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Abstract. In recent years, study of the static response of pavements to moving vehicle and aircraft
loads has received significant attention because of its relevance to the design of pavements and airport
runways. The static response of beams resting on an elastic foundation and subjected to moving loads was
studied by several researchers in the past. However, most of these studies were limited to steady-state
analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the
modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in
analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for
simulating the underlying soil medium and is conceptually more appealing than the one-parameter
(Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for
analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based
on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft
loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for
modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak
model allowing the shear interaction to exist between the spring elements. This can be accomplished by
connecting the spring elements to a layer of incompressible vertical elements that can deform in
transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are
considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the
effect of the position of moving loads on the response of pavement.

Keywords: beam element; damping; foundation; moving loads; pavement; Pasternak’s model; subgrade.

1. Introduction

Generally, in the analysis of bending of beams on an elastic foundation, the subgrade models such

as the Winkler, Filenenko-Borodich, Pasternak, Vlasov, Reissner, Hetenyi, etc., play a very

important role. The salient features of the original problem are retained in the model and the gross

behaviour of the beam-foundation system can be investigated to highlight the major parameters and

characteristics of the problem
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The analysis of bending of beams on an elastic foundation is developed on the assumption that

the reaction forces of the foundation are proportional at every point to the deflection of the beam at

that point. This assumption was first introduced by Winkler (1867), which formed the basis of

Zimmermann’s (1930) classical work on the analysis of railroad tracks. The Winkler model has

been extensively applied for the analysis of both shallow and deep foundations. It has been shown

by Foppl’s (1922) classical experiment and Hetenyi’s (1950) analytical work that Winkler’s

assumption, in spite of its simplicity, leads to satisfactory results in the stress analysis of beams

resting on an elastic foundation. On the other hand, by means of the hypothesis of isotropic, linearly

elastic semi-infinite space, the physical properties of a natural foundation can be correctly described.

To bridge the gap between these two extreme cases, interactions between Winkler’s springs were

considered by several authors. Hetenyi (1950, 1946) treated the problems of beams or plates on an

elastic foundation by assuming a continuous beam or plate imbedded in the material of foundation,

which is itself without any continuity. Pasternak (1954) assumed that the shear interactions exist

between the springs. Vlasov and Leont’ev (1966) also considered the shear interactions in the

foundation and formulated their problems by using a variational method. A number of studies report

the applicability of two-parameter models (Pasternak and Vlasov). They solved a large number of

problems involving beams, plates and shells on elastic foundation. The foundation considered is the

two-parameter model with the shear interactions taken into account. 

Sun (2001) presented a closed form solution for the response of a beam resting on a Winkler

foundation subjected to a moving line load, by means of two-dimensional Fourier transform and

using Green’s function. Shen and Kirkner (2001) presented a nonlinear 3D finite element analysis to

treat the involved nonlinear boundary conditions and to allow accurate prediction of residual

displacements. Analysis of a beam resting on reinforced granular bed overlying a soft soil strata

subjected to a moving load with constant velocity was presented by Maheswari et al. (2004). The

steady-state response of a uniform beam placed on an elastic foundation and subjected to a

concentrated load moving with a constant speed has been investigated by Mallik et al. (2006). An

effort has been made to find the solution of the governing differential equation analytically with and

without viscous damping. A meshless formulation using element free Galerkin method is presented

by Sunitha et al. (2008) to solve the governing differential equation of the beams on elastic

foundation.

In the recent years more attention is given to the establishment of more realistic foundation

models and development of simplified methods for analyzing complex structures, taking into

account the elasticity of foundations. 

An approximate numerical approach, based on the finite element technique, is appropriate for

analyzing complex structures resting on an elastic foundation, since it leads to relatively

straightforward matrix expressions. For the computation of long and complicated numerical results,

one can rely upon the modern digital computer. Besides, due to the versatility of the finite element

method, the variations in the geometry, loading and boundary conditions of the structure can be

easily taken into account. This paper presents a solution algorithm based on finite element method

for analyzing rigid pavements under moving vehicular or aircraft loads. The concrete pavement is

discretized by the beam elements. The underlying soil medium is modeled by the Pasternak model

allowing the shear interaction to exist between the spring elements. This can be accomplished by

connecting the spring elements to a layer of incompressible vertical elements that can deform in

transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are

considered by assuming the shear layer as an isotropic material. In addition to the conventional
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element stiffness matrix, two additional matrices are derived for a beam element lying on an elastic

foundation: (i) the ‘compressive stiffness’ matrix of the foundation, which is similar to the

conventional ‘consistent mass’ matrix, to account for the spring effects of the foundation, and (ii)

the ‘friction stiffness’ matrix of the foundation, which is somewhat similar to the conventional

‘initial stress’ matrix, to account for the shear interactions of the foundation beneath the beam. The

development of the infinite elements has helped in modeling the far field behavior and also in

reducing the number of elements and hence computational cost (Bettess 1977). A parametric study

is conducted to investigate the effect of moving loads on the response of pavement.

2. Beam on an elastic foundation with Pasternak model

A single-layer elastic foundation of finite thickness H is considered (see Fig. 1). The subject

matter will be restricted to the problems where the horizontal displacement is negligible. In addition,

it is assumed that the shear stress at the interface between the compressible layer and the rigid base

equals zero. For a relatively thin compressible layer of foundation, the variation of the normal

stresses along the depth may be small and therefore can be considered as constant with depth.

Based on the conventional stress-strain and strain-displacement relationships, the equilibrium of an

infinitesimal element of the foundation under an externally distributed load q(x) as shown in Fig. 1

can be given by the following differential equation

 (1)

Consider a beam resting on an elastic single-layer foundation whose properties are as described

previously. By neglecting the friction and adhesion between the beam and foundation surface, the

differential equation for bending of the beam is

(2)

in which  is the distributed load on the beam and EI is the flexural rigidity of the beam. Since

the beam lies on an elastic foundation, the distributed load consists of the given surface loads p(x)

and the foundation bearing pressure q(x)

q x( ) GpbH
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2
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dx
2

--------- kbw+–=

EI
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4
w

dx
4

--------- p x( )=

p x( )

Fig. 1 Pasternak’s two parameter model
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(3)

Substitution of Eqs. (1) and (3) into Eq. (2) yields

(4)

An examination of above equation shows that the first term depends on the internal bending

stresses in the beam, while the second and third terms depend on the reactions of the elastic

foundation, distributed over the surface supporting the beam and caused by the compressive and

shearing strains in the elastic foundation.

3. Finite element stiffness formulation 

The equilibrium equation of a beam lying on an elastic foundation has been shown in the

preceding section (Eq. 4). The strain energy U of the system can be expressed as follows

(5)

This equation may also be written in a stiffness matrix form for any appropriately developed

beam finite element as follows

 (6)

in which {f} is the vector of nodal loads, {δ} is the vector of flexural nodal displacements of the

element, [k1] is the conventional element stiffness matrix for beam flexure, corresponding to the term

 in Eq. (4), [k2] is the friction stiffness matrix of the foundation underlying the beam element,

corresponding to the term  in Eq. (4), and [k3] is compressive stiffness matrix of the foundation,

corresponding to the term k b w in Eq. (4).

It is of interest to point out that Eq. (5) can be visualized as an equilibrium equation of motion of

a freely vibrating beam with a harmonic frequency equal to unity and a beam mass density equal to

k, while the beam is subjected to a pair of orthogonal in-plane compressive stresses equal to Gp (no

in-plane shear). With this analogy in mind, it is clear that the ‘friction stiffness’ matrix [k2] of the

foundation beneath the beam element is similar to the ‘initial stress’ matrix for the buckling and

large deflection analysis of a beam, for which the two orthogonal in-plane stresses equal to Gp and

the in-plane shearing stress vanishes. It is also clear that the ‘compressive stiffness’ matrix [k3] of

the foundation beneath the beam element is identical to the ‘consistent mass’ matrix of a freely

vibrating beam element where the mass density is replaced by the compressive spring constant k

and the natural frequency is set to unity. 

The matrices [k1], [k2] and [k3] can be computed as follows
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(7)

3.1 Finite Element

In case of finite beam element, the shape functions are 

(8)

3.2 Infinite Element

The main purpose of the development of infinite elements is to model the unbounded domain.

Bettess presented a general approach for deriving the infinite elements from the finite element (parent

element). The shape functions of the finite element are multiplied by a decay function. The role of the

decay function is to ensure that the behaviour of the element at infinity is reasonable reflection of the

physical characteristics of the problem considered. This means that the far field variable should

approach monotonically to its far field value. The decay function employed in the present study is an

exponential decay function, with which the finite element shape functions are modified as follows

(9)

The matrices [k1], [k2] and [k3] can be derived from same Eq. (7) using numerical integration.

Before carrying out numerical integration using the two point Gauss quadrature, the integrals

involved have to be converted to those with limits varying between −1 to 1. The following is the

conversion adopted in this study

where  and 

;  and ; 

Using the conventional procedure of assemblage, the global stiffness matrix can be established for

the entire system as follows

 (10)

4. Validation

To verify the accuracy of the above finite element formulation and the computer program
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developed, the response of a beam computed is compared with standard closed form solutions

available. The closed form solutions for beams resting on an elastic foundation with Winkler model

and two parameter model are available. The following material properties are adopted in the

analysis for validation and parametric study.

• Beam          L = 10 m, b = 1 m,          Eb = 0.3605 × 108 kN/m2

• Soil            Gp = 7000 kN/m2,           k = 10000 kN/m3,              H = 1 m

• Load           P = 100 kN

4.1 Winkler’s model

To compare the result for beams resting on elastic foundation with Winkler model, Gp is taken

equal to zero. For comparison, the beam response in terms of central deflection, end deflection and

central moment are considered. In Tables 1 and 2, the results from the finite element analysis are

compared with the closed form solution available in literature. Good agreement is observed between

the two results.

4.2 Pasternak’s model 

The response for the condition of a load P applied at the central position is considered for

comparison. The governing differential Eq. (4) is solved analytically as described below. 

The solution of the above equation and its higher derivatives are given as follows

EI
d

4
w

dx
4

--------- GpbH
d

2
w

dx
2

--------- kbw+– 0=

Table 1 Validation of finite beam

Central Deflection (mm) Central Moment (kNm)

Winkler Two-Parameter Winkler Two-Parameter

Analytical 1.5585 1.506813 94.71465 89.27447

FEM 1.5585 1.506800 94.714 89.274

Error 0.0 0.0009 90.0 90.0005

Table 2 Validation of infinite beam

Central Deflection (mm) Central Moment (kNm)

Winkler Two-Parameter Winkler Two-Parameter

Analytical 1.4282 1.3891 87.5213 85.1241

FEM 1.4362 1.3944 87.5213 85.2180

Error 0.5584 0.3811 90.0 90.1103
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(11)

where           

; ; ; 

The constants C1 to C4 are evaluated using the following four boundary conditions

At contre, , , which yields 

At centre, , shear , yielding

The above two equations are further simplified as

(12)

(13)

At end, , , which gives

(14)
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At end, , 

(15)

The above Eqs. (12) to (15) are solved simultaneously to get the unknown constants C1 to C4.

For the case of infinite beams, the constants C3 and C4 are zero

(16)

Applying the boundary conditions for the slope and shear at the centre point:

At centre, x = 0,  or 

from which

(17)

At centre, x = 0, shear 

 or 

Substituting the value of constant C1 in the equations for the displacement and moment gives
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(18)

(19)

The deflection and moment at the central point of the beam are used for comparison, as tabulated

in Tables 1 and 2. Good agreement is observed between the two solutions. The deflected shape and

bending moment diagram for the condition of a load P applied at the central point are presented in

Figs. 2 and 3. The deflection curve and bending moment diagram obtained analytically are also

shown for comparison.

5. Results

A parametric analysis is conducted to study the effect of selected parameters like the length of

beam and shear modulus Gp on the response of beam. The length of the beam is varied from 10 to

w
P

4EIλ
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e

λµx–

µ β
2
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2

+( )
-------------------------- λβx( )cos

µ

β
--- λβx( )sin+⎝ ⎠
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M
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4βλµ
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Fig. 2 Comparison of deflected shapes of beam

Fig. 3 Comparison of bending moment diagram
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24 m. The analysis is also performed on the infinite beam incorporating the infinite elements on

either side. In all the cases, the load position is varied (from -5 to 5 m) in the central span AB of the

beam of 10 m length. The properties of two parameter model (k and Gp) adopted are k = 10000

(kN/m3) and Gp = 7000 (kN/m2). 

5.1 Effect of load position

The deflection responses to seven different load positions { } are plotted

in Figs. 4 (a) and 4 (b) for a 10 m finite beam and infinite beam, respectively. The end deflections

are considerably higher for the finite beam. Similar comparison for the moment response is

presented in Figs. (5) a and 5 (b). The values of the maximum positive or negative moments vary

marginally with the load position for the case of infinite beams, whereas significant variation is

observed for the case of finite beams. The effect is more pronounced when the load is placed at end

points A or B.

x 5– 3– 1– 0 1 3 5, , , , , ,=

Fig. 4 (a) Deflection response at varrious load positions for finite 10 m beam

Fig. 4 (b) Deflection response at varrious load positions for infinite beam
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The variations in the deflection of point A, the central deflection and central moment are

considered to highlight the effect of load positions. The effect of load positions on the deflection of

the beam at point A (starting point of load application) is presented in Fig. 6 for 10 m and 20 m finite

beams, and an infinite beam. The deflections are considerably higher for the 10 m beam, but there is

not much difference for the case of 20 m beam and infinite beam. Similar comparison for the central

deflection is given in Fig. 7. The deflections of the 20 m beam and infinite beam are observed to be

close. The maximum central deflection for case of 10 m beam is about 8% higher than that of the

infinite beam. The effect of load positions on the central moment is depicted in Fig. 8. The moments

for the 20 m beam and infinite beam are observed to be very close, whereas the moments for the

case of 10 m finite beam differ considerably when the load lies in the first or last one-third span. In

the central one-third span, the central moments for all three beams are nearly the same. 

Fig. 5 (a) Moment response at varrious load positions for finite 10 m beam

Fig. 5 (b) Moment response at varrious load positions for infinite beam
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Fig. 6 Variation in end deflection against load position

Fig. 7 Variation in central deflection against load position

Fig. 8 Variation in central moment against load position
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5.2 Effect of beam length

The central deflection of the beam has been plotted against the length of the beam for the load

applied at the central point in Fig. 9 along with the analytical result. As can be seen, good

agreement exists between the two results. The central deflection approaches a constant when the

beam length is over 24 m. Similar comparison for the central moment is presented in Fig. 10, which

also indicates good agreement between the finite element analysis and analytical results. The

moment increases up to 12 m and then decreases with further increase in beam length. Finally, it

approaches a constant for the beam length over 20 m.

5.3 Effect of shear modulus Gp

While studying the effect of variations in shear modulus Gp, the soil modulus k was considered

constant (10000 kN/m3). The values of the shear modulus Gp adopted in the analysis are listed

Fig. 9 Effect of length on central deflection

Fig. 10 Effect of length on central moment
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below: Gp = 3000, 5000, 7000, 9000 kN/m2. The deflection and bending moment curves under the

central load are plotted for different values of Gp in Figs. 11 and 12, respectively. The effect of

shear modulus Gp on the central deflection is plotted in Fig. 13. As can be seen, the central

deflection decreases with the increase in shear modulus. Similar effect on the central moment is

depicted in Fig. 14. The central moment decreases with the increase in shear modulus. Both the

central deflection and moment are higher for finite beam as compared to the infinite beam. 

Fig. 11 Variation in deflection response under central load for different shear moduli Gp

Fig. 12 Variation in moment response under central load for different shear moduli Gp
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6. Conclusions

This paper presents an improved solution algorithm based on the finite element method for the

static analysis of rigid pavements under moving loads. The concrete pavement is discretized by

finite and infinite beam elements. The infinite elements are suitable for modelling the far field with

infinite domain. The underlying soil medium is modelled by the Pasternak model which takes into

account the shear interaction between the spring elements. The deflections and moments of the

beam under the central load are considered for validation. Very good agreement has been observed

between the analytical and finite element results for the finite and infinite beams, which indicates

the capability of modelling the infinite boundaries with the infinite elements developed here.

The parametric study conducted reveals that the central deflection and moment approach constant

values with the increase in the beam length. With the increase in shear modulus, the central

deflection and moment both decreases. Both the central deflection and moment are higher for finite

beam as compared to the infinite beam. 

Fig. 13 Effect of shear modulus Gp on central deflection

Fig. 14 Effect of shear modulus Gp on central moment
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