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Abstract. In this paper, a theoretical method has been developed for the electric double layer
interaction under condition of the variable dielectric permittivity of water. Using Poisson-Boltzmann
equation (PBE), for one plate and two plates having similar or dissimilar constant charge or constant
potential, we have investigated the electric double layer potential, its gradient and the disjoining pressure
as well as the effect of variation of dielectric permittivity on these parameters. It has been assumed that
plates are separated by a specific distance and contain a liquid solution in between. It is shown that
reduction of the dielectric permittivity near the interfaces results in compression of electric double layers
and affects the potential and its gradient which leads to a decreased electrostatic repulsion. In addition, it
is shown that variation of dielectric permittivity in the case of higher electrolyte concentration, leads to a
greater change in potential distribution between two plates. 
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1. Introduction

Phenomena occurring in between the interface of solid and an electrolyte solution is of interest in

nanotechnology, physics and chemistry. In particular the electric double layer (EDL) interaction

between charged surfaces in liquids and electrolytes is of prime interest in intermolecular force

studies. The theoretical basis describing such interactions is the well-known Poisson–Boltzmann

equation (PBE) (Israelachvili 1991). In principle, the general PBE is a second-order non-linear

differential equation and could not be solved analytically. However, several methods have been

proposed for solving this problem (Hogg et al. 1966, Usui 1973, Chan et al. 1976, Chan et al.

1980, McCormack et al. 1995, Chan 2002, Zhang et al. 2004, Zhang et al. 2006). These methods

are based on the linearized and nonlinear version of PBE and take into account constant potential

and charge surfaces either for one plate or for two plates containing electric double layers. However,

the methods presented in (Usui 1973, Chan et al. 1976, Chan et al. 1980, McCormack et al. 1995,

Chan 2002) are only applicable to situation where surface charges are low, surfaces are identical

and/or electrolytes are symmetric. To overcome the above mentioned limitations (Zhang et al. 2004,

Zhang et al. 2006) calculated the EDL using one-dimensional PBE. Their solution is applicable to
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any electrolytes or mixture of electrolytes with similar/dissimilar surfaces. Although in general a

three dimensional PBE is necessary to calculate the electric double layer force between parallel

plates, however three-dimensional PBE can be transformed to one-dimensional PBE to speed up

calculations (Stankovich and Carnie 1996). In general, when the local curvature of the plate is large

in comparison with the Debye length, one-dimensional PBE gives adequate accuracy. In this case a

potential distribution changes with distance between plates in one axis is more significant in

comparison with its changes across the other axes. However, when the size of the plates is reduced

and becomes comparable with the Debye length, one-dimensional PBE loses its accuracy and using

three-dimensional PBE to model the EDL becomes necessary. In addition linearized version of PBE

has acceptable accuracy only for small voltages (less than 40 (mV)) (Stankovich and Carnie 1996).

One of the most interesting phenomena in electric double layer interaction occurs when a

significant reduction of water density exists near a hydrophobic surface. The density of water may

change over a region with a width equal to several nanometers. The value of local density can be

lower than its bulk value by tens of percents (Mezger et al. 2006). Under specific conditions the

local value of the density may drop almost to zero (Doshi et al. 2005). The water viscosity reduces

near hydrophobic surfaces. Furthermore temperature affects water viscosity (Voznyj and Churaev

1977). In addition, it has been found that structural changes of water in boundary layers and thin

pores, affect its dielectric permittivity (Churaev 1990). Moreover, the reduction of dielectric

permittivity of liquid leads to a decrease in liquid viscosity (Mishchuk 2008). In this paper we

intend to study the effect of changes in permittivity on the electric double layer interaction. Due to

insufficient knowledge of the way dielectric permittivity changes in a liquid near a hydrophobic

surface we will simplify the problem by considering that changes only occur in the diffusion layer

of the double layer and by assuming that liquid properties change stepwise (Mishchuk 2008). 

In section II, based on the Poisson-Boltzmann equation, for a separate electric double layer with

constant potential and constant charge surface, the effect of stepwise changes of the dielectric

permittivity on the EDL potential, electric field and disjoining pressure is investigated. In section

III, this effect is analyzed for the electric double layers with constant surface potential and surface

charge, when there are two symmetric flat plates with similar charge or potential. The same study is

carried for the case of asymmetric flat plates. In section VI, disjoining pressure of interaction is

studied and finally, conclusions are given in section V.

2. Separate electric double layer under condition of variable dielectric permittivity

In this section, the analysis will be limited to the case of a univalent electrolyte, with constant

surface potential and charge, and a stepwise change in dielectric permittivity. First, for the case of

constant potential the one dimensional PBE (Lyklema 2005) which describes the electric potential is

divided into two equations, one for the  interval and the other for 
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With the following conditions

(3)

(4)

(5)

(6)

Where  is the position at which the dielectric permittivity is changed. In this case, there are two

inverse Debye lengths

(7)

Where  is the elementary charge,  is the Boltzmann constant,  is the absolute

temperature, z is the valence of ion,  is the concentration of the electrolyte,  is the

dielectric permittivity of the vacuum,  and  are the relative permittivity and  is the

surface potential of the isolated double electrical layer. 

The solution is

(8)
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Second, consider the case of a univalent electrolyte with constant surface charge and a stepwise

change in dielectric permittivity. Here again the one dimensional PBE which describes the electric

potential is given by Eq. (1) for the  interval and Eq. (2) for the  interval. The

relevant boundary conditions are now 
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(15)

(16)

Where  is the charge density. 

The electric potential is obtained as

(17)

(18)

Where inverse Debye lengths are given in Eq. (7) and

(19)

(20)

(21)

Figs. 1-3 represent the numerical results for  and  when  and  with

different values of electrolyte concentration  for constant surface potential. In this numerical

analysis, the dielectric permittivity was assumed , , , and the

ratio of  was varied from 1 to .2. Also, the potential and its gradient are normalized by

, The obtained results show that when the dielectric permittivity changes stronger,

the potential stronger reduces and at the same time the double electrical layer is compressed. Also,
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Fig. 1 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.001 in the case of constant surface potential
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Fig. 2 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.01 in the case of constant surface potential

Fig. 3 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.1 in the case of constant surface potential

Fig. 4 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.001 in the case of constant surface charge
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note that as electrolyte concentration is increased, the variation of dielectric permittivity effects the

potential distribution more drastically. 

In Figs. 4-6, the numerical results obtained for constant surface charge are shown. Similar to the

previous test, In this case, potential and its gradient are normalized by  and other

parameters are equal to the first case. In this test, besides of the effect of dielectric variation on the

potential distribution, we see that as the  ratio is reduced, the surface potential is enhanced.

Also, as depicted in the potential distribution curves, when  lower concentration leads to a

higher potential. On the other hand, in contrast, the variation of potential distribution is lower when

the concentration is low. This trend is expected when considering Eqs. (7) and (17)-(21). Finally, as

the distance from the surface is increased both potential and its gradient approach zero. For the case

of potential gradient, we can see that for both constant surface potential and charge, reduction of

 ratio leads to significant variation in the potential gradient distribution. Also, in the case of

constant surface potential, higher electrolyte concentration, leads to the higher magnitude of

potential gradient. This is also expected from Eqs. (8), (9) taking into account (7), (10)-(12). In the

case of constant charge surface, as depicted in Figs. 4-6, variation of electrolyte concentration affect

ψ0 10 mV( )=

ε1 ε2⁄
x 0=

ε1 ε2⁄

Fig. 5 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.01 in the case of constant surface charge

Fig. 6 Dependence of the potential and its gradient on the distance from surface and different values of ε1 / ε2

as depicted in the figure when ρ0 = 0.1 in the case of constant surface charge
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the compression of potential gradient distribution, but it has no effect on the magnitude of the

potential gradient at . 

3. Interacting electrical double layers under condition of variable dielectric permittivity

In this section three cases are considered. First we investigate the flat symmetric electric double

layers with constant surface potentials. Next the flat symmetric electric double layers with constant

surface charges is considered and finally the asymmetric electric double layers with different

constant surface potentials are studied.

First, the one dimensional PBE which describes the electric potential is divided into three

equations, for ,  and  interval
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Where inverse Debye lengths are determined by Eq. (7) and

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Eqs. (32)-(44) are used to obtain the results of numerical analysis for the potential distribution

between two flat plates and its gradient those are illustrated in Figs. 7-9. It may be concluded that

as  is decreased from 1 to 0.2, the electric double layer is further compressed and the
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Fig. 7 Potential distribution and its gradient in the gap between the two charged plates at different ε1 / ε2 and
ρ0 = 0.001
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potential at the middle of the two plates is reduced. Also, an increase in electrolyte concentration

results in increase in the variation of potential distribution between two plates. Furthermore, as

 is reduced the potential gradient is increased at each plate. In this numerical analysis, the

dielectric permittivity is , ,  and the potential and its gradient

are normalized by .

Now, consider the case where a symmetric structure is employed with the constant charge at both

surfaces. Hence, the one dimensional PBE which describes the electric potential is divided into

three Eqs. (22)-(24). In this case the boundary conditions are
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Fig. 9 Potential distribution and its gradient in the gap between the two charged plates at different ε1 / ε2 and
ρ0 = 0.1
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(49)

(50)

(51)

The solutions of Eq. (22) with condition given in Eqs. (45)-(51) are given by Eqs. (32)-(34) with
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Numerical result obtained for this case is given in Fig. 10. From this Fig. one can conclude that

as the ε1 / ε2 is decreased the potential is reduced at the middle however it is increased at each of

plates surfaces. Note that in this test similar to previous tests, the potential and its gradient are

normalized by 
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(63)

(64)

(65)

 is the position at which the dielectric permittivity is changed. In this case, there are two Debye

inverse lengths given by Eq. (7) . The solution of Eqs. (1)-(2) with conditions given in Eqs. (62)-
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Fig. 10 Potential and electric field distribution in the gap between the two charged plates at h1 = 2 nm when
ρ0 = 0.1 with different ratio of ε1 / ε2 as depicted
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(76)

(77)

Using Eqs. (66)-(77), the results obtained for numerical calculation of the potential distribution in

between two plates are depicted in Figs. 11-14. Note that such as previous cases, the potential and

its gradient are normalized by .

Figs. 11-12 show the effect of electrolyte concentration and the role of dielectric permittivity on

potential distribution when the charges on both plates are of the same polarity but different in

magnitude. 

As depicted, upon the reduction of ε1 / ε2 value, the variations of potential distribution and

potential gradient distribution, between two plates are increased. 

On the other hand from Figs. 13-14, where the two plates poses charges with different polarity

and magnitude a decrease in the ratio of ε1 / ε2 leads to a decrease in the potential between two

plates. 
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Fig. 11 Potential and electric field distribution in the gap between the two charged plates at h1 = 1.5 nm and
different values of ε1 / ε2 when ρ0 = 0.001

Fig. 12 Potential and electric field distribution in the gap between the two charged plates at h1 = 1.5 nm and
different values of ε1 / ε2 when ρ0 = 0.1
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4. Disjoining pressure of interaction under condition of variable dielectric permittivity

The pressure between two surfaces using Eq. (1) is given by

(78)

Substituting Eq. (2) in Eq. (46) we get

(79)

Positive P implies repulsion while a negative P represents attraction. The pressure acting on the

electrolyte and the plate surfaces is uniform in between the two plates (independent of position x).

The results of numerical analysis for the disjoining pressure P as a function of ε1 / ε2 is given in

Fig. 15. For simplicity all pressures are normalized by the value of the disjoining pressure P0 at the

constant dielectric permittivity of water ε1 = ε = 80. These results are related to three different plates

distances, 2 (nm), 6 (nm) and 16 (nm), respectively. As expected as the dielectric permittivity is

reduced near the surface, disjoining pressure is also reduced. 
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Fig. 13 Potential and electric field distribution in the gap between the two charged plates at h1 = 1.5 nm and
different values of ε1 / ε2 when ρ0 = 0.001

Fig. 14 Potential and electric field distribution in the gap between the two charged plates at h1 = 1.5 nm and
different values of ε1 / ε2 when ρ0 = 0.1



170 Amir Farrokh Payam and Morteza Fathipour

5. Conclusions

In this paper, we obtained general relationships which depict the impact of local values of

dielectric permittivity on the structure of the separate electric double layer with constant surface

potential and charge, also for similar constant surface potential and charge electric double layers and

dissimilar constant surface potential of EDL and for two double electrical layers. It was shown that

taking into account changes of the dielectric permittivity results in a very strong reduction of the

electrostatic repulsion between the plates. In addition, electrolyte concentration has significant effect

on the distribution of potential and its gradient between two plates in the case of varying dielectric

permittivity. In other words, higher concentration of electrolyte and higher changes of dielectric

permittivity, pronounces the variation of potential in between two surfaces. 
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