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Abstract. Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum
theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-
sensor which has 3 × Na × Np degrees of freedom, where Np is the number of representative unit cells and
Na is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential
between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors
with different amount of target analyte and (2) the dependence of resonance frequency on finite element
mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance
frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM.
Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic
perspective.
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1. Introduction

Microcantilevers were first designed and fabricated for use as force sensors. Possessing an

extremely high force sensitivity, in the piconewton (pN) range, the cantilevers have made Atomic

Force Microscopy (AFM) (Binnig et al. 1986) universally recognized not only as a versatile

microscopy technique with high spatial resolution but also as a powerful tool for measuring the

forces between surfaces. Nowadays cantilevers have been further used as biosensors since Clark and

Lyons in 1962 made an amperometric sensor detecting glucose level in blood (Fritz 2008).

When the size of micro/nano cantilever bio-sensors is getting smaller and down to nano scale, the

classical beam theory (Finot et al. 2008) and classical finite element formulation (Sheeparamatti et

al. 2006) are not accurate enough to describe the static/dynamic behavior. On the other hand,

molecular dynamics (MD) simulation provides high accuracy but expensive computational cost. As

a compromise, in this work, we adopt Atomistic Field Theory developed by Chen and Lee (2005,

2006) to resolve this dilemma. It is an atom-embedded continuum theory which integrates

concurrently atoms and continua. It has the accuracy of molecular dynamics but is less expensive.

Lee et.al. formulate a generalized atomistic finite element method (GAFEM) to numerically

implement this field theory for systems at micro/nano scale (Lee and Chen 2008).

The outline of this paper is arranged as follows: in Section 2, the resonance analyses are discussed
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in beam theory, classical finite element method, generalized atomistic finite element method

(GAFEM), and MD simulation. In Section 3, three different problems are discussed. The first one is

the shift of the resonance frequency due to different amount of target analyte. The second one is the

effect of finite element mesh size on the first resonance frequency. The third one is a short

discussion on the Courant-Friedrichs-Lewy condition in GAFEM. This paper ends with a brief

summary and discussion.

2. Resonace analysis in different theories

2.1 Beam Theory

Cantilevers bend when loading is applied. The whole system is simulated as an ideal spring-mass

system. The spring constant k is the proportionality factor between applied force f and the resulting

bending displacement x. It is widely known as Hooke’s Law.

(1)

For cantilever beam, the spring constant can be expressed as

(2)

where E is Young’s modulus, w is the cantilever width, b is the thickness and L is the length. Then

the resonance frequency is obtained as 

(3)

where m* is an effective mass (taking into account the cantilever geometry and mass distribution

along the cantilever). It is noticed that only one resonance frequency is computed in using beam

theory. Its application is very limited due to lots of closure hypotheses in the beam theory and

specified beam shape assumption.

2.2 Classical finite element method (Classical continuum)

In this method, continuum is discretized into elements and nodes. Assume that the stress tensor is

a function of strain tensor only and there is no damping. The governing equation becomes

(4)

where M is the mass matrix, K is the stiffness matrix, U is the displacement vector, and f is the

vector of applied force. The resonance frequencies of the system can be obtained through the

eigenvalue analysis 

(5)

where ω is a set of resonance frequencies. If there is no constraint on an N-node system, 3N

resonance frequencies can be found. Above micro size, this approach is very useful and accurate.
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2.3 Generalized atomistic finite element method (Atom-embedded continuum)

Crystalline solids are distinguished from other states of matter by a periodic arrangement of the

atoms; such a structure is called a Bravais lattice. Essentially, the regularity displayed by a crystal

lattice is that of a three-dimensional mesh which divides space into identical parallelepipeds.

Imagine that a number of atoms, referred to as a unit cell, are placed at the intersections of such a

mesh; then we have a grain or a single crystal as shown in Fig. 1(a). The distinct feature of this

Atomistic Field Theory is that a single crystal is modeled as a continuum in which a point

represents a unit cell consisting of a specified number of different atoms, not just an idealized

mathematical identity. Therefore a multi-grain material system is considered as a concurrent

atomistic/continuum material system. All single crystals (grains) are modeled by this multiscale

theory, a continuum theory, but not just a classical continuum theory in which a point only has three

degrees of freedom. 

In this field theory, the motion could be expressed as

(6)

where k and α indicates the α-th atom in the k-th unit cell,  is the displacement of the centroid

of the k-th unit cell and  is the relative displacement of the α-th atom to the centroid. All

the physical quantities, including density, displacement, etc., could be expressed in physical and

phase spaces and these two spaces are connected through the Dirac delta function and the

Kronecker delta function as

(7)

where  is any physical quantity in phase space,  is the corresponding

density function in physical space, Na is number of atoms in a unit cell, Nl is number of unit cells,

 is Dirac delta function and  is Kronecker delta function.
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Fig. 1(a) Schematic diagram of single crystal, including crystal lattices, finite element meshes and nodes,
(b) GAFEM mesh for cantilever sensor
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From Eqs. (6) and (7), one can find the balance law of linear momentum (Lee and Chen 2008)

(8)

where the kinetic part of stress tensor  is related to temperature as ; ;

mα is the mass of α-th atom;  is the total mass of a unit cell;  is the volume of the unit 

cell;  is the mass density; uλ is the displacement of λ-th atom;  is all the interatomic force

acting on λ-th atom;  is all the body force due to external field acting on the λ-th atom.

This work is a special case in which T=0. Then Eq. (8) can be re-written as 

 (9)

where  is all the interatomic force acting on λ-th atom in the k-th unit cell;  is all

the body force due to external field acting on the λ-th atom in the k-th unit cell.

In this work, we restrict our attention to pair potential which can be expanded in Taylor Series as

(10)

It is noticed that  and 
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where  is the displacement of λ-th atom;  is the current position of λ-th atom; 

is the original position of λ-th atom;  is an identity matrix.

(13)

For example, let the interatomic potential be the Coulomb-Buckingham potential

(14)

where  is electric charge of i-th atom;  is the interatomic distance between i-th and j-th atoms;

 and  are material constants. The stiffness matrix can be derived as

(15)

where

 (16)

The two-atom stiffness matrix, K*, is obtained as

 (17)

From Eqs. (9) and (10), we may rewrite Eq. (9) as
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matrix in Eq. (17) with λ indicating kα-th atom and µ indicating lβ-th atom. Let the specimen be

decomposed into 8-node solid finite elements. Through shape functions, the displacement field can

be linked to the corresponding nodal values as

(19)

where  is the I-th shape function of which the value depends on the location of the k-th unit

cell;  is the node number corresponding to the I-th Gauss point of the element where the k-

th unit cell resides.

Now we write Eq. (18) as

 (20)

Substituting Eq. (19) into Eq. (20), it results

+ (21)

Since Eq. (21) must be valid for any arbitrary virtual displacement , it leads to

(22)

Eq. (22) can be properly assembled into a more compact form

MU + KU = F + ϕ  (23)

From the mass matrix and the stiffness matrix, one can calculate the natural frequencies of the

system through eigenvalue analysis. If the system is discretized into Np nodes and each node is a

representative unit cell with Na atoms, the number of natural frequencies is . It is seen

that this theory integrates atoms into continuum. It provides the accuracy of MD simulation but

does not need expensive computation. 

2.4 Molecular dynamics simulation

When the element size of GAFEM reduces to lattice constant, the governing equation of the

system is exactly the same as that in molecular dynamics. If the number of lattices is Nl, the number

of resonance frequencies will be .
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3. Computation examples

The material used in the work is barium titanate ( ) and magnesia ( ). The

interatomic potential parameters are listed in Table 1 and Table 2 (Chen et al. 2010). Barium titanate

has five atoms in a unit cell: one barium, one titanium, and three oxygen. It has a lattice constant

7.54567634 Bohr (1 Bohr = 5.291772108 × 10−11 m). Magnesia has 8 atoms in a conventional unit

cell: four magnesium and four oxygen. It has a lattice constant, 7.93684912 Bohr. The cut-off radius

is 22.6767 Bohr for all cases.

3.1 Resonance analysis of nano cantilever sensor

The material used in this case is barium titanate and is 240 lattices in length, 20 lattices in width

and 10 lattices in thickness. The mesh is shown in Fig. 1(b). On the surface, it is assumed that 40

gold atoms are uniformly spread as adhesive layer for receptors. The total target hybridized DNA

mass is 5 × 109 me (electron rest mass, 5 × 109 me 4.5547 × 10−21 kg), which is roughly equivalent

to 152 30-bp double stranded DNA. Before coating gold atoms, the first fundamental frequency is

22.916 KHz. After coating gold without any hybridization, the frequency shifts to 22.900 KHz. Two

different distributions of hybridization are studied. The first one assumes that the distribution is

always uniform. The second one assumes the hybridization is randomly distributed based on

hybridization percentage. In other words, if 40% of total target mass is attached, 40% of the whole

surface is randomly covered. The mass randomly distributed on the same node more than once is

prohibited. In Fig. 2, the numerical results show that these two cases are very similar. It implies the

hybridization distribution does not affect the dynamic performance of micro/nano bio/chemical

sensor.

Notice that the weight of maximum possible target analyte is much less than that of the nano

cantilever, i.e., m << M. The natural frequency is linearly shifted and can be derived as follows. 

Ba
2+

Ti
4+

O3

2-
Mg2+O

2-

≈

Table 1 Interatomic potential coefficients of MgO

Coulomb-Buckingham potential

Mg-Mg Mg-O O-O

A (eV) 0 929.62 9547.96

B (Å-1) 0 0.29909 0.21916

C (eV Å-6) 0 0 32.32

Table 2 Interatomic potential coefficients of BaTiO3 

Coulomb-Buckingham potential

Ba-O Ti-O O-O

A (eV) 4818.416 4545.823 9547.96

B (Å-1) 0.03067 0.261 0.21916

C (eV Å-6) 0 0 32.32
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( ∵ m << M)

(24)

where m is additional mass of attached target analyte and M is the mass of the nano/micro

cantilever sensor. In Fig. 2, one can notice that even when the target DNA concentration is

relatively low, the sensitivity of the sensor is still significant (4 kHz for 4.5547 × 10−3 femto-gram).

3.2 Mesh dependence tests 

Here we test two specimens made of barium titanate. Both specimens have 2 lattice constants in

width (y-direction) and 1 lattice constant in thickness (z-direction). Respectively, the lengths (x-

direction) are 24 lattice constants and 120 lattice constants for the first and second specimens. The

number of finite elements in y-direction and z-direction are respectively 2 and 1. Fig. 3 (specimen

1) shows the relation between the first resonance frequency and the number of finite elements in the

x-direction. It is observed the first resonance frequency is approaching a constant value as the finite

element size approaching the lattice constant. This constant value is the same as one would observe

from MD simulation. If the number of finite elements is small, then the finite element model tends

to be stiffer than the one with more elements. In other words, the model with less number of

elements makes the specimen artificially and mistakenly stiff. It explains why the first resonance

frequency drops to instead of rising to the constant value. In Fig. 4, the first fundamental frequency

converges to another constant value. Comparison between the two cases, it is seen that the finite

element size which converges to the constant value is around one tenth of the specimen length. It

means for specimen 1 (24 lattices), the element size needs to be at most 3 lattice constants, and for

specimen 2 (120 lattices), the element size needs to be at most 12 lattice constants. It also can be

interpreted as 10 nodes are good enough to express the first mode shape. 
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Fig. 2 The shift of the first fundamental frequency. The dashed line with error bar is the result of random
distribution and the error bar is the standard deviation of 10 different distributions; the solid line is the
result of uniform distribution



Atomistic analysis of nano/micro biosensors 119

3.3 Courant-Friedrichs-Lewy condition

The Courant-Friedrichs-Lewy condition (CFL condition) provides a criterion for the maximum

time step in solving hyperbolic-type PDE numerically. The original concept from Courant et al. is

derived from the eigenvalue analysis (Courant et al. 1967), specifically

(25)

where  is the largest natural frequency of this linear system. 

In the classical finite element method, the time needed for the wave traveling across the smallest

element is equal to  in the CFL condition. That means, for 1-D case 

∆t ∆tcritical≤ 2

ωmax

-----------≡

ωmax

∆tcritical

Fig. 3 Mesh dependence Test I for the 24-lattice specimen

Fig. 4 Mesh dependence Test II for the 120-lattice specimen
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(26)

where u is the wave propagation speed; ∆t is the time step; ∆x is the smallest element size.

However since GAFEM is based on a nonlocal interatomic potential,  depends on ;

in other words, the number of elements, not the element size, determines the CFL condition. In

GAFEM, the CFL condition based on wave propagation is not valid due to the nonlocal effect. 

∆t ∆tcritical≤ ∆x

u
------=

∆tcritical ωmax

Fig. 5 CFL condition (Time Step) vs. specimen size in one element

Fig. 6 CFL condition (Time Step) vs. number of finite elements (in one dimension). The specimen size is
fixed to 6 lattice constants (in one dimension).



Atomistic analysis of nano/micro biosensors 121

In this case, we used magnesia (MgO) to demonstrate the CFL condition. Fig. 5 shows that the

maximum time step, , is almost a constant due to the nonlocal effect, especially when the

number of lattices is sufficiently large. In this case the specimen size changes from 1 lattice to 1000

lattices (in one dimension) but all in one finite element. Fig. 6 shows when the number of elements

increases, the maximum resonance frequency becomes larger and hence the required time step is

getting smaller. In this case, the specimen size is fixed as 6 × 6 × 6 lattices but the number of

elements ranges from 1 to 6 in all directions. 

To compare with the noise of cantilever, the first eigenmode of the thermal noise of a micro-sized

cantilever sensor at room temperature is around 10,290 Hz (Rast et al. 2000). In other words, the

micro-sized cantilever oscillates once in every 9.7 × 10−5 sec. The maximum time step for numerical

convergence from the CFL condition is around 10 femto-seconds. 

4. Conclusions

In this work, resonance analyses in different theories are discussed. In beam theory, only one

approximated resonance frequency is obtained. Once the system is modeled by classical finite

element method, 3N resonance frequencies are obtained (N is the number of nodes). Molecular

dynamics gives 3 × Nl × Na exact resonance frequencies but the computational cost is too expensive.

Nevertheless Atomistic Field Theory (AFT) with GAFEM provides a highly accurate solution with

inexpensive computational cost. It could be used to precisely predict the dynamic performance of

nano/micro bio/chemical sensors, namely the first fundamental resonance frequency. 

In micro/nano system, classical continuum mechanics is not valid. We need to resort to Atomistic

Field Theory (AFT) and Generalized Atomistic Finite Element Method (GAFEM), of which the

mesh dependence and the stability condition have been addressed. 
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