the bridge. A subscript b is used to denote the

corresponding mechanical entities of the bridge, which are described as a function of the axial co-

ordinate x measured in the inertial co-ordinate system x0y. The inertial co-ordinate system x0y has

the origin at the left end of the bridge and the axial co-ordinate x covers the interval from 0 to L

and outside from the bridge, see Fig. 1(a). In the following, Bb = EbIb denotes the effective bending

stiffness, Eb is the Young's modulus, Ib is the second moment of inertia of the cross-sectional area

and Λb is the mass per unit length of the bridge. The deflection, slope, bending moment and shear

force of the bridge are denoted by wb, ϕb, Mb and Qb, respectively.

A finite moving elastic beam of length lt which represents the “train“ is assumed to travel with

constant speed v across the bridge, such that the front of the train is located at the distance s(t), also

measured from the left end of the bridge, see Fig. 1(a), and to possess an own co-ordinate system

located at the front of the train which travels together with the train at the same constant speed v.

The length of the train is smaller than the length of the bridge. In the following the subscript t is

used to denote the corresponding mechanical entities of the train, see also Fig. 1(a), which are

described as a function of the axial co-ordinate ξ and time θ measured in the train-fixed co-ordinate

system. The train is assumed to be connected to the bridge by the limiting case of a rigid interface

such that the deflections of the bridge and the train are forced to be equal.

The bridge is loaded by a transverse forces nb , see Fig. 1(b), which represents the pressure that is

transmitted by the rigid interface from the train to the bridge. The train is loaded by transverse force

nt (ξ ,θ ) which represents the pressure that is transmitted by the rigid interface from the bridge,

measured in the train-fixed co-ordinate system, and by the own weight qt (ξ ,θ ), see Fig. 1(b). The

influence of the rest of the convoy when the train comes on the bridge is taken into account through

a bending moment  and a shear force  that act at the location of the bridge entrance, see Fig.

1(b). For the case that the front of the train leaves the bridge, a system of loadings  and  that

acts on the bridge exit is taken into account to model the part of the convoy which leaves the
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Fig. 1 An elastic bridge loaded by a moving elastic beam with finite length: (a), (b) load case 1, (c) load case
2, (d) load case 3 
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bridge. The relations between the two co-ordinate systems are

 (1)

where s(t) = vt. The governing equation for the undamped flexural vibration of the bridge written in

the inertial co-ordinate system, according to Ziegler (1991), are

 (2)

or written in an explicit form

- for the loaded part of the bridge:  (3)

- for the unloaded part of the bridge: (4)

The governing equation for the undamped flexural vibration of the train written in the moving

coordinate system is

 (5)

Due to the rigid interface, the deflection of the train at the section ξ should be equal to the

deflection of the bridge at the same section, described in the inertial frame x0y. The same is also

valid for the contact force between the two beams and for the load of the train

  (6)

For the convenience of analysis, using the relationships obtained from the chain rule, see also

(Cojocaru et al. 2004) and Eq. (6), re-write the governing equation of flexural vibrations of the train

from Eq. (4) as a function of the co-ordinate x and t, as follows

 (7)

where  equals the velocity v of the train and  is the acceleration of the movement. When

the train travels with constant velocity, . In order to simplify the expressions, s(t) is
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substituted with s. It is assumed that q(x,t) = q = gΛt, with g = 9.81 m/s2 the gravitational acceleration.

Because the bridge and the train remain all the time in contact and both deflections are equal, the

two beams are considered as one beam with bending stiffness (Bb + Bt) and mass (Λb + Λt), and the

deflection of the system is denoted with w(x, t). Hence, adding Eqs. (3) and (7) yields

(8)

The Eqs. (4) and (8) describe our problem now. Depending on the position of the train on the

bridge, three load cases (in a short form denoted as LC) are considered as follows:

- Load case 1 (LC1) - s < L, s − lt < 0, which means that the train is not entirely on the bridge,

see also Fig. 1(a). In this case, the deflection, slope, bending moment and share force of the

unloaded part of the bridge in front of the train are denoted as wf, ϕf, Mf and Qf, respectively. The

boundary conditions (in the following as BC denoted) at the two ends of the beam are defined in

terms of displacements and bending moments, as follows

 

(9)

where  represents the contribution of the rest of the convoy which still travels outside the bridge

on the left end of the bridge. The slope, bending moment and share force of the loaded part of the

bridge are denoted by ϕ, M and Q, respectively.

- Load case 2 (LC2) - s ≤ L, s − lt ≥ 0, which means that the train is entirely on the bridge according

with Fig. 1(c). Additionally to LC1, the deflection, slope, bending moment and share force of the

unloaded part of the bridge behind of the train are denoted as wh, ϕh, Mh and Qh, respectively. The

BCs at the two ends of the beam are defined in terms of displacements and bending moments, as

follows

 

(10)

- Load case 3 (LC3) - s > L, s − lt ≤ L, which means that the train is traveling outside of the

bridge, see also Fig. 1(d). The BCs at the two ends of the beam are defined in terms of

displacements and bending moments, as follows

     

(11)

At the front and the end of the train, between the unloaded and loaded part of the bridge, the

transition conditions are defined in terms of bending moments and shear forces, as follows:
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- for the end (left side) of the train

 

(12)

- for the front (right side) of the train

  (13)

The bending moment and shear force in the bridge at the location of the train front are denoted as

Ms and Qs, and train end as Ms-l and Qs-l, respectively. At the locations front and end of the train the

bending moment and shear force in the unloaded part of the bridge and in the system train+bridge

are equal, see Fig. 2(a). Because a rigid interface is assumed between the train and the bridge, the

deflection of the train equals the deflection of the bridge, and the second and third derivative of the

train beam are not zero at these locations, as showed in Fig. 2(b). Based on these observations it is

supposed that at these locations – the front and the end of the train – concentrated forces and

moments appear, as shown in Fig. 2(c).

According to the force method (Ziegler 1991), these additional unknowns are calculated from the
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Fig. 2 Equilibrium state at the front and the end of the train
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following two conditions of kinematical continuity for the system at the location end and front of

the train, respectively

(14)

In order to work with minimum number of parameters that determine the solution of the problem,

the following dimensionless formulations are introduced

(15)

where a superimposed hat is used to denote dimensionless entities. The deflection is scaled with a

characteristic thickness h, and two ratios are introduced: the bending ratio B = Bt / Bb and the mass

ratio Λ = Λt / Λb With these dimensionless parameters, the derivatives of the deflection become

(16)

Now the differential equation Eqs. given in Eqs. (4) and (8) and the BCs from Eq. (10) to Eq. (14)

can be written, using the formulations from Eqs. (15) - (16), in a dimensionless form as: 

- for the loaded part of the bridge

 (17)

- for the unloaded part of the bridge

  (18)

wh x = s l–( ) w x = s l–( )  ϕh x = s l–( ), ϕ x = s l–( )= =

w x = s( ) wf x = s( ) ϕ x = s( ), ϕf x = s( )= =
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The BC at the both ends of the bridge are:

- for the LC1 : 

 (19)

- for the LC2 : (20)

- for the LC3 : 

(21)

The BC for the end of the train are

(22)

The BC for the front of the train are

(23)

The continuity conditions form (14) reads in a non-dimensional form as

(24)

In a first step, only the dynamic response of the bridge due to the part of the train that travels on

the bridge is interested in, so it is assumed that  and . In this way, the

computational effort could also be keep low.
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3. Solution by means of symbolic computation

The differential equations presented in Section 2 were solved by means of symbolic computations.

In the domain of small deformation, which implies linearity of the solution, the deflection of the

system is split into two parts, namely a (quasi-) static and a dynamic part

(25)

where the superscripts s and d are used to denote the static and dynamic part, respectively. The

advantage of this splitting is a better convergence of the series solutions to be introduced. According

to Eq. (25), Eqs. (17) and (18) can be re-written as:

- the loaded part of the bridge

● the static part: (26)

● the dynamic part:

 

(27)

- the unloaded part of the bridge

● the static part: (28)

● the dynamic part: (29)

To simplify the equations, the terms in Eq. (27) containing the static displacement by LSP is

denoted as

 (30)

and the static contribution in Eq. (29) as HSP for the unloaded part of the bridge behind the train

and FSP for the unloaded part of the bridge in front of the train

 (31)
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The BCs from Eqs. (19) to (23) are also split into a static part and a dynamic part, as well as the

continuity conditions form Eq. (24) at the locations  and . For this strategy see also

(Cojocaru et al. 2004).

3.1 The static solution

For the static solution, the Laplace transformation method is used, carried out with respect to x

(32)

where w is the complex variable of Laplace transform. Taking the Laplace transform of Eqs. (26)

and (28), and considering the static part of the BC from Eqs. (19) to (23), for each loading case, an

equation of deflection is obtained for the unloaded and loaded part of the bridge. The unknowns

will be determinate form BCs, from transition conditions and form the continuity conditions at the

locations  and , (Cojocaru et al. 2004). Taking into account that , the expressions of

static deflection of the system “bridge-train” become:

- for the LC1:
● the loaded part of the bridge

 (33)

● the unloaded part of the bridge in front of the train

(34)

- for the LC2:
● the unloaded part of the bridge behind of the train

(35)
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● the loaded part of the bridge

(36)
● the unloaded part of the bridge in front of the train

 (37)

- for the LC3:
● the unloaded part of the bridge behind the train

(38)

● the loaded part of the bridge

(39)
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3.2 The dynamic solution

The next step is to solve the differential equations from Eqs. (27) and (29) to obtain the dynamic

solution. For this scope, a Ritz - Galerkin procedure is used, where the dynamic deflection is

assumed in the form of a finite series of functions separable in space and time, (Ziegler 1991).

(40)

where  are the n generalised co-ordinates, and  are the modes of natural vibrations of a

simply supported homogeneous beam. When substitute the approximate solution (40) into the

governing Eqs. (27) and (29), and apply the Galerkin procedure with the virtual variation of the

assumed solution as

(41)

and after some mathematical manipulations, an expression is obtained as the form

- for the LC1:

(42)

- for the LC2:

(43)
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- for the LC3:

(44)

After re-arrange the Eqs. (42), (43) and (44) collecting for the derivatives of the generalized

coordinates, they can be put into a matrix form as follows

(45)

where the indices 1,2,3 refer to the load case. The coefficients from Eq. (45) are matrices with

elements of the form

- the mass matrix  with i, j = 1, 2,.., n, is a n × n matrix 

(46)

- the damping matrix  with i, j = 1, 2,.., n, is a n × n matrix

(47)

M1 2 3 , ,
p·· C1 2 3 , ,

p· K1 2 3 , ,
p f1 2 3, ,

+ + + 0=

M1 2 3, ,
mij

1 2 3, ,

[ ]=

C1 2 3, ,
cij

1 2 3, ,

[ ]=
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- the stiffness matix  with i, j = 1, 2,.., n, is a n × n matrix

(48)

- the vectors of external loads  with i = 1, 2,.., n, is a n × n matrix

(49)

In order to obtain the solutions of the problem under consideration, the systems of differential

equations second order from Eq. (45) were transformed into a system of differential equations of

first order

(50)

where 

- X denotes the state vector of the form: (51)

- A is the coefficients matrix of the form: (52)

- b is the vector of external loads of the form: (53)

Hence, the first order differential equations can be written in the extend form
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(54)

The symbolic computer code Maple9.5 is used to obtain the static solution of the system, to build

the system of differential equations of second order and to transform this into the system of

differential equations of first order, taking the time as an additional variable. The solution of this

system is obtained through numerical simulations with the help of MatLab/Simulink. A fixed-step

continuous solver, that is a fifth order Dormand-Prince formula (MatLab On-line Manual) was used

with the fixed-step size of 0.001. 

4. Numerical results

In order to illustrate the influence of bending stiffness of the train upon the deflection, bending

moment and shear force in the bridge, a series of symbolic computations are performed. An elastic

bridge of 100 m span and unit high (h = 1 m), with Ib = 74.65 m
4
 and Ab = 8.64 m

2
 is taken as an

example structure. The material is steel with Young's modulus E = 2.1 × 1011 N/m2, and density of

mass ρ= 7850 kg/m3. With the above values one obtains Bb = 1.5676 × 1013 Nm
2
 and Λb = 67824 kg/m.

The length of the train is 30 m. With these values, a non-dimensional gravitational acceleration 

= was computed. If it is necessary to calculate the dynamic response of a structure with

another height, h1 for example, the non-dimensional gravitational acceleration  should be multiplied by L/h1.

The computations were performed for four values of the non-dimensional stiffness ratio B = 0, 0.5, 1 and 1.5,

two values of mass ratio Λ= 0.5 and 1, and for six values of the non-dimensional velocity of the train = =

0.055, 0.2, 0.55, 0.64, 1.096 and 1.57, which are the correspondent dimensionless values of 30, 110, 300, 350,

600 and 860 km/h. The last velocity 860 km/h, is the velocity with which the train travels across the bridge in

0.42 s, which represents the period of the first mode of vibration of the unloaded bridge. The first velocity

corresponds to a quasi-static load of the bridge. 

With the above similarity numbers, the dimensionless deflection b, bending moment b and

shear-force b in the mid-span of the simply supported bridge are determined as a function of time.

For the dynamic deflection a Ritz approximation with 5 terms is used. The results for b, b and

b are shown in Figs. 3, 4 and 5. In the following representations, both the forced vibrations of the

bridge when the train travels over the bridge and the free vibrations of the bridge after the train

leaves the bridge are considered. 

Figs. 3(a) and 3(b) show the time histories of deflection at the mid-span of the bridge for two

values of the mass ratio Λ and each of them for four values of the bending stiffness ratio B. It can

be observed that the deflection at the mid-span of the bridge increases with increasing mass ratio

but decreases with the increasing bending stiffness ratio. Fig. 3(c) shows the time history of the

deflection at the mid-span of the bridge for four non-dimensional velocities of the train. As can be

seen the deflection at the mid-span of the bridge increases also with the increasing traveling velocity

of the train, however slowly for non-dimensional velocities until 0.55. For non-dimensional

velocities greater as 0.55 the deflection of the bridge increases strongly. The amplitudes of the free

vibrations of the bridge also increase with increasing mass ration and traveling velocity.

Shown in Figs. 4(a) and 4(b) are the time histories of the bending moment at the mid-span of the
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bridge for two values of the mass ratio Λ and each of them for four values of the bending stiffness

ratio B. As can be seen from Figs. 4, a concentrated moment occurs at the front and the end of the

train, which is materialized by the jumps in b. The jumps occur when the front and the end of the

train passes the middle of the bridge. It can be also observed that the bending moment at the mid-

span of the bridge increases with mass ratio and decreases with bending stiffness ratio when the

train crosses over the middle of the bridge, but the jumps in bending moment increase with stiffness

ratio. Fig. 4(c) shows the time history of the bending moment at the mid-span of the bridge for four

non-dimensional velocities of the train. The bending moment at the mid-span of the bridge increases

with the traveling velocity of the train, and it can be observed the same behavior as by the

deflection of the bridge: it increases slowly for non-dimensional velocities until 0.55 and strongly

for non-dimensional velocities greater as 0.55. The amplitudes of the free vibrations increase with

mass ratio and traveling velocity too.

Shown in Figs. 5(a) and 5(b) are the time histories of shear force at the mid-span of the bridge for

two values of the mass ratio Λ and each of them for four values of the bending stiffness ratio B.

The shear force at the mid-span of the bridge shows the same behavior towards the mass ratio and

bending stiffness ratio as the bending moment. Also in this case concentrated force occurs at the

Fig. 3 Deflection b at the mid-span of the bridge as a function of 
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front and the end of the train, when these locations pass the middle of the bridge. The concentrated

forces are materialized by the jumps in b. The jumps occur when the front and the end of the train

passes the middle of the bridge, and increase with stiffness ratio. Fig. 5(c) shows the time history of

the shear force at the mid-span of the bridge for four non-dimensional velocities of the train. The

shear force at the mid-span of the bridge increases with traveling velocity of the train, and it can be

observed the same behavior as by the deflection of the bridge: it increases slowly for non-

dimensional velocities until 0.55 and a bit strongly for non-dimensional velocities greater as 0.55.

The amplitudes of the free vibrations also increase with mass ratio and traveling velocity of the

train.

As can be seen from Figs. 4 and 5, a concentrated force and a concentrated moment occur at the

front and the end of the train, which are materialized by the jumps in b and b. The jumps occur

when the front and the end of the train passes the middle of the bridge, because a rigid interface is

assumed between the train and the bridge. This rigid interface imposes that the deflections of the

train and the bridge are equal, which implies that the second and third derivative of the deflection of

the train do not vanish at this location as shown in Fig. 2(c). In a detailed modeling with a non-

rigid interface, the concentrated loads at the front of the train would be represented by pressure

concentrations, as shown in (Cojocaru et al. 2003). 

Fig. 4 Deflection b 

at the mid-span of the bridge as a function of 



360 Eugenia C. Cojocaru and Hans Irschik

The case of = 1.57, i.e. the case in which the train passes the bridge in the period of the first

mode of vibration of the unloaded bridge, is treated in comparison with the case of = 0.64 in Fig. 6. As

can be seen, the passage of the train on the bridge with high velocities, i.e.  = 1.57 produces

considerably high amplitude response of the bridge. 

The influence of bending stiffness and mass ratio on the response of the bridge at the mid-span is

also investigated for a number of velocities of the train from 0.055 until 1.57 with an increment

about 0.1. In this case, the maximum deflection of the bridge is determined for three values of the

non-dimensional stiffness ratio, B = 0.25, 0.5 and 1, and for three values of the non-dimensional

mass ratio, Λ = 0.25, 0.5 and 1. The results are plotted in Fig. 7. It can be observed that the deflection

of the bridge increases slowly for non-dimensional velocities until 0.7 and has a kink at 0.7; and for

values of the non-dimensional velocity greater as 0.7, the deflection shows more or less a strong increasing

tendency, depending on the mass and bending stiffness ratios. Also in Fig. 7 it can be observed the

same behavior as in Fig. 3: the deflection increases with mass ratio and decreases with bending

stiffness ratio. 

A convergence analysis is also performed taking for the dynamic deflection with a Ritz

approximation of 1, 3 and 5 terms. In Fig. 8, the time history of bending moment at the mid-span of

Fig. 5 Shear force b at the mid-span of the bridge as a function of 
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the bridge is plotted considering the approximated solution with 1, 3 and 5 terms. It can be observed

that the solution with 3 and 5 terms deliver similar results, while the solution with 1 term delivers

Fig. 6 The response of the bridge at the mid-span for Λ = 1, B = 0.5 and = 0.64, = 1.57

Fig. 7 The maximum deflection of the bridge
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increased values of the time history. It can be concluded that the approximated solution with 5

terms furnishes satisfactory results.

5. Conclusions

As can be observed in Figs. 3, 4 and 5, the deflection, bending moments and shear forces of the

bridge increase with mass ratio Λ, but decrease with bending stiffness ratio B. This means that

considering the stiffness of the train leads to a lower overall strength of the bridge. When a rigid

interface as a connection between bridge and train is considered, the bending moments and shear

forces in the bridge show a jump at the location of the front and end of the train, the amount of this

jump increases with a growing B. These traveling jumps, on the other side, indicate a high local

strength in the cross-sections that are traversed by the both ends of the train. In a detailed modeling

with a non-rigid interface, the concentrated loads at the front of the train would be represented by

pressure concentrations.

Acknowledgements

The support of the authors E. Cojocaru and H. Irschik by the ACCM – Austrian Center of

Competence in Mechatronics is gratefully acknowledged.

References

Baker, W.E., Westine, P.S. and Dodge, F.T. (1991), Similarity methods in engineering dynamics. Theory and
practice of scale modelling, Revised Edition, Elsevier Science Publ,Amsterdam.

Fig. 8 Convergence of the bending moment at the mid-span of the bridge as a function of 



Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length 363

Cojocaru, E.C., Foo, J. and Irschik, H. (2004), “Quasi-static response of a Timoshenko-beam loaded by an
elastically supported moving rigid beam”, Technische Mechanik, 24(2), 79-90.

Cojocaru, E.C., Irschik, H. and Gattringer, H. (2004), “Dynamic response of an elastic bridge due to a moving
elastic beam”, Comput. Struct., 82(11-12), 931-943.

Cojocaru, E.C., Irschik, H. and Schlacher, K. (2003), “Concentrations of pressure between an elastically
supported beam and a Timoshenko-beam”, J. Eng. Mech., 129(9), 1076-1082.

Esmailzadeh, E. and Ghorashi, M. (1995), “Vibration analysis of beams traversed by uniform partially distributed
moving masses”, J. Sound Vib., 184(1), 9-17.

Fryba, L. (1996), Dynamics of railway bridges, Thomas Telford, London.
Fryba, L. (1999), Vibration of solids and structures under moving loads, Thomas Telford, London.
Greco, A. and Santini, A. (2002), “Dynamic response of a flexural non-classically damped continuous beam

under moving loadings”, Comput. Struct., 80(26), 1945-1953.
Hirsch, M.W. and Smale, S. (1974), Differential equations, dynamical systems, and linear algebra, Academic

Press, Inc., San Diego. 
Kucharski, T. (2000), “A method for dynamic response analysis of time-variant discrete systems”, Comput.

Struct., 76(4), 545-550.
Lee, H.P. (1996), “The dynamic response of a Timoshenko beam subjected to a moving mass”, J. Sound Vib.,

198(2), 249-256.
Li, J. and Su, M. (1999), “The resonant vibration for a simply supported girder bridge under high-speed trains”,

J. Sound Vib., 224(5), 897-915.
Majka, M. and Hartnett, M. (2008), “Effects of speed, load and damping on the dynamic response of railway

bridges and vehicles”, Comput. Struct., 86(6), 556-572.
Maple On-line Manual - Version 9.5.
MatLab On-line Manual - Version 6.5.
Museros, P., Romero, M.L., Poy, A. and Alarcon, E. (2002), “Advances in the analysis of short span railway

bridges for high-speed lines”, Comput. Struct., 80(27-30), 2121-2132.
Pesterev, A.V., Yang, B., Bergman, L.A. and Tan, C.A. (2003), “Revisiting the moving force problem”, J. Sound

Vib., 261(1), 75-91.
Xia, H., Zhang, N. and De Roeck, G. (2003), “Dynamic analysis of high speed railway bridge under articulated

trains”, Comput. Struct., 81(26-27), 2467-2478.
Yang, Y.B. and Lin, C.W. (2005), “Vehicle-bridge interaction dynamics and potential applications”, J. Sound Vib.,

284(1-2), 205-226.
Yang, Y.B. and Wu, Y.S. (2001), “A versatile element for analyzing vehicle-bridge interaction response”, Eng.

Struct., 23(5), 452-469.
Yau, J.D. (2009), “Vehicle/bridge interactions of a rail suspension bridge considering support movements”,

Interact. Multiscale Mech., 3(2), 263-276.
Zhang T. and Zheng, G.T. (2010), “Vibration analysis of an elastic beam subjected to a moving beam with

flexible connections”, J. Eng. Mech., 136(1), 120-130.
Zhang, Q.L., Vrouwenvelder, A. and Wardenier, J. (2001), “Numerical simulation of train-bridge interactive

dynamics”, Comput. Struct., 79(10), 1059-1075. 
Ziegler, F. (1991), Mechanics of solids and fluids, Springer-Verlag, Inc., New York.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




