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Dynamics of electric system for electromechanical 
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Abstract. Dynamics of the electric system for the toroidal drive under mechanical disturbance is
presented. Using the method of perturbation, free vibrations of the electric system under mechanical
disturbance are studied. The forced responses of the electric system to voltage excitation under
mechanical disturbance are also presented. We show that as the time grows, the resonance vibration
caused by voltage excitation still exists and the vibrations caused by mechanical disturbance are enlarged.
The coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed.
The conditions of the occurrence of coupled resonance are studied.
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Toroidal drive can transmit large torque in a very small size and is suitable for top end technical

fields such as aviation and space flight, etc (Kuehnle 1966, Kuehnle et al. 1981, Tooten 1983,

Peeken et al. 1984, Tooten 1985). As more and more electrical and control techniques are utilized

in mechanical engineering field, generalized composite drives become advancing edge of the

mechanical science. So far, types of the generalized composite drives with integrated structure are

still very limited.

The electromagnetic harmonic drive (Delin and Huamin 1993) and piezoelectric harmonic one

(Barth 2000) are active drives in which the meshing forces between flexible gear and rigid one are

controlled by electromagnetic force or piezoelectric one, and drive and power are integrated.

Based on researching toroidal drive (Xu and Huang 2003), Author presented a kind of active

generalized composite drive without contact: electromechanical integrated toroidal drive. In the

drive, the toroidal drive, power and control are integrated.

The drive consists of four basic elements, Fig. 1: (a) the central worm; (b) radially positioned

planets; (c) a toroidal shaped stator; and (d) a rotor, which forms the central output shaft upon

which the planets are mounted. The central worm is fixed and coils are mounted in helical grooves

of its surface. The planets have permanent magnets instead of teeth. The N and S polar permanent

magnets are mounted alternately on a planet. And the stator has helical permanent magnets instead

of helical teeth. In the same manner as planet, The N and S polar helical permanent magnets are

mounted alternately on the stator.
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If a specific relation between planet pitch, tooth number and lead angle on the stator, and number

of pole pairs and lead angle on the worm is realized, N pole of one element will correspond to S

pole of the other one all along. The attractive forces between N and S pole of the different elements

are driving forces and the meshes without contact are realized. When the alternate current is made

in the coils of the worm, a toroidal circular field is formed. It drives several planets rotate about

their own axial. And by means of magnetic forces between teeth of the planet and stator, the rotor is

driven to rotate about its own axial. Thus, a power of low speed and heavy torque is output.

Compared with toroidal drive, the new drive is easy to produce, without wear, and does not need

lubrication. It can be substituted for a servo system to simplify the structure of the existing

electromechanical systems. Besides the above-mentioned fields that require compactness, the drive

can be used in fields such as robots, etc, that require accurate control. 

The electromechanical integrated toroidal drive consists of a mechanical system, an electrical

system and a coupled part. The mechanical vibration may occur in the mechanical system, and the

electrical current oscillation may occur in the electrical system. With the coupled part, the

mechanical vibration and the electrical current oscillation will influence on each other. Hence, the

drive system is an electromechanical coupled dynamics system. The electromechanical coupled

dynamics was first proposed for the motor (Qiu 1989 and Shatout 1996). Then, the

electromechanical coupled dynamics of the electromechanical system consisting of the motor and

mechanical system driven by the motor was developed. An electromechanical coupled dynamics

model of the electromechanical system consisting of the several motors and mechanical system

Fig. 1 The electromechanical integrated toroidal drive
(a) Diagram of the drive (1. Planet 2. Worm 3. Stator 4. Rotor) (b) Solid model of the drive (c) Solid model

of the rotor parts
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driven by these motors was proposed. Using the model, the natural frequency of the

electromechanical system is analyzed (Kanaan et al. 2003). The characteristics of electromechanical

coupling self-synchronization of a multi-motor vibration transmission system was investigated

(Xiong et al. 2001). The electromechanical coupled dynamics of the electromechanical system

consisting of the motor and elastic link mechanism was discussed (Li et al. 2006). Recently, the

electromechanical-fluidic coupled dynamics problem of the piezoceramic plates in fluid was also

investigated. However, the electromechanical coupled dynamics of the electromechanical integrated

toroidal drive has not been developed yet. To design, evaluate and control dynamics behavior of the

drive system effectively, the electromechanical coupled dynamics of the drive system should be

investigated.

In this paper, based on electromagnetics and mechanics principle, electromechanical coupled

dynamic equations for the drive are developed. And the dynamics of the electric system for the

drive under mechanical disturbance is presented. Dynamic equations of the electric system are

transmitted into equations independent on each other. And then using method of perturbation, free

vibrations of the electric system for the drive under mechanical disturbance are given. The forced

responses of the electric system to voltage excitation under mechanical disturbance are also

discussed. It is known that for the system with mechanical disturbance, as time grows, small

exciting wave still exists when the wave magnitude is tending to zero which is unfavorable to

electric system. When mechanical disturbing frequency is near to the natural frequencies of the

electric system or their integer multiple, resonance vibrations occur in the electric system. As time

grows, vibration quality of the electric system decreases gradually and the resonance vibration will

vanish. So the resonance vibration caused by mechanical disturbance is transient. The forced

responses of the electric system to voltage excitation under mechanical disturbance are compound

vibrations which are decided by voltage excitation, mechanical disturbance and parameters of the

electric system in common. As the time grows, the resonance vibration caused by voltage excitation

still exists and the vibrations caused by mechanical disturbance are enlarged as well. Last, the

coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed as

well. The condition under which above coupled resonance occurs is presented. The coupled

resonance is more unfavorable to electric system. These results are useful in design and manufacture

of the drive.

1. Electromechanical coupled dynamic equations

The electromechanical coupled dynamic model of an electromechanical integrated toroidal drive is

shown in Fig. 2. Space phase relation of the coils on the worm is shown in Fig. 3. Symbol φv

denotes face width angle of the worm. Then, in the transverse plane of the planet, the phase angle

of the phase-i is

                                          (i = 1 to n)

Where n-phase number of the worm coils (n = 3)

p-the number of the pole-pairs

Let position angle θ = 0 of the planet when tooth of the planet is aligned completely with phase-1

φi
i 1–

n
----------

φv

p
-----=
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coil. Let the tooth number of the planet equal z1. Inductances of the every phase can be calculated

as shown in Appendix.

The differential equations of the electrical system of the drive are as follows

                   (i = 1 to n) (1)

Where vis, Ri and Ci are voltage, resistance and capacitance of the i th phase worm coil,

respectively. If n phase alternate currents are made in the coils, n differential equations are obtained.

The magnetic linkage λis of the coils on the fixed central worm can be calculated as follows 

(2)

Let qi denote quantity, then iis =  Substituting Eq. (2) and iis  into Eq. (1), yields

(3)

vis Risiis
1

Ci

----- iis td∫
dλis

dt
---------+ +=

λis Lijiis
j 1=

n

∑=

dqi

dt
-------

dqi

dt
-------

vis Lij
d
2
qj

dt
2

---------
j 1=

n

∑ Ris

dqi

dt
-------

∂Li j

∂θ
---------

∂θ

dt
------

dqj

dt
-------

j 1=

n

∑
qi

Ci

-----+ + +=

Fig. 2 Dynamic model of an electromechanical integrated toroidal drive

Fig. 3 Space phase relation of the coils on the worm
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Hence, the differential equations of the electric system for the drive can be given in matrix form as

Lv + Rv + Cv = vs (4)

The quality and voltage vectors, q and vs, and equivalent inductance, resistance and capacitance

matrices, Lv, Rv and Cv, are given in Appendix.

In Eq. (4),  is rotational speed of the relative vibration between planet and worm, and it shows

influence of the mechanical system to electric system.

The equations of motion of the mechanical system for the drive are given in matrix form as

M + C + KX = F (5)

Where X and F are displacement and load vectors, respectively; M, K and C are mass, stiffness and

damping matrixes, respectively.

In Eq. (5), stiffness matrix K includes electromagnetic meshing stiffness and shows influence of

the electric system to mechanical system.

Therefore, Combining Eq. (4) with Eq. (5), the electromechanical coupled dynamic equations of

the drive system are obtained. In this paper, dynamics of the electric system for the drive under

mechanical disturbance is developed.

2. Free vibration of the electric system under mechanical disturbance

The Eq. (4) decides a team of equations which are coupled to each other. For simplicity purposes,

the formulation (4) should be transmitted into equations independent on each other. Then, Eq. (4) is

changed into the following form

LvN N + RvN N + CvN qN = vsN (6)

Where LvN, RvN and CvN are regular diagonal equivalent inductance, resistance and capacitance

matrices, respectively. vsN and qN are transmitted equivalent exciting voltage and quality vectors,

respectively (see Appendix).

Thus, Eq. (6) includes n equations independent on each other. The i th equation can be expressed

as below

                    ai Ni + bi Ni + ci qNi = vNi          (i = 1 to n)  (7)

Where ai = 1, bi = (Ri + ε Li ωm cos ωmt), ci = .

In Eq. (7), bi changes along with time t. So this is a variable coefficient differential equation. For

Eq. (7), following transformation is done

(8)

Hence, Eq. (7) is changed as below

(9)

q·· q· q

∂θ

dt
------

X
··

X
·

q·· q·

q·· q·

ω i

2

qi xe

1

2
---–

b
i
t( )

a
i

----------- td∫
=

x·· α t( )x+ v′=
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Where 

Changes of the angle θ between planet and worm for the mechanical system are as below

θ = θ0 + ∆θ sin (ωmt) (10)

Where θ0 is static relative rotating angle between planet and worm, ∆θ is magnitude of the dynamic

rotating displacement, ωm is frequency of the angular vibration between planet and worm. 

Eq. (10) are substituted into above equations Eq. (9)and then Eq. (9) can be transformed into

following form

(11)

From analysis, it is known that ε1 and ε2 are much smaller than ε3. So ε1 and ε2 can be neglected.

And Eq. (11) is simplified as (here ε = ε3)

(12)

As only free vibration of the electric system under mechanical disturbance is discussed, let 

in Eq. (12), then

(13)

Let

(14)

and

 (15)

Let τ = ωt, and substituting Eqs. (14) and (15) into Eq. (13), and then let sum of the coefficients

with the same order power of the parameter ε equal zero, following equations can be given

(16a)

(16b)

(16c)

Where , and  is the second order derivative of the variable xi to new variable .

Here, initial conditions are

α t( )
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ai

---- 1

4
---
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2
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------------–
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dt
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Then, solution of zero order equation under above initial conditions is

Substituting Eq. (17) into Eq. (16b), yields

 (18)

In order to remove secular item, let , then

(19)

Substituting Eqs. (17) and (19) into Eq. (16c), yields

(20)

In order to remove secular item, let , then

(21)

In a same manner, the solution of n th order equation under above initial conditions can be

obtained as well, so the solution of the Eq. (13) is

+…… (22)
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From Eq. (15), natural frequency of the electric system can be given as well

(23)

Substituting Eq. (22) into Eq. (8), and then using equation q = AN qN, the free quality vibration qi

can be given.

3. Forced response of the electric system to voltage excitation under mechanical

disturbance

In order to analyze forced responses of the electric system to electric excitation under mechanical

disturbance, expressing Eq. (7) as following form

(24)

Where voltage excitation is given as , ωe is exciting frequency of the  voltage,

Let v0 is magnitude of the exciting voltage.

(25)

Substituting Eq. (24) into Eq. (23), and then let sum of the coefficients with the same order power

of the parameter equal zero, following equations can be given

(26)

In a same manner as solving Eq. (16), the solutions of the Eq. (26) can be obtained as well, and

then substituting the solutions into Eq. (25), and then using equation q = AN qN, forced vibration

quality qi can be obtained.

4. Results and discussions

4.1 Free vibrations under mechanical disturbance

Eqs. (8) and (21) are used for free vibration analysis of the electric system for the drive under

mechanical disturbance. Parameters of the numerical example are shown in Table 1. Free vibrations
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are shown in Fig. 4. Here, initial quality A is 8.0 × 10−9 C. Free vibration analysis without

mechanical disturbance shows that natural frequencies of above electric system are ω1 = 0.10869 ×
107 rad/s, ω2 = 0.4135 × 107 rad/s and ω3 = 4.1430 × 107 rad/s. Fig. 4 shows results under condition

that mechanical disturbing frequency is far from natural frequencies of the electric system (here

ωm = 1 × 107 rad/s). Fig. 4(a) shows results of the first mode (ω1 = 0.10869 × 107 rad/s); Fig. 4(b)

shows results of the second mode (ω2 = 0.4135 × 107 rad/s); and Fig. 4(c) shows results of the third

mode (ω3 = 4.1430 × 107 rad/s). Fig. 4(d) shows results without mechanical disturbance. Fig. 5

shows results under condition that the mechanical disturbing frequency is near to the natural

frequencies of the electric system. Fig. 5(a) shows results under condition that the mechanical

disturbing frequency is near to the first natural frequency  of the electric system; Fig.

5(b) shows results under condition that the mechanical disturbing frequency is near to the double of

the first natural frequency  of the electric system. Fig. 5(c) shows results under

condition that the mechanical disturbing frequency is near to the second natural frequency

 of the electric system; Fig. 5(d) shows results under condition that the mechanical

ωm ω1≈( )

ωm 2ω1≈( )

ωm ω2≈( )

Table 1 Parameters of the example system

φv (
0) ∆θ (rae) ωm (rad/s) rad p n L0 (H) L1 (H) Ci (F) Ri (Ω) ε

80 0.007 107
1 3 10−3 10−3 1.6 × 10−10

10 0.01

Fig. 4 Free vibrations of the electric system under mechanical disturbance
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disturbing frequency is near to the double of the second natural frequency  of the

electric system. Fig. 5(e) shows resulst under condition that the mechanical disturbing frequency is

near to the third natural frequency  of the electric system; Fig. 5(f) shows results under

condition that the mechanical disturbing frequency is near to the double of the third natural

frequency  of the electric system. From Figs.4 and 5, ones know:

(1) As time grows, vibration quality of the electric system decreases gradually. The vibration of

the quality is periodical damped wave. Magnitude of the wave is decided by initial excitation and

time. The decaying speed is decided by damping term Ri.

ωm 2ω2≈( )

ωm ω3≈( )

ωm 2ω3≈( )

Fig. 5 Resonance vibrations of the electric system under mechanical disturbance



Dynamics of electric system for electromechanical integrated toroidal drive under mechanical disturbance 199

(2) For higher natural frequency of the system, periodic time of the quality vibration is shorter. So

for the natural frequency 4.1430 × 107 rad/s, the shortest periodic time of the quality vibration

occurs. It is because the periodic time of the quality vibration for the electric system is decided by

natural frequency of the electric system and disturbing frequency of the mechanical system.

(3) For the system without mechanical disturbance, the periodic time of the quality vibration is

longest. The periodic time of the quality vibration is only decided by natural frequency of the

electric system.

(4) For the system with mechanical disturbance, as time grows, small exciting wave still exists

when the wave magnitude is tending to zero. This is unfavorable to electric system.

(5) When mechanical disturbing frequency is near to the natural frequencies of the electric system

or their integer multiple, resonance vibrations occur in the electric system.

(6) The resonance vibrations are more obvious under condition that disturbing frequency is near to

the natural frequencies of the electric system than those under condition that disturbing frequency is

near to the integer multiple of the natural frequencies of the electric system.

Fig. 6 Forced responses of the electric system to voltage excitation under mechanical disturbance

Table 2 Changes of the resonance vibrations along with disturbance and excitation frequency

ωm ωe resonance vibration from disturbance coupled resonance vibration 
from disturbance and excitation

ωm = 2ω1 far from ωi (i = 1, 2 and 3) occur for the first mode do not occur

ωe = ω1 do not occur occur for the first mode

ωe = ω2 occur for the first mode occur for the second mode

ωe = ω3 occur for the first mode occur for the third mode

ωm = 2ω2 far from ω1 (i = 1, 2 and 3) occur for the first and second modes do not occur

ωe = ω1 occur for the first mode occur for the second mode

ωe = ω2 do not occur occur for the second mode

ωe = ω3 occur for the second mode occur for the third mode

ωm = 2ω3 far from ωi (i = 1, 2 and 3) occur for the first and third modes do not occur

ωe = ω1 occur for the third mode occur for the first mode

ωe = ω2 occur for the third mode occur for the second mode

ωe = ω3 do not occur occur for the third mode
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(7) As time grows, vibration quality of the electric system decreases gradually and the resonance

vibration will vanish. So the resonance vibration caused by mechanical disturbance is transient, but

their hazard is assignable.

Fig. 7 Coupled vibrations under mechanical disturbance and voltage excitation (ωm = 2ω1)
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4.2 Forced responses to electric excitation under mechanical disturbance

Eqs. (26), (27) and (24) are used for forced response analysis of the electric system to voltage

excitation under mechanical disturbance. The forced responses are shown in Fig. 6. Fig. 6(a) shows

Fig. 8 Coupled vibrations under mechanical disturbance and voltage excitation (ωm = 2ω2)
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results under condition that exciting frequency is near to the first natural frequency ; Fig.

6(b) shows results under condition that exciting frequency is near to the second natural frequency

; Fig. 6(c) shows results under condition that exciting frequency is near to the third

natural frequency . Here, only results of the first mode (ω1 = 0.10869 × 107 rad/s) are

presented. From Fig. 6, ones know:

ωe ω1≈( )

ωe ω2≈( )
ωe ω3≈( )

Fig. 9 Coupled vibrations under mechanical disturbance and voltage excitation (ωm = 2ω3)
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(1) When voltage exciting frequency ωe is near to one of the natural frequencies for the electric

system, the resonance occurs in the electric system.

(2) As the time grows, the resonance vibration caused by voltage excitation still exist which is

different from ones caused by mechanical disturbance.

(3) The forced responses of the electric system to voltage excitation under mechanical disturbance

are compound vibrations which are decided by voltage excitation, mechanical disturbance and

natural frequency of the electric system.

(4) As vibrations caused by voltage excitation exist, the vibrations caused by mechanical

disturbance are enlarged.

Under condition that voltage exciting frequency is near to the natural frequencies and the

mechanical disturbing frequency ωm is near to one-half of them for the electric system, the coupled

resonance occurs in the electric system as shown in Figs. 7-9. From Figs. 7-9, ones know: Under

the mechanical disturbance and the voltage excitation, the resonance vibration from mechanical

disturbance and the coupled resonance vibration from mechanical disturbance and voltage excitation

may occur. Changes of the two types of the resonance vibration along with disturbance frequency

and the excitation frequency are summarized in Table 2. The coupled resonance vibrations are much

larger than those caused only by mechanical disturbance or voltage excitation and they are more

Fig. 10 Numerical simulation of the free vibration

Fig. 11 Numerical simulation of the resonance vibration under mechanical disturbance
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unfavorable to electric system.

To illustrate validity of the theoretical model, the calculating results are compared with numerical

simulation. Fig. 10 gives free vibrations done by numerical simulation. Fig. 11 gives forced

vibrations done by numerical simulation. They are done from four order Runge-Kutta method. Fig.

10(a) and (b) corresponds to Fig. 4(a) and (b), respectively. Fig. 11(a) and (b) corresponds to Fig.

5(a) and (b), respectively. These figures shows that the analytical solutions are in good agreement

with the numerical simulation.

These figures also show that the accuracy of the 3rd solution is high enough. For the free

vibration analysis, the relative error of the amplitude is smaller than 3.5%. For the forced vibration

analysis, the relative error of the amplitude is smaller than 5%.

5. Conclusions

In this paper, the electromechanical coupled dynamic equations for the drive are developed. And

the dynamics of the electric system for the drive under mechanical disturbance is discussed. Using

method of perturbation, free vibrations and forced responses of the electric system to voltage

excitation under mechanical disturbance are researched. It is known that for the system with

mechanical disturbance, as time grows, small exciting wave still exists when the wave magnitude is

tending to zero which is unfavorable to electric system. When mechanical disturbing frequency is

near to the natural frequencies of the electric system or their integer multiple, resonance vibrations

occur in the electric system. The forced responses of the electric system to voltage excitation under

mechanical disturbance are compound vibrations caused by voltage excitation, mechanical disturbance

and parameters of the system. As the time grows, the resonance vibration caused by voltage

excitation still exists and the vibrations caused by mechanical disturbance are enlarged as well. The

coupled resonance vibration caused by mechanical disturbance and voltage excitation is discussed as

well. The conditions under which above coupled resonance vibrations occur are presented. The

coupled resonance is more unfavorable to electric system and must be avoided in design.
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Appendix

Self-inductances:

          (i = 1 to n)

mutual-inductances between adjacent phases:

         (i = 2 to n)

mutual-inductances between two spacing phases:

         (i = 3 to n)

Where      (i = 1 to n)

q = {q1, ……, qi, ……, qn)
T, vs = {v1s, ……, vis, ……, vns)

T

Li i L0 L1 z1θ i 1–( )
φv

pn
------–⎝ ⎠

⎛ ⎞cos+=

Li 1 i,– L01 L1 z1θ 2i 3–( )
φv

2pn
---------–⎝ ⎠

⎛ ⎞cos+=

Li 2 i,– L02 L1 z1θ 2i 4–( )
φv

2pn
---------–⎝ ⎠

⎛ ⎞cos+=

L0 i L0

iφv

pn
-------cos=

Lv

L11 L12
… L1n

L21 L22
… L2n

………

Ln1 Ln2
… Lnn

= Rv Diag R1 R2 … Rn[ ]=
dθ

dt
------

l11 l12 … l1n

l21 l22 … l2n

………

ln1 ln2 … lnn

+,
… … … … … …

Cv Diag
1

C1

------ 
1

C2

------ … 
1

Cn

------=

LvN AN

T
LvAN 1 I RvN AN

T
RvAN RN

= =,= = =

…

…

…

…

CvN AN

T
CvAN CN

λ1

λn

ω1

2

ωn

2

= = = =
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…
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Here AN is regular mode matrix of Eq. (4)

vsN AN

1–
vs

AN1

1( )
AN2

1( ) … ANn

1( )

AN1

2( )
AN2

2( ) … ANn

2( )

… … … …

AN1

n( )
AN2

n( ) … ANn

n( )

1– v1

v2

v n 1–( )

vns⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

= =
…

qN AN
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1( )
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