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Abstract. A new seamless multiscale simulation was developed for coupling the continuum model with
its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the
continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized
domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the
overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based
on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then
enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted
for its time integration. The validation of the present method is reported through numerical tests of one
dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported
spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the
transition from MD to the continuum can be significantly improved by either increasing the size of the
coupling zone or expanding the nodal domain of influence associated with K-FEM.
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1. Introduction

Over the past three decades, a new conceptual framework of material engineering has been

motivated by the term “nanotechnology”. Presently, this term deals with modeling of material

behaviors at the nanometer length scale. Nanotechnology can be exploited to encompass the bottom-

up process by which material properties at macro-scale level can be designed by restructuring the

underlying atomistic structure. Thus, nanotechnology has the potential to realize the ideal concept of

material synthesis.

To develop this new design paradigm, an understanding of material behaviors from the atomistic

to the continuum scales is essential. Unfortunately, this challenge cannot be accomplished by either

continuum model or molecular dynamics model alone due to its individual limitations. For instance,

it was revealed that the continuum-scaled constitutive model begins to lose its effectiveness as the

size of its constituencies approaches the atomistic scale. On the other hand, it is impossible to

model the entire macroscopic domain with atomistic simulation even on a massive supercomputer.
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Thus, it is desirable to develop a special numerical model that can simulate the physical phenomena

of materials over a wide range of scales of interest. 

During the past decade, multiscale simulation has attracted enormous attention under these two

main approaches: (1) the hierarchical multiscale simulation and (2) the concurrent multiscale

simulation. In the hierarchical multiscale approach, information loss was reported in its

transformation from one scale to the next. To overcome this shortcoming, the concurrent multiscale

approach was then proposed. Its simulation was concurrently carried over different length scales and

a coupling method was necessary to ensure seamless information transfers between them. 

A numerical difficulty associated with the concurrent multiscale simulation is the false reflection

of high frequency waves at the molecular/continuum interface. This problem was basically due to

the discretization constraint of the continuum model. Its cutoff frequency is too low to

accommodate the high-frequency waves coming from the MD model. As these high frequency

waves cannot propagate into the continuum domain, they reflect back into the molecular region due

to the energy conservation. Consequently, this disturbance of energy balance in the MD model

affects the accuracy of the simulation. 

Several efforts have been made to address the shortcoming of the concurrent multiscale methods.

First among them was the Molecular Atomistic Ab initio Dynamics (MAAD) method (Abraham et

al. 1998), in which a “hand shake” region is introduced to couple the molecular dynamics model

with the continuum model. Then, the Hamiltonians of the two models are averaged for this region.

In order to avoid the spurious wave reflection, the finite element (FE) mesh was graded to the

fineness level of the atomistic spacing. In a related approach, Rudd and Broughton (1998) proposed

the Coarse-Grained Molecular Dynamics (CGMD) method. The tight-binding in a quantum

mechanics simulation method was removed from the standard MAAD and only FE and MD are

coupled. In this approach, the governing equation of motion was derived from a coarse-grained

energy approximation based on the exact atomic potential energy. However, by scaling down the

finite element mesh, a large number of time steps must be used in CGMD. 

A unified formulation of atomistic and continuum models, was later introduced by Tadmor et al.

(1996) and referred as the Quasicontinuum (QC) method. This method links an atomistic model to

the continuum model by adopting the Cauchy-Born rule. This rule assumes that the continuum

energy density can be derived from the atomistic potential by introducing the deformation gradient.

Then the wave reflection can be reduced by using a gradually refined mesh. However, the

deformation of the atomic lattice underlying continuum points must be restricted to homogeneous

deformation due to the assumption on the deformation gradient. An extended version of Cauchy-

Born rule based on an exponential mapping was later proposed by Arroyo and Belytschko (2002).

Their proposed method proved to be very effective in the analysis of carbon nanotube in which the

curvature effect must be taken into account (Arroyo and Belytschko 2003, Arroyo and Belytschko

2004). An alternative approach for building the continuum model from the atomistic basis is the so-

called the Virtual Atom Cluster (VAC) method proposed by Qian and Gondhalekar (2004). The

main difference in comparison with the Cauchy-Born rule is that the VAC model is formulated

without using either stress or strain update scheme. As a result, the VAC method provides the

facility for direct transfer of information between the molecular and the continuum models. 

In yet another approach, Belytschko and Xiao (2003) developed the bridging domain method

(BDM) that addressed the coupling between the continuum model and the molecular model. The

method employed the MD simulation over a localized region of interest while the continuum model

was used for the rest. The two regions are allowed to overlap over the bridging zone where the net
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Hamiltonian is taken as a linear combination of the two based on a scaling parameter. The

compatibility conditions in the bridging zone can then be enforced by Lagrange multiplier

techniques. Xiao and Belytschko (2004) further extended the BDM to dynamics simulation

problems. Several numerical investigations were carried out to demonstrate its performance in one-

and two-dimensional problems. The results confirmed its efficiency in alleviating the spurious wave

reflection at the molecular/continuum interface. Zhang et al. (2007) further proposed the Moving

Least Square (MLS) approximation to determine atomistic strain fields in the MD region as well as

the bridging zone. The conservations of energy and momentum of the BDM were later proven by

Xu and Belytschko (2008). 

Meanwhile, Wagner and Liu (2003) proposed the bridging scale method (BSM) for the coupling

between atomistic and continuum models. The molecular displacements were decomposed into the

coarse and the fine scales. Unlike the BDM, BSM represents the entire domain with the continuum

model while the atomistic model is only applied over a localized region. A damping kernel is used

to eliminate the redundant degrees of freedom in the MD domain while keeping their effects on the

reduced MD system. In much earlier time, this similar technique was implemented analytically by

Adelman and Doll (1976). Park et al. (2005a) and Park et al. (2005b) further extended the BSM to

two- and three-dimensional atomistic/continuum couplings respectively. However, Tang et al. (2006)

pointed out an error source in the BSM. They then proposed a modified linear element and an exact

multiscale interfacial condition to improve the accuracy of the original BSM.

In this study, a new multiscale simulation is proposed. Kriging-based finite element (K-FEM) is

employed to model the continuum matrix, while the molecular dynamics (MD) is confined in a

localized domain of interest. In the coupling zone, where the MD overlays the continuum model, its

net Hamiltonian is postulated by the contributions from the continuum and the molecular layers

based on a quartic spline scaling parameter as illustrated in Fig. 1, in comparison with the linear

and non-linear scaling parameters used in the bridging model. The displacement compatibility in the

coupling zone is then enforced discretely by the Lagrange multiplier technique. A multiple-time-step

velocity Verlet algorithm was adopted for its time integration. The objective of this study is to

investigate the effectiveness of K-FEM, with its expanded nodal domain of influence (NDOI), on

the transition smoothness of the two different length scales. 

This paper will first present a brief overview of K-FEM (Plengkhom and Kanok-Nukulchai 2005,

Kanok-Nukulchai and Wong 2008, Wong and Kanok-Nukulchai 2009). Subsequently, the multiscale

coupling method based on K-FEM and the quartic spline scaling parameter will be discussed,

followed by its application to dynamic simulation of wave propagation in one-dimensional atomic

lattice.

2. Kriging based Finite Element Method (K-FEM)

Kriging interpolation (Cressie 1993) was first introduced in Element Free Galerkin Method

(EFGM) by Gu (2003) as a substitution for the MLS approximation because of its Kronecker delta

property and its consistency. The Kriging interpolation was later applied to FEM, referred as K-

FEM, by allowing the domain of influence of a node to cover more than one element layer around

the node. As the Kriging interpolation is employed in this study, its brief theoretical background is

presented next.



356 Wichain Sommanawat and Worsak Kanok-Nukulchai

2.1 Kriging Interpolation (KI) 

Consider a set of nodes denoted by , where  and n is the total

number of nodes that influence a referenced location x. The global K-FEM field, , can then

be interpolated from , i.e.

(1)

This Kriging shape function, , can be derived based on a polynomial basis function as follows 

(2)

where  is the j-term of the polynomial basis function, m is the number of terms in the

polynomial basis, and Z(x) is the departure term from the basis function with zero mean and

minimized variance.

The mean square error (MSE) of the approximation field, , in estimating u(x), is unbiased,

i.e., , and can be expressed as 

(3)

To ensure consistency, m constraints must be used to ensure that each term of the polynomial can

be represented consistently by the same Kriging shape functions, i.e.
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Fig. 1 Comparison of scaling parameters between the present method and the bridging domain method
(Belytschko and Xiao 2003, Xiao and Belytschko 2004)
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Introducing the constraints of Eq. (4) with Lagrange multipliers,  into Eq. (3)

leads to

(5)

Minimizing the above equation with respect to  and  leads to the following Kriging

equation system as

(6)

According to the intrinsic hypothesis, the covariance of the field u(x) can be expressed as 

(7)

where  is the correlation function between any pair of coupled nodes located at xa and xb

within the subdomain . Consequently, the Kriging equation system, Eq. (6), can be rewritten in

the matrix form as

 (8)
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(12)

where I is n × n identity matrix. By comparing Eq. (11) with Eq. (1), the Kriging shape function

can be constructed as 

 (13)

Thus, the corresponding partial derivatives of  with respect to xi can be obtained as

(14)

In this study, the correlation function in Eq. (7) employs the quartic spline function, i.e. 

(15) 

where  is the distance between a pair of nodes and .

The typical 2D Kriging shape function and its first-order derivatives are illustrated in Fig. 2 in
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Fig. 2 Typical 2D Kriging shape function and its first order derivatives for linear basis function over 4 × 4
square elements around the node at (2,2)

Fig. 3 Conventional domain of influence concept
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i.e., all influencing nodes other than its own nodes, as illustrated in Fig. 4. When one layer of

elements is considered, the practice is identical to the standard FEM. It was confirmed (Plengkhom

and Kanok-Nukulchai 2005) that by using the linear basis function, the results obtained from K-

FEM based on one element layer of NDOI is identical to the conventional FEM. Thus, the K-FEM

can be regarded as an enhancement of FEM.

3. Multiscale modeling based on K-FEM

3.1 Coupling methodology 

As illustrated in Fig. 5, consider a problem domain in its initial configuration, , composed of

the following three components: (1) the continuum layer, , (2) the molecular layer, , and (3)

the coupling zone, . While the continuum layer is represented by K-FEM over the entire

domain, the molecular layer is represented by an atomic model over a specific localized region

where some material phenomenon is of interest. The displacement compatibility between the

continuum and the molecular layers is then enforced over the coupling zones. 

The total energy (Hamiltonian) in the coupling zone is determined as a summation of the

continuum and the molecular energies in a proportion defined by a quartic spline scaling parameter

(w). In this study, the scaling parameter varies from 1 at the \  interface to 0 at the

\  interface by the following expressions

 

 (16)
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Hamiltonian, , and continuum Hamiltonian, , as 

(17)

The two layers are constrained over the coupling zone, , by

HM HC

H w x( )HM 1 w x( )–( )HC+=

ΩCoup.

Fig. 5 Schematic illustration of layers in the present method

Fig. 6 Illustration of scaling parameters in coupling zone
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(18)

where  is the shape function associated with Node a evaluated at Atom α and i = 1,…, nSD
where nSD is the number of spatial dimensions. Eq. (18) states that the atomic displacements 

are required to conform to the continuum displacements  at the atomic position, α.

In the coupling zone, the Lagrangian interacting forces between the MD and the continuum layers

at atomic and nodal positions respectively can be obtained as (Xiao and Belytschko 2004)

(19)

 (20)

in which  is the vector of Lagrange multiplier associated with the constraints at Atom β,

 and  are the Lagrangian forces at Atom α and Node a in the MD and the continuum layers

respectively, while  is the Kronecker delta and  is the number of Lagrange multipliers. 

3.2 Multiple-time-step velocity Verlet algorithm
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in which  is the mass of an atom α,  and  are respectively the external and the internal

forces exerting on the atom α in the molecular layer. 

The velocity will be obtained first at the middle of the next micro step as

(23)

then, the velocities for the next micro time step can then be obtained from

 (24)

which, in view of Eq. (23), leads to

(25)
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(31)

where  is the quadrature weight corresponding to point  and  is the first Piola-Kirchoff

stress defined as

(32)

in which W and F denotes the potential energy density and the deformation gradient respectively. In

this region, the nodal domain of influence can be expanded to more than one element layer based

on the K-FEM concept as shown in Fig. 7. 

3.2.3 Time integration over the coupling zone

In the coupling zone, the displacements of atoms and nodes are updated by using Eqs. (21) and

(26) respectively. The corresponding accelerations can be obtained from 

(33)

and

 (34)

where 

;  (35)

The internal and the external forces exerting on each atom of the molecular layer in the coupling

zone should be factored by the scaling parameter as follows 
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Fig. 7 The application of K-FEM in the proposed coupling method
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; (36)

Similarly, the internal and the external forces acting on each node of the continuum layer in the

coupling zone can be factored as

;  (37)

After a typical micro step k, by adopting Eqs. (25) and (28), the unconstrained velocities of the

atoms and nodes on the two sides of the coupling zone are given by 

 (38)

(39)

For the continuum layer, while the nodal velocities are consistently updated after each of the m

micro time steps, the nodal accelerations remain unchanged until a new global time station is

reached. 

The unconstrained velocities, Eqs. (38) and (39), must be further adjusted by applying the

Lagrangian forces, Eqs. (19) and (20), as 

(40)

(41)

By introducing  and utilizing the expression of the unconstrained velocities,

the constrained velocities at the next micro time step can be updated as

(42)

(43)

The Lagrange multipliers must be determined first in order to correct the unconstrained velocities

according to Eqs. (42) and (43) by satisfying the velocity constraint of Eq. (18) in the following

form

 (44)

Substituting Eqs. (42) and (43) into Eq. (44) yields the equation for solving the unknown

Lagrange multipliers in the following form

(45)
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where

(46)

and

(47)

In order to reduce the computational cost, the constraint matrix, , can be simplified to a

diagonal  matrix in which . The diagonalized matrix is then expressed as

 (48)

The resulting unknown Lagrange multipliers can be obtained by

(49)

4. Numerical examples

Dynamic wave propagation in 1D atomic lattice is chosen to illustrate the validity and the

effectiveness of the proposed multiscale coupling method. This similar example was tested by

Wagner and Liu (2003) and Park and Liu (2004). In this problem, the Lennard-Jones (LJ) 6-12

interatomic potential is used to simulate force between the atoms as expressed by 

(50)

where  is the depth of the potential energy well,  is the pair-wise distance between the atoms

and  is the value of r at which the potential energy becomes zeros. The LJ 6-12 potential and its

corresponding interatomic force are plotted versus the interatomic distance in Fig. 8, using the

dimensionless quantities (Liu et al. 2006). From Fig. 8, the equilibrium distance, , can be

obtained as

(51)

For simplicity, the mass of atom,  and  parameters are assumed to be a unity in this study. As

a result, the equilibrium bond length, , is reduced to  and the LJ 6-12 expression

in Eq. (50) can be rewritten as

(52)

The corresponding atomic force on atom α can be evaluated using Eq. (30) as
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(53)

Based on Eq. (32), the first Piola-Kirchoff stress  can be obtained as 

(54)

where .

The initial displacement of an atom as a result of a Gaussian pulse can be given as

(55)

in which A = 0.015, b = 0.2, ζ = 20,  and .

Since this problem is symmetric about x = 0, only the initial condition in +x plane is plotted in

Fig. 9. It can be observed from the initial condition that a spectrum of waves from low to high

frequencies occur in the MD layer. The K-FEM of forty equally distributed nodes is used over the

domain where . The MD simulation is performed in the subdomain of

 with totally 121 atoms being distributed uniformly. As a result, the nodal spacing

in the continuum model is 10 times that of the atomic spacing. 
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This study attempted to investigate the following effects: (1) the size of the coupling zone and (2)

the size of the K-FEM nodal domain of influence. In this test, the global time step, , is 0.35

while the micro time step, . 

For comparison purpose, the same problem is also analyzed without displacement compatibility

∆T

∆t ∆T 50⁄=

Fig. 9 Initial displacements prescribed by a Gaussian pulse

Fig. 10 Illustration of spurious wave reflection at MD/K-FEM interface without enforcement of displacement
compatibility
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condition. As can be seen in Fig. 10, the spurious wave reflection was observed in the molecular

domain at the MD/K-FEM interface when the two models are coupled with no treatment of

displacement compatibility. However by the present method with enforcement of displacement

compatibility, the snapshot of the displacement time history at time t = 16.45 was shown in Fig. 11,

one using a coupling zone of 1 element over 11 atoms and the other 2 elements over 21 atoms. The

spurious wave reflection is almost completely eliminated in the present method.

To investigate the effectiveness of the present method, the same problem was also tested by the

BDM (Xiao and Belytschko 2004) using linear and non-linear scaling parameters. In the BDM, the

Fig. 11 Displacement profile obtained by the present method using (a) one element over 11 atoms and (b)
two elements over 21 atoms at the coupling zone

Fig. 12 Results of displacement of the same problem obtained by the BDM (Xiao and Belytschko 2004) with
(a) linear and (b) non-linear scaling parameters
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continuum model does not cover the entire domain like the present method. Their results for this

problem are displayed in Fig. 12. By comparing with Fig. 11(a), it can be found that by applying K-

FEM over the entire domain and using quartic spline scaling parameter in the coupling zone, the

present method provides a better seamless transition across different length scales. 

The displacement profiles at various times obtained by the present method using a coupling zone

of one element are plotted in Fig. 13. At time t = 6, the first wave front has started to attack the

Fig. 13 Displacement profiles by present method at different moments

Fig. 14 Comparison of displacement profiles computed by a full MD simulation and the proposed method
with (a) one and (b) two elements coupling
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coupling zone and the spurious wave reflection in MD layer is not observed. At the transient state,

as depicted in subplots (b) and (c), the wave has propagated across the coupling zone and the

reflections are noticeable in the MD layer. At time t = 14, the wave has completely passed the

coupling zone. It can also be observed that only a small amount of energy is trapped in the MD

layer. Furthermore, the displacement profiles at the steady state obtained by the present method and

a full MD simulation are compared in Fig. 14. As can be seen, the essential characteristics of Gaussian

wave can be captured by either a one-element or a two-element coupling in the present method. 

For clarity, the time history of the total energy, normalized by its initial value in the MD layer is

Fig. 15 Time history showing energy residual in the MD layer after transfer

Fig. 16 Comparison of residual energy in MD with 1-3 element layers of nodal domain of influence in K-
FEM for 1 and 2 element coupling zone
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plotted in Fig. 15 for each of the four cases. It is clear that the present method is most effective in

transferring energy from the MD layer to the continuum base layer. Using one element overlaying

11 atoms in the present method, only 0.125% of the total energy was trapped in the MD layer while

0.338% and 0.207% of the total energy were trapped in the two cases of BDM using linear and

nonlinear scaling parameters respectively. 

The effect of extending NDOI from the conventional 1 to 2 and 3 layers of elements, referred as

l-refinement (Kanok-Nukulchai and Wong 2008), is also investigated. It can be concluded that l-

refinement can further improve the energy transfer of the interface as seen in Fig. 16. For 1 element

coupling zone, increasing NDOI from 1 to 2 and 3 layers serves to reduce the trapped total energy

from 0.125% to 0.102% and 0.100% respectively. Similar trend was also observed in the case of 2

elements coupling zone, where the trapped total energy can be reduced from 0.078% to 0.064% and

0.061% using the l-refinement.

5. Conclusions

A concurrent multiscale simulation for coupling two models of different scales, i.e., the molecular

and the continuum dynamics, has been presented and validated. In the proposed method, the K-

FEM is employed to model the entire domain in coexistence with the MD simulation over a specific

localized region of interest. The coupling between the continuum and the molecular models is

achieved by using a quartic spline scaling parameter to integrate their Hamiltonians. The

displacement compatibility condition over the coupling zone is imposed by the Lagrange multipliers

technique. In addition, a multiple-time-step velocity Verlet algorithm is employed to perform their

intrinsic time integrations.

The effectiveness of the proposed method is confirmed by solving non-linear problems in 1D

atomic lattice with Lennard-Jones (LJ) 6-12 potential. The numerical results reveal that the

proposed coupling method can efficiently eliminate the spurious wave reflection at the molecular/

continuum interface. As a result, the energy in the MD model can be almost completely transferred

into the continuum domain. 

The efficiency of the proposed coupling methodology can be greatly enhanced by either

increasing the size of the coupling zone or extending the nodal domain of influence over more

element layers around the node based on K-FEM. Furthermore, by allowing MD to overlay on a

specific area of K-FEM domain, MD force can be extrapolated to yield the corresponding internal

force in the continuum layer. This will ensure the seamless transition between the two different

length scales.

In summary, there are two major advantages of the present method. First, it does not require any

filtering or damping function to eliminate the spurious wave reflection. Secondly, it does not require

the continuum mesh to grade down to the atomic spacing in the coupling zone. Thus, the method

provides a sound basis for further extending to more complicated problems involving atomic

structure, and can be straightforwardly extended to two- and three-dimensional multiscale problems.
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