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Abstract. In this work, we discuss a reproducing kernel collocation method (RKCM) for solving 2nd

order PDE based on strong formulation, where the reproducing kernel shape functions with compact
support are used as approximation functions. The method based on strong form collocation avoids the
domain integration, and leads to well-conditioned discrete system of equations. We investigate the
convergence and the computational complexity for this proposed method. An important result obtained
from the analysis is that the degree of basis in the reproducing kernel approximation has to be greater
than one for the method to converge. Some numerical experiments are provided to validate the error
analysis. The complexity of RKCM is also analyzed, and the complexity comparison with the weak
formulation using reproducing kernel approximation is presented. 
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1. Introduction

The finite element method (FEM) (Ciarlet 1978) dominates the development of numerical

methods for several decades due to its deep mathematical theory and wide applications. The

meshfree methods (Belytschko et al. 1996) is a new class of computational method and they have

received much attention in the last decade. Meshfree methods inherit most of the advantages of

FEM, in the mean while, overcoming a major disadvantage in the discretization where no mesh is

needed; the discretization in meshfree methods merely rely on a set of particle. Many meshfree

methods were developed in recent years, such as smooth particle hydrodynamics (Gingold and

Monaghan 1977), diffuse element method (DEM) (Nayroles et al. 1992), element free Galerkin

(EFG) method (Belytschko et al. 1994), partition of unity method (PUM) (Melenk and Babuska

1996), HP-clouds (Duarte and Oden 1996), reproducing kernel particle method (RKPM) (Liu et al.

1995, Chen et al. 1996, Chen et al. 2000, Chen et al. 2003), natural element method (NEM)
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(Sukumar et al. 1998), meshless local Petrov-Galerkin method (MLPG) (Atluri and Zhu 2000),

radial basis collocation method (RBCM) (Kansa 1992a, 1992b), multiple level set method (MLSM)

(Zhang et al. 2008), among others. These methods are more effective than FEM in formulating

adaptive refinement schemes, and in solving problems with cracks, large deformation, multi-scale

features (Rojek and Onate 2008), and shocks. 

The development of meshfree methods can be traced back from two branches, one based on weak

Galerkin form, for example, DEM, EFG, PUM, RKPM, NEM, MLPG, MLSM, and the other based

on strong collocation form, such as RBCM. In the weak form approach (Chen et al. 2003, Bernardi

and Maday 1997, Han and Meng 2001) for 2nd order PDE, the approximation is in the Sobolev H1

space, and it yields a symmetric discrete system when test and trial functions are constructed with

the same approximation space. Using approximation functions with compact support, the resulting

discrete system is stable like finite element method and it exhibits an algebraic convergence if the

approximation functions have polynomial reproducibility (Chen et al. 1996, Chen et al. 2003).

However, the need of quadrature rules in the domain integration consumes a higher computational

cost. Alternatively, strong form collocation method (Hu and Li 2006, Li et al. 2008) avoids the need

of domain integration, and the approximation is constructed in the Sobolev H2 space. A commonly

used approximation function for the strong form collocation method is the infinite differentiable

radial basis function (Hardy 1971, 1990), and this method is generally called the radial basis

collocation method that exhibits exponential convergence rate (Kansa 1992b, Hu and Li 2006).

However the method is overshadowed by its fully dense and ill-conditioned discrete system due to

the non-local nature of radial basis functions. In this work, we discuss a reproducing kernel

collocation method (RKCM), where the reproducing kernel shape functions with compact support

are used as approximation functions. The method avoids the domain integration, and leads to well-

conditioned discrete system of equations. 

The objective of this work is to study the convergence and complexity of a strong form collocation

method based on a reproducing kernel approximation, called the reproducing kernel collocation

method RKCM (Hu and Chen 2009). Reproducing kernel approximation functions (Liu et al. 1995,

Chen et al. 1996, Han and Meng 2001) are compactly supported and RKCM yields a well-

conditioned discrete system similar to that in the FEM, but it does not require a domain integration.

We first discuss the convergence of this method and obtain the necessary conditions for convergence.

We then analyze the complexity of the approach and make comparison with the condition in RKPM.

The remaining part of this paper is organized as follows. An introduction to reproducing kernel

(RK) shape function, their properties and approximation error and convergence are given in Section

2. In Section 3, the derivatives of RK shape function, the formulation of RKCM and its

convergence rate are discussed, and numerical experiments are illustrated to validate the theoretical

results. The computational complexity is addressed in Section 4. Conclusions are summarized in the

last Section.

 

2. Reproducing kernel (RK) approximation 

2.1 The RK shape function

We first describe the RK approximation in one-dimension. The multi-dimensional formation can

be easily obtained with similar construction. Let a function f (x) can be approximated by 
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, (2.1)

where R,  are shape functions centered at xI, and dI are the coefficients to be sought. The

construction of the shape functions is based on a set of particles 

(2.2)

with maximal nodal distance h, Np is the number of particles, and the RK shape function is given

as follows:

(2.3)

where

(2.4)

(2.5)

(2.6)

The vectors  has dimension n + 1, and  is a moment matrix with dimension

. The function  is called the kernel function, for example, the cubic B-

spline 

(2.7)

where  and a is support size. For flexibility, we allow the support size to be dependent

on I. Another choice of kernel function is the quintic B-spline 

(2.8)
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constructed as the multiplication of two functions 

, (2.9)

where  is a correction function and  is kernel function. For reproduction of

complete n th order polynomial, the correction function is formed by a set of polynomial basis as 

 

(2.10)

The coefficients  can be obtained by satisfying the following reproducing conditions

, (2.11)

that is, 

, (2.12)

where n is reproducing degree. Eq. (2.12) is equivalent to

, (2.13)

where  is Kronecker delta. Eq. (2.13) can be rewritten in a vector form

(2.14)

Substituting (2.10) into (2.14), we obtain

(2.15)

Denote above equation as

(2.16)
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The correction function in (2.10) becomes

(2.19)

Thus, we have the function approximation 

(2.20)

where

(2.21)

This shape function  is called the reproducing kernel (RK) shape function, and its properties

are summarized as follows. 

(a) The construction of RK shape function  does not rely on a mesh, it only relies a set of

particles. 

(b) The RK shape function has the same compact support as the kernel function, and the

smoothness and locality of the shape function is determined by the kernel function. 

(c) The degree of completeness and consistency of the shape function is determined by the

correction function. 

(d) For the moment matrix  to be nonsingular, any position  needs to be covered by

at least n + 1 kernel functions. Let κ be the maximal overlapping number in domain, usually,

. A suggestion for the choice of support size is , where h is maximal

nodal distance. 

(e) The RK shape function does not satisfy the Kronecker delta property, i.e., . This

means that the coefficients are not equal to nodal values, i.e., .

2.2 Convergence properties of RK approximation

In this section we study the convergence of function approximation by RK shape functions. 

Assume , where . The sine function can be approximated by 

, (2.22)

in which the cubic B-spline kernel function  is adopted in the RK shape function. The set

of nodal points  is called the source points. We define another set of points, called the

collocation points

(2.23)

where Ns is the total number of collocation points. The set of collocation points may or may not

equal to the set of source points used in the approximation in (2.2). To approximate the function

, we force the residuals of the function approximation to be zero at these collocation points:

, ,  (2.24)
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It follows that 

, (2.25)

And this can be written a linear system as

(2.26)

(2.27)

(2.28)

Denote above system of equations as follows
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When , the coefficients dI can be obtain by Gaussian Elimination with Backward

Substitution (GE with BS), and then we obtain the approximation . Since the RK

approximation belongs to a local approximation, the support size of the RK shape function is

selected as , this leads to a band matrix on the left hand side of linear system (2.29).

A band Gaussian Elimination with Backward Substitution can be introduced to solve the linear

system. The detailed algorithms are given in Appendix. 

Here is a comparison of the operation counts for two Elimination methods mentioned above. For

traditional Gaussian Elimination with Backward Substitution:

(2.30)

(2.31)

where the abbreviations M/D and A/S stand for multiplication/division and addition/ subtraction,

respectively. For band Gaussian Elimination with Backward Substitution:

(2.32)

(2.33)

f
 h
ξi( ) πξisin= ξi∀

f
 h
ξ1( ) dIψI ξ1( )

I 1=

Np

∑ πξ1sin= =

f
 h
ξ2( ) dIψI ξ2( )

I 1=

Np

∑ πξ2sin= =

f
 h
ξNs( ) dIψI ξNs( )

I 1=

Np

∑ πξNssin= =

ψ1 ξ1( ) ψ2 ξ1( ) … ψNp ξ1( )

ψ1 ξ2( ) ψ2 ξ2( ) … ψNp ξ2( )

ψ1 ξNs( ) ψ2 ξNs( ) … ψNp ξNs( )

d1

d2

dNp

πξ1sin

πξ2sin

πξNssin

=
……

…

… …

…

…

…

…

…
…

…

…

Ns Np N= =

f
 h

x( )

a n 1+( )h=

M D: 
N

3

3
------⁄ N

2 N

3
----–+

A S: 
N

3

3
------⁄ N

2

2
------

5N

6
-------–+

M D: N w
2

w 1–+( )⁄ 2w
3

3
---------

2w

3
-------+–

A S: N w
2

1–( )⁄
2w

3

3
---------

w
2

2
------

w

6
----+ +–

…



A study on convergence and complexity of reproducing kernel collocation method 301

where the bandwidth of the band matrix is 2w − 1. The operation counts under different dimensions

N = 10, 50, 100 are listed in Table 1. Usually w << N, and the latter algorithm will be used for

solving the linear system arising from RK approximation.

When Ns > Np, the coefficients dI can be obtained by QR factorization based on the Householder

and Givens transformation or by singular value decomposition (SVD) with substitutions (Golub and

Van Loan 1996). 

In the followings we provide numerical tests for the RK approximation, wherein equally spaced

source points and collocation points are chosen 

Table 1 A comparison of the counts for two GE with BS

traditional GE with BS band GE with BS

N M/D A/S w M/D A/S

10
50

100

430
44,150

343,300

375
42,875

338,250

3
5
7

94
1,370
5,276

63
1,130
4,597

Fig. 1 The approximated sine function and the error by using support size a = 0.3 and degree of basis
functions n = 2

Fig. 2 Errors of the approximated function obtained by using support sizes a = 0.4 and a = 0.5, and degree of
basis functions n = 2
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, Np = 11 (2.34)

and 

, (2.35)

The number of collocation points is approximately two times of the number of source points. The

degree of basis function n = 2 is considered with different support sizes. The exact function, the

approximated functions and errors are plotted in Figs. 1 and 2.

If we consider much smaller support size for the quadratic basis function, we obtain a different

result, see Fig. 3.

We can see from the result in Fig. 3 that the support size of kernel function has to be greater than

the maximal nodal distance to obtain a solution, otherwise, it leads to a singular moment matrix and

yields a wrong solution. The numerical results show that the larger support sizes does not seem to

improve much on accuracy, but it significantly increases the computational cost due to the larger

bandwidth in the system of Eq. (2.29).

The main parameters for accuracy are the number of source points Np and the degree of basis

function n. We will discuss these issues in next section. 

2.3 Convergence of RK approximation

 

We assume a quasi-uniform distribution of source points as defined below

, (2.36)

where  and  denote the support sizes of kernel functions centered at source points xK and xJ,

respectively, and c0 and c1 are generic constants. If function f (x) is n + 1 order differentiable, then

we have a local interpolation error (Chen et al. 2003, Han and Meng 2001) as follows
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Fig. 3 Error of the approximated function obtained by using support size a = 0.18 and degree of basis
functions n = 2
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Moreover, we have the following global interpolation error estimate.

Lemma 1. Let source points be in a quasi-uniform distribution. From the local interpolation error

given in Eq. (2.37), we have the global interpolation error estimation

(2.38)

where κ << Np is the maximal overlapping number in domain, and , and C is a

constant independent of parameters κ, a and n. 

Remark 1. If we choose  as the support size of kernel function, then we have the

estimation 

(2.39)

where . The convergence rate is proportional to power n + 1 of nodal distance h.

To validate the convergence rate, we use the reproducing degree , the number of

source points  and the number of collocation points .

Equally spaced collocation points and source point are adopted. We define  and choose

. The result of errors in L2-norm with various levels of refinement is plotted in Fig. 4.

Here r denotes the numerical order of convergence rate. Compared with the error estimate in Eq.

(2.39), there exists a super-convergence behavior when the degree of basis function n = 3.

3. Reproducing kernel collocation method (RKCM)

In this section, the RK approximation described in Section 2 is used for solving partial differential

equations under a strong form collocation framework, and we call it the reproducing kernel

collocation method (RKCM). The higher order derivatives of RK shape functions are first

introduced, and the implementation scheme of RKCM and convergence properties are discussed.
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3.1 Derivatives of RK shape function

The RK shape function is constructed by the multiplication of correction and kernel functions as

(3.1)

The first and second order derivatives can be obtain by product rule
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(3.3)

where the correction function and its derivatives are given as
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where 0 is a zero matrix, it follows that 

(3.12)

In a similar manner, we may obtain the second derivative

(3.13)

and then

(3.14)

In section 4, we will discuss the complexity of the shape function and its derivatives based on the

equations given in Eq. (3.1) to Eq. (3.14). For the construction of the shape function and its

derivatives, we first form the matrices , then the correction function and

derivatives , ,  and finally the shape function and derivatives

, ,  can be constructed. 

Denote  and , we have the bounds (Chen et al. 2003, Han

and Meng 2001)
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x( ) ψI x, x( )= ψI

 2( )
x( ) ψI xx, x( )=

ψI

 
x( ) ∞ C1<

ψI

 l( )
x( ) ∞ C2a

l–≤ l 1 2 …  , , ,=

v x( ) bIψI

 
x( )

I 1=

Np

∑=

V span ψ1

 
x( ) ψ2

 
x( ) … ψNp

 
x( ), , ,{ } H

2 Ω( )⊂=

v V∈∀

v l Ω, C1κ
1 2⁄

a
l–
n

2 l
v 0 Ω,≤ l 1 2 3 …, , ,=

v l Γ, C2κ
1 2⁄

a
l–
n

2l
v 1 Ω,≤ l 1 2 3 …, , ,=

v x, l Γ, C3κ
1 2⁄

a
l 1+( )–

n
2 l 1+( )

v 1 Ω,≤ l 1 2 3 …, , ,=

Γ ∂Ω=
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3.2 Implementation scheme for RKCM
 

Consider an elliptic problem 

, in Ω (3.22)

, on Γ (3.23)

where  and  denote the operators in the domain and on the boundary, respectively. 

The collocation method is the minimization of discrete least-squares functional (Hu and Li 2006,

Li et al. 2008) 

(3.24)

where  is a quadrature version of least-squares functional defined as

(3.25)

here  denotes the quadtature version of . A set of collocation points  with

maximal spacing  is used. The parameter  has to satisfy the following relationship (Hu

and Li 2006)

(3.26)

to ensure the error from quadrature rules to be bounded as follows

(3.27)

Here the integrand  can be  or . Consequently we may obtain an optimal

solution  as discussed below.

The minimization of discrete functional (3.24) leads to solving the following system of equations:

, (3.28)

, (3.29)

They can be rewritten as follows

(3.30)

Ldu f=

Bdu g=

Ld Bd

Ê uk( ) min
v V∈

Ê v( )=

Ê v( )

Ê v( ) 1

2
---  Ldv f

 
–( )

2
Ωd

Ω

 
ˆ

∫
1

2
---  Bdv g–( )2 Γd

Γ

 
ˆ

∫+=

 
ˆ

∫  ∫ Ξ ξ1 ξ2 … ξNs, , ,{ }=

h max
ξ

i
Ω∈

ξi{ }= h

h o a
2( ) o h

2( )≈≅

 ∫  

 

ˆ

∫–
⎝ ⎠
⎜ ⎟
⎛ ⎞

G x( ) o 1( ) 0→=

G x( ) Ldv x( ) Bdv x( )
uk x( )

Ld bIψI ξi( )
I 1=

Np

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

f
 
ξi( )= ξi Ω∈

Bd bIψI ξj( )
I 1=

Np

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

g
 
ξj( )= ξj Γ∈

Fx:
F1

F2

b1

b2

bNp

r1

r2

:r= = =

…
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The entries of matrix F and the components of r are given by

, , (3.31)

, , (3.32)

where , Nt is the number of collocation points in the domain, and Ns is the total

number of collocation points in the domain and on the boundaries. The matrix F has dimension

, r is a known vector with dimension Ns. We have an over-determined system when

, and the Cholesky decomposition with substitution (Burden and Faires 2005) can be

adopted on its normal equation to find coefficients bI, and to obtain an optimal solution .

3.3 Convergence of RBCM

In this section let us discuss the convergence properties of RKCM. Consider the following linear

operators in one-dimension

(3.33)

(3.34)

where . Define a norm 

(3.35)

The minimization of functional Eq. (3.24) can be described equivalently in the following

variational problem

(3.36)

where

(3.37)

(3.38)

Lemma 3. Suppose there exist two inequalities (Hu and Chen 2009), 

, (3.39)

, (3.40)

Then, there exists an optimal estimate 

(3.41)

where Ci are constants independent of a, h, n and Np.

F1[ ]Ii LdψI ξi( )= r1[ ]i f
 
ξi( )= i 1 2 … Nt, , ,=

F2[ ]Ij BdψI ξj( )= r2[ ]j g
 
ξj( )= j Nt 1 … Ns, ,+=

I 1 2 … Np, , ,=

Ns Np×
Ns Np>

uk x( ) V∈

Ld

d
2

dx
2

--------=

Bd α
d

dx
------ β+=

α 0 β 0>,≥

v H v 2 Ω,

2
αv x, β+ 0 Γ,

2
+{ }

1

2
---

=

B̂ u v,( ) F̂ v( )=

B̂ u v,( ) u xx,Ω

ˆ

∫ v xx, dΩ αu x, β+( )
Γ

ˆ

∫ αv x, β+( )dl+=

F̂ v( )  f 
Ω

ˆ

∫– v xx, dΩ g
Γ

ˆ

∫ αv x, β+( )dl+=

B̂ u v,( ) C1 u H v H≤ v V∈∀

B̂ v v,( ) C2 v H

2≥ v V∈∀

u uk– H C3
min
v V∈

u v– H≤
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Lemma 4. Assume that the solution  is sufficiently smooth, the global interpolation error

estimate for solution of RKCM is given as follows

(3.42)

where , and C is a constant independent of , a and n. 

Theorem 1. Let the conditions in Lemmas 2, 3 and 4 hold. There exists the error bound for the

solution of RKCM as follows (Hu and Chen 2009)

(3.43)

where  is the overlapping number, a is the maximal support size and n is the degree of basis

function, and C is a constant.

According to Theorem 1, there exists the following convergence behavior

, when n = 1 (3.44)

This shows that the error does not converge when the linear basis function n = 1 is adopted.

Specifically, the degree of basis function has to be greater than one, n > 1, for convergence.

Moreover, we have

, when n = 2 (3.45)

, when n = 3 (3.46)

The error of solution under H-norm is equivalent to in Sobolev two norm, it follows that the

convergence behavior in Sobolev zero norm will be

, when n = 2 (3.47)

, when n = 3 (3.48)

Two numerical tests will be given in the next section to validate these theoretical results. 

3.4 Numerical experiments
 

Consider a Poisson problem in domain  with pure Dirichlet boundary

conditions 

, in Ω

, on Γ0 (3.49)

, on Γ1

where , , Γ0 denotes endpoint x = 0, and Γ1 denotes

endpoint x = 1. The analytical solution is . 

We use the reproducing degree , the number of source points , and

u x( )

u uk– l Ω, Cκa
n 1 l–+

u n 1+ Ω,≤

l 1≥ κ

u uk– H C u v– 2 Ω, α u v– 1 Γ, β u v– 0 Γ,+ +{ }≤

 Cκa
n 1–

u n 1+ Ω,≤

κ

u uk– H O 1( )=

u uk– H O a
1( )= O h

1( )≈

u uk– H O a
2( )= O h

2( )≈

u uk– 0 Ω, O a
1 2+( )= O h

3( )≈

u uk– 0 Ω, O a
2 2+( )= O h

4( )≈

Ω x 0 x 1< <{ }=

u′′ x( ) f
 

x( )=

u 0( ) 0=

u 1( ) 0=

u′′ x( ) d
2
u x( ) dx

2⁄= f
 

x( ) π
2

– πxsin=

u x( ) πxsin=

n 1 2 3, ,= Np 6 8 … 20, , ,=
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the number of collocations is four times of the number of source points, i.e., .

Equally spaced collocation points and source points are used, and the kernel function  is

chosen as the quintic B-spline defined in Eq. (2.8). We define  and choose the support

size . The errors of solution in L2- norm with various levels of refinement are plotted

in Fig. 5. 

In the second test, we consider a problem with different boundary conditions as follows 

, in Ω

, on Γ0 (3.50)

, on Γ1

where . The exact solution is the same as previous example. The same

reproducing degree, collocation points and source points as those used in the previous example are

employed in this experiment. The test results are illustrated in Fig. 6. 

We can see from Figs. 5 and 6 that the error, indeed, does not converge when linear basis function

n = 1 is used. This is consistent with our theoretical results. The rates of convergence for n = 2, 3

are reasonably consistent with the theoretical results in Eqs. (3.47) and (3.48). This convergence

behavior is different from the that in the reproducing kernel particle method (RKPM) (Liu et al.

1995, Chen et al. 1996), in which the linear basis function is sufficient for convergence. Compared

to weak formulation such as RKPM, RKCM based on strong form approach is rather simple in

forming the discrete equation and it avoids domain integration. However, the second order

derivatives are needed in RKCM. In the next section, we analyze the computational complexity of

RKCM. 

Ns 24 32 … 80, , ,=

φa x xI–( )
h 1 Np⁄=

a n 1+( )h=

u′′ x( ) f
 

x( )=

u 0( ) 0=

u′ 1( ) π–=

u′ x( ) du x( ) dx⁄=

Fig. 5 Convergence behavior for Poisson’s problem with pure Dirichlet boundary conditions
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4. Computational complexity of RKCM

In computations, the CPU time is proportional to the total operations in addition (A), subtraction

(S), multiplication (M) and division (D) computations. In this section we discuss the operations

counts for forming a system of Eq. (3.30) in RKCM and solution of the linear system.

The linear system Eq. (3.30) consists of an  matrix F and a vector r with dimension Ns.

Note that the main entries in matrix F are  in the domain, and  or  on the

boundaries. First, we calculate the operation counts for forming RK shape function  and its

derivatives  and . The derivation was given in Section 3.1, the formation of RK

shape function involves considerable vector-vector and vector-matrix multiplications. We will start

with the operation count for the elementary operations and then the count for the construction of

RK shape functions.

4.1 Elementary operations

Let R denote the set of real values, Rs denote the set of real vectors, and Rs × s denote the set of

s × s matrices. 

(a) Dot product: 

If x, y∈Rs, where ,  operation counts of the dot product,

, are given below

Ns Np×
ψI xx, ξi( ) ψI ξi( ) ψI x, ξi( )

ψI ξi( )
ψI x, ξi( ) ψI xx, ξi( )

x x1 x2 … xs, , ,( )T= y y1 y2 … ys, , ,( )T=

x y• x
T
y xi yi

i 1=

s

∑= =

Fig. 6 Convergence behavior for Poisson’s problem with Dirichlet and Neumann boundary conditions
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(b) Scale-Matrix multiplication:

If ,  where , then operation count for the scale-matrix multiplication,

, is given as follows

(c) Matrix-Vector multiplication:

If ,  where  and , then each component of A x,

i.e., , can be viewed as a dot product. There are s dot products in matrix-

vector multiplication, and the operation count is

(d) Matrix-Matrix multiplication: 

If , where  and , then each entry in AB, i.e., ,

, can be view as a dot product. There are s2 entries in matrix-matrix multiplication,

and the total counts are obtained as

4.2 Operation counts of RK shape function and its derivatives

In section 2.1, we showed that for the moment  matrix to be invertible in constructing the

RK shape function, any position  has to be covered by at least  kernel functions. Let κ

be the overlapping number, we have the relationship

<< Np (4.1)

Before the construction of shape function, we need to form moment matrices, obtain the

inversions, and form the correction functions. Let , then the vectors  and 

have dimension s, the moment matrices have dimensions , and we the following operation

counts:

A R
s s×∈ γ R∈ A ai j[ ]=

γ A⋅ γ ai j[ ]⋅= i j, 1= 2 … s, , , ,

A R
s s×∈ x R

s∈ A ai j[ ]= x x1 x2 … xs, , ,( )T=

Ax( )i ai j xj

j 1=

s

∑= i 1= 2 … s, , , ,

A B, R
s s×∈ A ai j[ ]= B bi j[ ]= AB( )i j aik bkj

k 1=

s

∑=

i j, 1= 2 … s, , ,

M x( )
x Ω∈ n 1+

n 1+ κ≤

s n 1+= H x xI–( ) H 0( )
s s×

M/D A/S

Forming s s − 1x y•

M/D A/S

Forming s2 0γ A⋅

M/D A/S

Forming A x s2 s2 − s

M/D A/S

Forming AB s3 s3 − s2
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For computing  and , the operation counts obtained following Eqs. (3.12) and

(3.14) are given below:

After forming the moment matrices, we then construct the correction functions in Eqs. (3.4)-(3.6)

and shape functions in Eqs. (3.1)-(3.3). The operation counts for these computations are given in

Tables 4 and 5, respectively. 

Consequently, the total operation counts for each RK shape function calculation at a give location

are given as follows

(4.2)

(4.3)

where << Np. The total operation counts for each first derivative  are

M x,

1–
x( ) M xx,

1–
x( )

M D⁄ : s
3

2κ 1+( )s2
s 1+ + +

A S⁄ : s
3

κ 2–( )s2
s 1–+ +

s κ≤ ψI x, x( )

Table 2 Operation counts for moment matrix and its derivatives

M/D A/S

Forming matrix 

Forming matrix 

Forming matrix 

M x( ) κ 2s
2⋅ κ 1–( )s2

M x, x( ) κ 6s
2⋅ 3 κ 1–( )s2

2+

M xx, x( ) κ 12s
2⋅ 3s+ 6 κ 1–( )s2

5+

Table 3 Operation counts for inversions of moment matrices

M/D A/S

Finding inversion s3 s3 − 2s2 + s

Finding inversion 2s3 + s2 2(s3 − s2)

Finding inversion 3s3 + 2s2 3(s3 − s2) + 1

M
1–

x( )

M x,

1–
x( )

M xx,

1–
x( )

Table 4 Operation counts for correction function and its derivatives

M/D A/S

Forming function s2 + s s2 − 1

Forming function 2(s2 + s) 2(s2 − 1) + 1

Forming function 3(s2 + s) + 1 3(s2 − 1) + 2

C x( )

C x, x( )

C xx, x( )

Table 5 Operation counts for RK shape function and its derivatives

M/D A/S

Forming function 1 0

Forming function 2 1

Forming function 3 2

ψI x( )

ψI x, x( )

ψI xx, x( )
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(4.4)

(4.5)

For construction of a second derivative , the operation counts are

(4.6)

(4.7)

In one-dimension, . For the case , the operation counts for the RK shape function

and derivatives under different reproducing degree are listed in Table 6.

We can see from Table 6 that the operation counts for the construction of the first order derivative

of RK shape function are about 4 times the counts for the construction of RK shape function, and

the counts for construction of the second order derivative of RK shape function are about 9 times

the counts for construction of RK shape function. 

In general, the cost of forming the linear system under a strong formulation is still much less than

that for a weak formulation since each non-zero entry of the matrix and vector of the weak

formulation requires a domain integration. 

4.3 Operation counts for solving a linear system 

We take the second problem in Section 3.3, the Poisson problem with Dirichlet and Neumann

boundary conditions, as an example for demonstration. From the collocation equations in Eqs.

(3.28) and (3.29), we have

(4.8)

(4.9)

(4.10)

where , and Ns is total number of collocation points. We express the above

M D⁄ : 3s
3

8κ 4+( )s2
3s 2+ + +

A S⁄ : 3s
3

4κ 5–( )s2
s 1+ + +

ψI xx, x( )

M D⁄ : 6s
3

20κ 12+( )s2
6s 4+ + +

A S⁄ : 6s
3

10κ 11–( )s2
s 12+ + +

s n 1+= s κ≈

bIψI xx, ξi( )
I 1=

Np

∑ f ξi( )=     ξi∀ Ω∈,

bIψI ξj( )
I 1=

Np

∑ gD ξj( )=     ξj Γ0∈,

bIψI x, ξk( )
I 1=

Np

∑ gN ξk( )=     ξk Γ1∈,

Ω Ω Γ0 Γ1∪ ∪=

Table 6 Operation counts for RK shape functions with different reproducing degrees

(M/D)
(A/S)

3s3 + s2 + s + 1
2s3 − 2s2 + s − 1

11s3 + 4s2 + 3s + 2
7s3 − 5s2 + s + 1

26s3 + 12s2 + 6s + 4
16s3 − 11s2 + s + 12

n = 1
(s = 2)

31 (M/D)
9 (A/S)

112 (M/D)
39 (A/S)

272 (M/D)
98 (A/S)

n = 2
(s = 3)

94 (M/D)
38 (A/S)

344 (M/D)
148 (A/S)

832 (M/D)
348 (A/S)

n = 3
(s = 4)

213 (M/D)
99 (A/S)

782 (M/D)
373 (A/S)

1884 (M/D)
864 (A/S)

ψI x( ) ψI x, x( ) ψI xx, x( )
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equations as

(4.11)

The operation counts for forming the matrix F are given below:

(4.12)

(4.13)

Besides, we need Ns functional evaluation in vector r. Under the condition in Eq. (3.26), the

number of collocation points can be chosen about two to four times the number of source points in

computation. The system in Eq. (4.11) is over-determined, and we use following algorithm to find

coefficient vector x. 

Algorithm based on Cholesky LLT:

Step 1 Compute FTF and z = FTr

Step 2 Cholesky decomposition on FTF = LLT

Step 3 Solve Ly = z by backward substitution

Step 4 Solve LTx = y by forward substitution

The operation counts for obtaining the coefficient vector x are given as follows

(4.14)

4.4 Comparison of operation counts for weak and strong formulations

The total cost to obtain a solution by using RKCM consists of two parts: forming a linear system

in Eq. (4.11) and the solution of the linear system. 

Taking the Poisson problem discussed above as an example, we consider  and

, where , then the operation count for forming a linear system Eq. (4.11) of RKCM is

(4.15)

The operation count for the solution of the linear system is

 (4.16)

where op denotes one M/D plus one A/S, and << Np. In total, the operation count is

proportional to Np3. For F with a small dimension , more CPU time is on forming the

linear system. On the other hand, for F with a large dimension , most computation time

are on solving the linear system with Cholesky decomposition. 

Fx r=

M D⁄ : Np s
3

2κ 1+( )s2
s 1+ + +( ) Np 3s

3
8κ 4+( )s2

3s 2+ + +( )+

 Np Ns 2–( ) 6s
3

20κ 12+( )s2
6s 4+ + +( )+

A S⁄ : Np s
3

κ 2–( )s2
s 1–+ +( ) Np 3s

2
4κ 5–( )s2

s 1+ + +( )+

 Np Ns 2–( ) 6s
3

10κ 11–( )s2
s 12+ + +( )+

M D⁄ : 
Ns Np

2⋅
2

-------------------- Ns Np⋅
Np

3

6
---------

Np
2

2
---------

Np
2

2
---------+ + + +

Ns 4 Np×=

κ s≈ n 1+= n 1>

op: 104Np
2

s
3⋅ 38Np s

3⋅ O 100s
3

Np
2⋅( )≈–

op: 
13

6
------Np

3
5Np

2
+ O 2Np

3( )≈

2 s<
Np 50 s

3⋅≤
Np 50 s

3⋅>
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Let’s now consider the case for RKPM, the operation count for forming a linear system is

 domain integrations (4.17)

Each domain integration consumes a much more CPU when higher order quadrature rules are used.

If each domain integral consists of  local cell integration using Gaussian quadrature rules, the

operation count in Eq. (4.17) becomes 

(4.18)

where the number µ is dependent on the order of Gaussian quadruate rules used. According to Eq.

(4.18), CPU for forming a linear system is far beyond the CPU for solving the linear system. If

Cholesky decomposition is used to solve the linear system of equations arising from RKPM (Steps

2~4 only), the operation count is 

(4.19)

Finally we have a comparison of operation counts for RKPM and RKCM as

(4.20)

Overall, the total computational cost for weak formulation is higher than that for the strong

formulation for larger systems.

5. Conclusions

 

The employment of reproducing kernel approximation under weak formulation (RKPM) has been

widely used to solve PDEs, however, the method needs domain integration and special treatment of

Dirichlet boundary conditions. Alternatively, non-local basis functions such as RBFs have been used

as the approximation functions for solving PDEs under strong formulation, leading to a full and ill-

conditioned system. To resolve these difficulties, we have introduced the compactly supported

reproducing kernel approximation to the solution of PDFs under the strong collocation form

(RKCM). This approach avoids domain integration and yields a banded and thus a much well-

conditioned discrete system. 

An important result in this study is to show that the degree of basis functions in the reproducing

kernel approximation of RKCM has to be at least 2 for convergence. This is different from the case

for RKPM, and the numerical experiments confirm this theoretical results. RKCM is as stable as the

one based on weak formulation, such as FEM or RKPM. Further, the computational complexity of

RKCM and RKPM are also analyzed and compared. By the operation counts of the two methods

discussed in Section 4, we conclude that the RKCM is a simple and effective meshfree method for

2nd order PDEs that exist in many engineering and scientific problems. 

op: 11Np
2

s
3⋅ 6Np s

3⋅ … Np
2

+ + +

Np
2

op: 11Np
2

s
3⋅ 6Np s

3⋅ … µNp
2
Np

2
+ + +

 O 10s
3

Np
2⋅( ) O µ Np

4⋅( )+≈

op: 
Np

3

6
---------

Np
2

2
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Np
2

2
---------+ + O

1

6
---Np

3

⎝ ⎠
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O µ Np
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1

6
---Np

3

⎝ ⎠
⎛ ⎞+

RKPM

O 100s
3

Np
2⋅( ) O 2Np

3( )+

RKCM

>
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Appendix

Operation counts for solving fully densed and banded linear systems

Consider the following linear system of equations.

(a) Solution of a fully densed system (Algorithm A)

The solution procedures of a  linear system by using Gaussian Elimination with Backward

Substitution are summarized as follows.

INPUT Number of unknowns and equations n; augmented matrix , where  and

OUTPUT Solution  or a message that the linear system has no unique solution

Step 1: For  do steps 2~4

Step 2: Let p be the smallest integer with  and . If no integer p can be found, then

OUTPUT (“no unique solution exists”);  STOP

Step 3: If , then perform 

Step 4: For  do steps 5~6

Step 5: Set 

Step 6: Perform ; 

Step 7: If , then OUTPUT (“no unique solution exists”); STOP

Step 8: Set 

Step 9: For  set 

Step10: OUTPUT ; STOP

In the above, Step 5 requires  division operations. In Step 6, the replacement of Ej by

 requires  multiplications. Thereafter, each term of equations requires

 subtractions. For each counter , the subtotal operations

required in Step 5 and Step 6 are 

E1: a11x1 a12x2 … a1nxn+ + + a1 n, 1+=

E2: a21x1 a22x2 … a2nxn+ + + a2 n, 1+=

En: an1x1 an2x2 … annxn+ + + an n, 1+=

…

n n×

A ai j[ ]= 1 i n≤ ≤
1 j n 1+≤ ≤

x1 x2 … xn, , ,
i 1 2 … n, , ,=

i p n≤ ≤ api 0≠

p i≠ EP( ) Ei( )↔
j i 1+ i 2+ … n, , ,=

mji aj i aii⁄=

Ej mjiEi–( ) Ej( )→
ann 0=

xn an n, 1+ ann⁄=

i n 1– n 2– … 1, , ,= xi ai n, 1+ ai jxj

j i 1+=

n

∑– aii⁄=

x1 x2 … xn, , ,( )

n i–

Ej mjiEi–( ) n i–( ) n i– 1+( )
n i–( ) n i– 1+( ) i 1 2 … n 1–, , ,=

M D⁄ : n i–( ) n i–( ) n i 1+–( )+ n i–( ) n i 2+–( )=
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Summing up the counts for each i, we have 

In addition, step 8 requires 1 division, and Step 9 requires  multiplications and 

additions. The numbers of these operations are

The total amount of arithmetic operations required in Algorithm A are

(A.1)

(A.2)

For large n, M/D and A/S are in the order of .

(b) Solution of a banded system (Algorithm B)

The solution procedures of a  linear system with bandwidth  using Gaussian

Elimination with Backward Substitution are described as follows.

INPUT Number of unknowns and equations n; augmented matrix , where  and

OUTPUT Solution  or a message that the linear system has no unique solution

Step 1: For  do steps 2~4

Step 2: Let p be the smallest integer with  and . If no integer p can be found, then

OUTPUT (“no unique solution exists”); STOP

Step 3: If , then perform 

Step 4: For  do steps 5~6 (Note that )

Step 5: Set 

Step 6: Perform 

Step 7: If , then OUTPUT (“no unique solution exists”); STOP

Step 8: Set 

Step 9: For  set 

A S⁄ : n i–( ) n i 1+–( )

M D⁄ : n i–( ) n i 2+–( )
i 1=

n 1–

∑
2n

3
3n

2
5n–+

6
-----------------------------------=

A S⁄ : n i–( ) n i 1+–( )
i 1=

n 1–

∑
n

3
n–

3
--------------=

n i– n i– 1–

M D⁄ : 1 n i–( ) 1+( )
i 1=

n 1–

∑+
n

2
n+

2
--------------=

A S⁄ : n i– 1–( ) 1+( )
i 1=

n 1–

∑
n

2
n–

2
--------------=

M D⁄ : 
2n

3
3n

2
5n–+

6
-----------------------------------

n
2

n+

2
--------------+

n
3

3
----- n

2 n

3
---–+=

A S⁄ : 
n

3
n–

3
--------------

n
2

n–

2
--------------+

n
3

3
-----

n
2

2
-----

5n

6
------–+=

n
3

3
-----

n n× 2w 1–

A ai j[ ]= 1 j n≤ ≤
1 j n 1+≤ ≤

x1 x2 … xn, , ,
i 1 2 … n, , ,=

i p n≤ ≤ api 0≠

p i≠ Ep( ) Ei( )↔
j i 1+ i 2+ … i w 1–+, , ,= i w 1–+ n≤
mji aj i aii⁄=

Ej mji Ei–( ) Ej( )→
ann 0=

xn an n 1+, ann⁄=

i n 1– n 2– … 1, , ,= xi ai n, 1+ ai jxj

j i 1+=

i w 1–+

∑– ai i⁄=
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Step10: OUTPUT ; STOP

In the above, Step 5 requires  or  division

operations. In Step 6, the replacement of Ej by  requires 

or  multiplications and  or 

  subtractions. For each counter , the operations

required in Step 5 and Step 6 are 

Summing up the counts for each i, we have

In addition, Step 8 requires 1 division, and in Step 9 requires  or

 multiplications and  or 

additions. The numbers of these operations are

The total amount of arithmetic operations required in Algorithm B are

(A.3)

(A.4)

For large n, M/D is approximately  and A/S is approximately . Since for

a sparse and banded linear system, w << n, it is more effective to use Algorithm B .

For a special case in Algorithm B by letting , we recover the operation counts of Algorithm A:

x1 x2 … xn, , ,( )

w 1– for i n w 1+–≤( ) n i– for i n w 2+–≥( )
Ej mjiEi–( ) w 1–( )w for i n w 1+–≤( )

n i–( ) n i 1+–( ) for i n w 2+–≥( ) w 1–( )w for i n w 1+–≤( ) n i–( )
n i 1+–( ) for i n w 2+–≥( ) i 1 2 … n 1–, , ,=

M D⁄ : 
w 1–( ) w 1–( )w+ w 1–( ) w 1+( ) w

2
1–    for i n w 1+–≤,= =

n i–( ) n i–( ) n i– 1+( )+ n i–( ) n i– 2+( )  for i n w 2+–≥,=⎩
⎨
⎧

A S⁄ : 
w 1–( )w for i n w 1+–≤,

n i–( ) n i– 1+( ) for i n w 2+–≥,⎩
⎨
⎧

w
2

1–( )
i 1=

n w 1+–

∑ n i–( ) n i– 2+( )
i n w 2+–=

n 1–

∑+ n w
2

1–( ) 2w
3

3
---------

w
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2
------

w
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2 w
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