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Abstract. The essential idea of the element-free Galerkin method (EFG) is that moving least-squares
(MLS) approximation are used for the trial and test functions with the variational principle (weak form).
By using the weighted orthogonal basis function to construct the MLS interpolants, we derive the
formulae for an improved element-free Galerkin (IEFG) method for solving three-dimensional problems in
linear elasticity. There are fewer coefficients in improved moving least-squares (IMLS) approximation than
in MLS approximation. Also fewer nodes are selected in the entire domain with the IEFG method than is
the case with the conventional EFG method. In this paper, we selected a few example problems to
demonstrate the applicability of the method. 

Keywords: weighted orthogonal function; Improved moving least-squares (IMLS) approximation; Ele-
ment-free Galerkin (EFG) method; Improved element-free Galerkin (IEFG) method; 3D elastic problem.

1. Introduction

A number of meshless methods have been developed in recent years, and have achieved

remarkable progress in computational mechanics. The main objective of such methods is to

eliminate, or at least to alleviate, the difficulty of meshing and remeshing the entire problem domain

by simply adding or deleting nodes. The main difference between meshless and conventional

numerical methods is the way in which the shape function is formulated. However, once this

function has been obtained, the meshless method, the finite element method (FEM), and the

boundary element method (BEM) all use the same procedure to form the equations needed to obtain

the solution to a problem (Belytschko et al. 1996).

There are several meshless methods: the diffuse element method (Nayroles et al. 1992), the

element-free Galerkin (EFG) method (Belytschko et al. 1994), the Hp clouds method (Duarte and

Oden 1995), the meshless local Petrov-Galerkin method (Atluri and Zhu 1998), the reproducing

kernel particle method (Liu et al. 1995), the radial point interpolation method (Liew and Chen

2004a, Liew and Chen 2004b, Liew and Chen 2004c), the complex variable meshless method (Liew

et al. 2007), the boundary element-free method (Kitipornchai et al. 2005, Liew et al. 2005, Sun et
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al. 2006, Liew et al. 2006), and the moving least-squares differential quadrature meshfree method

(Liew et al. 2003, Liew et al. 2004) and others (Hu et al. 2009, Matsubara and Yagawa 2009, Wu

and Koishi 2009, Wang and Wu 2008). All of these methods evaluate the field variables based

entirely on a set of discrete nodes and require no predefined nodal connectivity (Liu 2003). As there

is no need to create a mesh, and the nodes can be created by a computer in a fully automated

manner, the time that an engineer would have spent on conventional mesh generation is minimized. 

The EFG method, which is one of the most promising meshless methods, was developed based on

the discrete element method (DEM). It essentially has two aspects: moving least squares (MLS)

approximation is used for the construction of the shape function, and the Galerkin weak form is

employed to develop the discretized system equation (Liu 2003). MLS approximation was

developed from the conventional least-squares method, and in practical numerical processes it

essentially involves the application of the conventional method to every selected point. A

disadvantage of the conventional least-squares method is that the final algebra equations system is

sometimes ill-conditioned. Hence, this ill-conditioned algebra equations system must be solved in

MLS approximation. However, it is difficult to determine which system is ill-conditioned, as no

methods in mathematical theory judge whether a system is ill-conditioned before the equation is

solved. Thus, it is sometimes impossible to obtain a good, or even correct, numerical solution. This

drawback can be avoided by using the improved moving least-squares (IMLS) technique to obtain

the approximation function. In this type of approximation, an orthogonal function system with a

weight function is used as the basis function. The algebra equations system in IMLS approximation

is not ill-conditioned, and it can be solved without the need to derive the inverse matrix.

Based on IMLS approximation and the EFG method, an improved element-free Galerkin (IEFG)

method is formulated. The IEFG method is used in this paper to study three-dimensional (3D)

elastic problems. Several numerical examples for the elastic problems are presented to evaluate the

accuracy and efficiency of the proposed technique.

2. Improved Moving Least-Squares (IMLS) approximation

In the EFG method, MLS approximation is employed for the construction of the shape function.

The MLS approximation is useful because the approximated field function is continuous and

smooth in the entire problem domain, and it is capable of producing an approximation with the

desired order of consistency (Liu 2003).

2.1 MLS approximation function

Let  be the function of the field variable defined in the domain Ω. The MLS approximation

of  at point x is denoted , and the trial function is

 (1)

where  is a vector of basis functions that consists of monomials of the lowest order to ensure

minimum completeness, m is the number of terms of the monomials, and  is a vector of

coefficients given by
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(2)

which are functions of x. 

In the three dimensions, the following basis can be chosen

     (m = 4, linear basis) or (3)

     (m = 10, quadratic basis) (4)

The local approximation at x, as described by Lancaster and Salkauskas (1981), is

(5)

where  is the point in the local approximation of x.

To obtain the local approximation of the function , the difference between it and the local

approximation  must be minimized by a weighted least-squares method.

Define the function

(6)

where  is a weight function with a domain of influence, and  are the

nodes with domains of influence that cover point x.

Eq. (6) can be written as

(7)
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that results in the equation system

(12)

where matrices  and  are

 and (13)

(14)

in which u is the vector that collects the nodal parameters of the field variables for all of the nodes

in the support domain.

From Eq. (12), we obtain

(15)

The expression of the local approximation  is thus

(16)

where  is the MLS shape function and

(17)

2.2 The IMLS procedure

In MLS approximation, Eq. (12) is sometimes ill-conditioned, even in the presence of a singular

phenomenon. Thus, it is difficult to obtain a correct numerical solution. To overcome this, the

weighted orthogonal basis functions can be employed to present the IMLS approximation

(Matsubara and Yagawa 2009). 

For , , we define

(18)

and then  is an inner product, and  is a Hilbert space.

In the Hilbert space , for the set of points  and the weight functions , if the

functions  satisfy the conditions

   (k, j = 1, 2, …, m) (19)

then the function set  is called a weighted orthogonal function set with

weight functions  at points . If  are polynomials, then the

function set  is called a weighted orthogonal polynomials set with weight

functions  at points .

From Eq. (18), Eq. (12) can be written as
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(20)

If the basis function set , i = 1, 2, …, m is a weighted orthogonal function set at

points , i.e., if

     (21)

then Eq. (20) becomes

(22)

We can then obtain the coefficients  directly, as follows

   (i = 1, 2, …, m) (23)

i.e.,

(24)

where

(25)

From Eqs. (23) and (5), the expression of the approximation function  is

(26)

where  is the shape function and

(27)

This is an IMLS approximation in which the coefficients  are obtained. It is impossible to

yield an ill-conditioned or singular equations system, and we can thus obtain the correct solution.
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From Eq. (27), we have

(28)

which represents the shape function of the IMLS approximation corresponding to node I. Then, the

partial derivatives of  can be obtained as

 (29)

The weighted orthogonal basis function set  can be formed with the Schmidt method

,     i = 2, 3, … (30)

or can be expressed as

,     i = 3, 4, … (31)

where

(32)

(33)

and , or  for 3D problems.

Furthermore, using the Schmidt method, the weighted orthogonal basis function set  can

be constructed from the monomial basis function. For example, for the monomial basis function

(34)

the weighted orthogonal basis function set can be generated as

,     i = 1, 2, 3, … (35)

When the weighted orthogonal basis functions (30) and (31) are used, there are fewer coefficients

in the trial function. Therefore fewer nodes are needed in the domain of influence in IMLS

approximation than in MLS approximation.

2.3 Weight function

The weight function used in Eq. (6) through Eq. (17) plays an important role in the EFG method.
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This function should be non-zero over only a small neighborhood of xI to generate a set of sparse

discrete equations. 

Define  and , where  is the size of the domain of influence of the

 node. Then, the weight function can be written as a function of normalized radius r. In this

paper, we use the cubic spline weight function

(36)

The size of the domain of influence at a node, , is computed by

(37)

where  is a scaling parameter that is typically 2.0-4.0 for a static analysis, and distance  is

determined by searching for enough neighbor nodes to allow A to be regular, i.e., invertible. Due to

Eq. (29), we must compute the spatial derivative of the weight function as 

(38)

3. IEFG method for 3D elasticity problems

3.1 Governing equations

Consider a continuum of 3D elastic solids with volume Ω and surface boundary Γ, as shown in

Fig. 1. The governing equation of equilibrium is

· σ + b = 0     in Ω (39)
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In the above, Ω is the domain of the body, σ is the stress tensor, ε is the strain, b is the body
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divergence operator, and  is the symmetric gradient operator.
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and

σ · n = ,   on  Γt (42)

where  is the prescribed displacement on essential boundary Γu,  is the prescribed traction on

natural boundary Γt, and n is the unit normal outward to the domain boundary. Also

 and (43)

 for tridimensional stress. (44)

3.2 The Galerkin weak form

The use of MLS approximation produces shape functions that do not possess the Kronecker delta

function property, i.e., , and therefore . This implies that essential boundary
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bandness of the system matrix are preserved. 

In the IEFG method, the essential boundary conditions that need to be enforced have the form

     on    Γu (45)

where  is the prescribed displacement on the essential boundary.

Now, consider the problem stated in Eqs. (39)-(42). We introduce a penalty factor to penalize the

difference between the displacement of the MLS approximation and the prescribed displacement on

the essential boundary. The constrained Galerkin weak form using the penalty method becomes 

(46)

where  is a diagonal matrix of the penalty factor and  for 3D cases.

The penalty factors  can be a function of the coordinates and different from one

another, even though in practice we often assign them the identical constant of a large positive

number, which can be chosen with the following way (Liu 2003)

 and (47)
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When there are displacement restrictions along the direction of x1 (or x2, x3), s1 (or s2, s3) is,

correspondingly, equal to one; otherwise, it is equal to zero.
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with

(55)

4. Numerical results and discussion

4.1 Convergence analysis and error estimation

A convergence study of the proposed method is carried out by analyzing the final function values

under different discretization schemes and different scaling factors for the nodes of the study field.

For error estimation, we suppose the problem is

(56)
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(61)

and assuming that on each cross section, we have uniform tension produced by the weight of the

lower potential of the bar. The parameters are taken as l = 40 mm, ν = 0.15, E = 2.069 × 104 MPa,

and ρ = 2405 kg/m3. The final expressions for the displacements are

(62)

 and (63)

(64)

Tables 1 and 2 indicate that under a certain , the relative error norm decreases as the number
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2
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Fig. 2 Stretching a prismatic bar by its own weight

Table 1 Relationship between the number of nodes and the relative error norm (displacement) for the EFG
and IEFG methods and their computation time in 4.1

Number of nodes Relative error norm
(displacement)

Computation time of the 
IEFG method (s)

Computation time of the 
EFG method (s)

5 × 5 × 3 0.0011 19.640 20.328

5 × 5 × 5 3.0312 × 10−4 83.063 84.766

5 × 5 × 7 1.8114 × 10−4 190.422 191.546

5 × 5 × 9 1.1255 × 10−4 311.312 313.750

5 × 5 × 11 7.5606 × 10−5 433.078 439.344



134 Zan Zhang and K.M. Liew

Table 2 Relationship between the number of nodes and the relative error norm (stress) for the EFG and IEFG
methods and their computation time in 4.1

Number of nodes Relative error norm
(stress)

Computation time of the 
IEFG method (s)

Computation time of the 
EFG method (s)

5 × 5 × 3 0.012 23.907 24.953

5 × 5 × 5 0.0072 112.891 115.125

5 × 5 × 7 0.0047 254.516 258.110

5 × 5 × 9 0.0032 416.281 421.500

5 × 5 × 11 0.0024 579.453 587.484

Fig. 3 Convergence rate for displacement with IEFG method and fixed dmax

Fig. 4 Convergence rate for stress with IEFG method
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of nodes increases and the solution converges when the number of nodes is 5 × 5 × 11. The

convergence studies are also plotted in Figs. 3 and 4 to show a clearer convergence trend. From the

tables and figures, we conclude that a higher completeness order of the basis function achieves a

better convergence rate than the lower order.

In Figs. 5 and 6, we show the convergence of the IEFG method by keeping the number of nodes

unchanged and resized the values of . Because the proposed method is sensitive to the support

size of the nodes that are denoted by the scaling factor, the relative error norm decreases with an

increase in . It is found that = 2.8 for the displacement and = 2.9 for the stress produce

good results. In Table 3, we compare the computation time for both EFG and IEFG methods. We

dmax

dmax dmax dmax

Fig. 5 Convergence rate for displacement with IEFG method and a certain number of nodes

Fig. 6 Convergence rate for stress with IEFG method
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observe that the IEFG method achieves a faster computational speed with the same precision.

4.2 Example problems

The implementation of the IEFG method for elastostatic problems is now evaluated via a number

of examples. 

A regular arrangement of nodes and the background mesh of cells are used for the numerical

integrations to compute the system equation. In each integration cell, a 3 × 3 × 3 Gauss quadrature

scheme is used to evaluate the stiffness matrix. The 3D linear basis function and cubic spline

weight function are used in the IMLS approximation.

4.2.1 Load distributed over a part of the boundary of a semi-infinite solid

Imagine that the plane z = 0 is the boundary of a semi-infinite solid, and we find the

displacements and stresses produced by a distributed load (see Fig. 7). Suppose that ρg is the

weight per unit volume of the body, the body forces are X = Y = 0, Z = −ρg and the stress

distribution is given by the following equations

(65)

 and (66)

(67)

The vertical displacement of the semi-infinite body is

(68)

The parameters are q = 1 MPa, E = 2.069 × 104 MPa, ν = 0.15, and ρ = 2405 kg/m3.

Figs. 8 and 9 present the analytical solution and numerical results by using the EFG and IEFG

methods. It can be seen that when = 2.0 for displacement and = 2.7 for stress, both

methods works well; however, the computational speed of the IEFG method is faster than that of

the EFG method.

σx σy
ν

1 ν–
------------ q ρgz+( )–= =

σz q ρgz+( )–=

τxy τyz τzx 0= = =

w
1 ν+( ) 1 2ν–( )

E 1 ν–( )
-------------------------------------- q h z–( ) ρg

2
------ h

2
z

2
–( )+=

dmax dmax

Table 3 Relationship between dmax and the relative error norm for the EFG and IEFG methods and their
computation time in 4.1

Relative error norm
(displacement)

Relative error norm
(stress)

Computation time of 
the IEFG method (s)

Computation time of 
the EFG method (s)

2.3 3.6285 × 10−4 0.0123 242.797 254.422

2.4 3.6828 × 10−4 0.0092 244.047 259.937

2.5 2.5552 × 10−4 0.0071 436.219 440.094

2.6 1.3157 × 10−4 0.0057 434.235 449.594

2.7 8.9576 × 10−4 0.0046 433.500 442.313

2.8 7.5606 × 10−4 0.0034 433.078 439.344

2.9 8.5423 × 10−4 0.0024 579.453 587.484
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Fig. 7 Load distributed over a part of the boundary of a semi-infinite solid

Fig. 8 Displacement distribution along Z axis

Fig. 9 Normal stress distribution along Z axis
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4.2.2 A cantilever beam

The 3D cantilever beam, shown in Fig. 10, is investigated to benchmark the proposed method.

The left end of the beam is fixed, and the right end is subjected to paraboloidally distribute

downward traction. As the beam is relatively thin, a plane stress problem can be considered to yield

the analytical solution. This analytical solution is then adopted as the reference value in our

numerical study.

The displacement components of the analytical solution are given by

 and (69)

(70)

where the moment of the inertia I of the beam is given by ,  and

. The stress components that correspond to the foregoing displacements are

(71)

 and (72)

(73)

The parameters are taken as , , , and  in the study of this

numerical example.

Figs. 11-13 show the comparisons between the EFG, IEFG results and the analytical solutions, in

which Fig. 11 shows the comparison for displacement in y-direction along the neutral axis, Fig. 12

for the normal stress and Fig. 13 for the shear stress. All these plots show that the results obtained

using both EFG and IEFG methods are in good agreement with the analytical solutions, yet about

five percent of the computation time is saved with IEFG method.

4.2.3 3D Lame problem

The three-dimensional Lame problem consists of a hollow sphere, with inner and outer radius a

and b, respectively, under internal pressure. Fig. 14 shows a schematic of the problem under

ux
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2 D
2

4
------–⎝ ⎠

⎛ ⎞+–=

uy
py

6EI
--------- 3νy

2
L x–( ) 4 5ν+( )D

2
x

4
--------- 3L x–( )x2

+ +=

I D
3

12⁄= ν 0.3=

E 30MPa=

σx

p L x–( )y
I

-----------------------–=

σy 0=

σxy
p
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p 1000–= L 50= D 12= B 1=

Fig. 10 3D cantilever beam subjected to a parabolic at the free end
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consideration. The numerical solution for this problem is obtained using the material parameters

 and  and the geometric parameters  and , with an internal

pressure .

The exact solutions for the radial displacement and radial and tangential stresses are given as 

(74)

E 1.0= ν 0.25= a 10= b 20=

p 1=

ur
pa

3
r

E b
3

a
3

–( )
------------------------- 1 2ν–( ) 1 ν+( ) b

3

2r
3

-------+=

Fig. 11 Displacement (uy) distribution along the neutral axis

Fig. 12 Normal stress distribution along the line of x = L/2, z = 0.0
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(75)

(76)
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Fig. 13 Shear stress distribution along the line of x = L/2, z = 0.0

Fig. 14 3D Lame problem: hollow sphere under internal pressure
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Due to the symmetry of the hollow sphere and inner pressure, one eighth of the hollow sphere is

considered when the EFG and IEFG methods are used. Fig. 15 shows the nodes distribution of the

problem domain. The displacement and stress that are obtained using both the EFG and IEFG

methods are shown in Figs. 16 and 17. It should be noted that in this analysis, the same number of

nodes but different  are used for displacement and stress. As the figures shown, the

computational time elapsed by IEFG method is slightly less than the EFG method.

dmax

Fig. 15 One eighth of a hollow sphere and nodes arrangement

Fig. 16 Radial displacement ur on the hollow sphere
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5. Conclusions

This paper proposes an IEFG method that is based on IMLS. By comparing example results

obtained with the EFG and the analytical solution, it has been demonstrated that the IEFG method

is efficient for dealing with 3D elastic problems. In IMLS approximation, the orthogonal function

system with a weight function is used as the basis function. IMLS approximation has greater

computational efficiency and precision than does MLS approximation, and it also does not lead to

an ill-conditioned system of equations. This means that this system can be solved without obtaining

the inverse matrix, and fewer coefficients are involved. The method has been demonstrated for

solving several example problems and concluded that the convergence rate of IEFG method is

slightly better than the EFG method.
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