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Response of a rocksalt crystal to electromagnetic wave 
modeled by a multiscale field theory 
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Abstract. In this work, a nano-size rocksalt crystal (magnesium oxide) is considered as a continuous
collection of unit cells, while each unit cell consists of discrete atoms; and modeled by a multiscale
concurrent atomic/continuum field theory. The response of the crystal to an electromagnetic (EM) wave is
studied. Finite element analysis is performed by solving the governing equations of the multiscale theory.
Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give
rise to the change of microstructure and the polarization wave. The relation between the natural frequency
of this system and the driving frequency of the applied EM field is found and discussed. 
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1. Introduction 

In the framework of classical, non-relativistic theory, a description of the electromagnetic behavior

of composite particles is introduced by Groot and Suttorp (1972). The field equations for the

composite particles are expanded from the microscopic equations of the Maxwell-Lorentz field

equations and the Newton equation with the Lorentz force inserted. Thereafter, from the viewpoint

of classical continuum mechanics, a systematic and rational formulation of the electromagnetic

theory of deformable and fluent bodies is presented by Eringen and Maugin (1980, 1990). Recently,

Chung (2007), in a treatise of general continuum mechanics, introduces the electrodynamics,

magnetohydrodynamics and electromagnetic waves for plasma. 

Extended from classical continuum mechanics, the microcontinuum field theories, developed by

Eringen (1999) and Eringen and Suhubi (1964), for material bodies possessing inner structures that

can deform and interact with mechanical and electromagnetic field, cover a much broader range of

important physical phenomena beyond those of classical field theories. The internal modes

describing the stretching and distortion of the molecules extend the application of the continuum

model to microscopic space/time scale. In this framework, Eringen (2003) further derived the linear

constitutive relations for micromorphic electromagnetic-thermoelastic solids. It has been applied to

study EM wave propagation in ferroelectric perovskites by Lee and Chen (2004). 

For crystals having multiple atoms in a unit cell, physical response of the molecular crystal may
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be represented by homogeneous lattice deformation and by inhomogeneous internal atomic

deformation. By decomposing these two deformations for microstructures, and by also decomposing

momentum flux and heat flux into homogeneous and inhomogeneous parts, field representations of

conservation laws at the atomic scale have been formulated in a newly developed multiscale field

theory by Chen and Lee (2005, 2006), Chen et al. (2006) and Chen (2006). As a result of this

formulation, a field representation of atomic many-body dynamics is obtained. The material is thus

described as the combination of continuous collection of lattice points and a group of bonded atoms

embedded within each lattice point. Based on this theory, the material system can thus be modeled

as a continuum analyzed by finite element method with each point in the continuum representing a

unit cell, which is made of a finite number of discrete atoms. Also, the constitutive relations are

represented by the nonlinear and nonlocal interatomic forces. Moreover, the atomistic responses,

such as optic phonon modes and polarization, can be described by the finite element analysis.

Therefore, we call this model as a concurrent atomic/continuum model. 

The multiscale field theory allows each atom to move arbitrarily within a unit cell and thus brings

about the internal deformations. Therefore, it gives rise to the optical mode in phonon branches.

Optical mode, as one type of wave propagation induced by the elastic distortions, essentially

generates an electromagnetic field for a polarizable crystal. Moreover, polarization at the atomic-

level only makes sense when defined in terms of the displacements of ions summed over a neutral

stoichiometric unit, the smallest primitive unit cell in a crystal (Kittel 1967). 

Within the multiscale field theory, the response in a microscopic continuum of rocksalt crystal

MgO to an electromagnetic wave is simulated at atomic level. The finite element analysis based on

the multiscale field theory is performed for this concurrent atomic/continuum system. The atomic

unit is employed in this paper. 

2. Governing equations and finite element formulation

The balance law for linear momentum in the multiscale field theory can be generally expressed as

(Lee et al. 2007, Chen and Lee 2008)

 (1)

where  is the displacement of the  atom in a unit cell with its center located at x;  is

the position vector of the  atom relative to the center of the unit cell;  is the mass density

of the  atom of a unit cell and  is the volume of that unit cell;  and  are the

homogeneous and inhomogeneous kinetic parts of stresses which are proportional to temperature,

respectively;  and  are the forces acting on the  atom in that unit cell due to interatomic

interactions and external fields, respectively. In the case of zero temperature, Eq. (1) is reduced to 

 (2)

where  is the mass of atom . The second term on the right hand side is the Lorentz

force given by Jackson (1962), 

 (3)

and  is the charge on atom , c is the speed of light, E is the electric field, B is the magnetic

field and v is the velocity. Notice here, the rigid-ion model is adopted. The force due to interatomic
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interactions is given by 

(4)

Here the summation is over all β atoms, which have interactions with α atom and the empirical

interatomic pair potential  is the combination of long-range Coulomb interaction and

short-range Buckingham potential,

(5) 

where  is the separation distance between atom α and atom β; the parameters

involved in the potential function,  and  are obtained through fitting to experimental

results (Grimes 1994) and summarized in Table 1. This potential describes the energy composed by

the long-range Coulomb energy, the repulsive energy by the Born-Mayer potential and the van der

Waals attractive energy. The metal-metal interactions for metallic bonding, i.e.,  pair, is

solely described by Coulomb potential. For other pairs, besides the long-range electrostatic Coulomb

potential, the Born-Mayer potential describes the short-range metal-non-metal and non-metal – non-

metal interactions for ionic bonding and covalent bonding respectively, i.e.,  and 

pairs. The van der Waals potential represents the correlated motions of electrons on different ions as

a dipole-induced dipole interaction. It describes the dispersion interaction which becomes stronger

as the atom or molecule becomes larger due to the increased polarizability of molecules with larger,

more dispersed electron clouds. Therefore, it is only considered for  pair. In this simulation,

the long-range Coulomb forces are calculated through direct summation within this finite-size

specimen. The cutoff used for the short-range interactions is 12

For the system with pair potential, by counting the interatomic forces acting on one atom coming

from all other atoms, Eq. (2) can be rewritten as

     (6)

where  is the interatomic force acting on the  atom of the  unit cell due to

the interaction with the  atom of the  unit cell. The following is the finite–element

formulation based on the governing equation Eq. (6).

The inner product of Eq. (6) with virtual displacement  and the summation of the inner
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(7)

Supposing we have Ne finite elements and each with 8 Gauss points, we can approximate Eq. (7) as

(8)

where  is the Jacobian of the  Gauss point of the  element;  is

the force acting on the  atom in the unit cell located at the  Gauss point of the 

element due to the interaction with the  atom of the  unit cell. Here, instead of the

integral, the summation is employed in this generalized finite element formulation. It is our idea to

use the Jacobian divided by the volume of the unit cell  , which is a dimensionless

quantity, to represent the number of unit cells associated with the  Gauss point of the 

element. Notice that  is a constant in time even in the case of large deformation.

Actually,  being constant in time is the law of conservation of mass at the atomic level.

Meanwhile, in the derivation of Eq. (8), we have utilized 

(9)

and

 
 (10)

Finally, through the shape functions 

 (11)

and the connectivity of the finite element model 

(12)

where  and  are the values of the  shape function evaluated at the  Gauss
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 are the virtual displacements of the  and the  atoms of the  node of
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and  are the global nodal numbers of the  node of the  element and the

element that the  unit cell is located, respectively. Now, Eq. (8) can be written as 
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(13)

Going through the process of assembly properly, one may rewrite Eq. (13) as 

(14)

where  and  are the forces due to interatomic interactions and external fields, respectively,

acting on the  atom of the  node;  is the virtual displacement of the 

atom of the  node. Eq. (14) is thereby the set of second order ordinary differential equations,

which is solved by central difference method in the numerical implementation of this work. Further,

the inhomogeneous motion of arbitrary atoms in the system can be described through the nodal

values and shape functions. 

3. Finite element model and simulation results

In the current atomic/continuum model, each finite element contains a large number of lattice

points, and according to the specific meshes, the number of lattice points within each element may

vary. The lattice point is defined as the mass center of the unit cell. In this model for each element,

the Gauss point is located right at a lattice point and other lattice points within this element are

distributed evenly as in a single crystal around the Gauss point. Thus, the atoms associated with the

lattice points are filling the whole specimen. Based on this model, a 3D finite nano-size MgO

specimen shown in Fig. 1(a) is investigated in this work. Because the EM wave is considered to

propagate along the x-direction, 9 cubic elements are linearly arranged along the x-axis by design.

The size of each element is  7.6 × 104 ). The rocksalt lattice structure,

shown in Fig. 1(b), with lattice constant a = b = c = 7.94 Bohr, crystallized as the initial

configuration and filled the finite element model. There are 4 Mg cations represented by open

circles and 4 O anions represented by solid circles per unit cell. In this specimen there are 9 finite

elements and 8 Gauss points in each element; the dimensionless quantity  represents

9217 unit cells, i.e., 9217 × 8 = 73736 atoms. 

We consider a given electromagnetic wave propagating in the specimen. The initial displacement

and velocity of each node are zero; no loading and no boundary constraints are applied in the

simulation. The induced body force, i.e., the Lorentz force acting on the charged atoms, is caused

solely by the external EM field. The polarization response can be schematically illustrated by Fig. 2.

Driven by the Lorentz force, according to Eq. (3), the charged ions Mg2+ and O2− in this specimen

will move along z-direction first with the velocity vz induced by the applied electric field Ez. This
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motion gives rise to polarization Pz. Then, due to the motion of ions in  z-direction and the applied

magnetic field along the negative y-direction, By, a Lorentz force, equal to qα v × B /c arises in x-

direction. Hence, the charged ions will move in x-direction that generates polarization Px as well. 

The harmonic electric field  and magnetic field 

 with variance in time and space are applied with 

 (15)

where speed of light c = 137.036 , . Total simulation time of this

work  and applied EM field lasts up to . The driving

frequency ω applied to the system is considered for two different cases: case I (high frequency)

 and case II (low frequency) 

. 

At atomic-level computations, classically, the polarization P is defined as the dipole moment per

unit volume (Kittel 1967),
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Fig. 1 (a) The finite element model of the specimen (9 × 1 × 1 elements); each element is a 80 × 80 × 80 a. u.3

= 7.6 × 104  cube; the total number of atoms is 73736 (9217 unit cells) and the initial configuration
is constructed with rocksalt structure; (b) The rocksalt structure of MgO; the solid circles represent Mg
cations and the open circles represent O anions; each unit cell has 8 atoms

Fig. 2 The schema to illustrate the polarization response in the specimen to the applied EM field
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(16)

where  is the position vector of charge , e is the unit of charge,  is the volume of unit cell.

Using a rigid-ion model to describe a lattice system, we assume that the ionic charges are

approximated by the point charges centered at the nuclei, in other words, the ions are not

polarizable. Consequently, the polarization of the lattice system has the form given by the field

representation in the multiscale field theory (Chen et al. 2006) 

(17)

Here,  is the charge of the  atom;  is the displacement of the  atom in the

 unit cell with respect to the reference state, ; the delta function in Eq. (17)

is a localization function that provides the link between the phase space and the physical space

descriptions. By summing k and  over the number of unit cells n and the number of atoms ν

within each unit cell, Eq. (17) can give us both the local property and bulk one for a finite size

specimen. With Eq. (14), from the compute program, we get the displacements of each atom of all

the finite element nodes. Based on that, we calculate the polarization. 
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According to Eq. (17), the polarization density  can be calculated as a vector-valued

function of space and time. The polarizations Pz and Px of the  cross section at  are

plotted as function of time for high-frequency case  and low-

frequency case  in Fig. 3 and Fig. 4, respectively. Notice that in

the simulation there are two stages divided at t = ; in the second stage ,

the external EM wave propagation is terminated. 

When time , along z-direction, Fig. 3 presents the distinct response of polarization Pz to the

applied EM wave with different driving frequency. We found that two patterns of coupling between

the driving frequency and the natural frequency of the system. In Fig. 3 (a), the applied high-

frequency electric field Ez drives Pz to show a larger frequency compared to its natural frequency,

while it constrains the magnitude of Pz. In contrast, in Fig. 3 (b), the applied low-frequency Ez

obviously reduces the frequency of Pz and naturally makes Pz reach a significant larger magnitude.

These two responses indicate that the internal deformation of microstructure is crucially influenced

by the driving frequency of the applied external EM field. Relative to the natural frequency of this

polarizable system, the lower driving frequency can make larger internal deformation, namely

higher polarization. 
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When time , there is no external field, damping force or boundary constraint acting on this

system, only the interatomic body force exists. Then the effect of the EM wave disappears and the

response of polarization keeps its natural frequency of the specimen irrespective of what has been

applied when . Both Figs. 3 (a) and (b) show that Pz has six peaks generated during every

time interval of 1.0 × 104 atomic units.

Unlike Pz, when time , the polarization in x-direction Px induced by the Lorentz force

 shows the similar response to the external fields with different driving frequencies, see

Figs. 4 (a) and (b). Moreover, the polarization Px consistently has a vibration frequency close to its

natural frequency in both cases. When , considered as another natural frequency in x-direction

distinct from Pz, five peaks are found at the same time interval for Px. The difference in the

magnitude of Px between the two cases is much small relative to that of Pz. It is considered as the

effect from noise and accumulated error.

In contrast with the classical molecular dynamics simulations, the method employed in this work

reveals its particular advantages. First, the finite nano-size specimen is modeled without any

periodic boundary conditions. This makes an exact physical model for simulating wave

propagations. Second, by solving the field equation, the local and instantaneous property obtained in

this simulation has physical meaning without the need of taking any statistical average. Third, using

finite element analysis within the multiscale field theory, the simulation is computationally more

efficient. This field theory allows the size of each finite element to be arbitrarily built from

nanoscopic to microscopic. The enlarged elements involving more atoms enable the problem to be

scaled up. Of course, it will cause the compromise of accuracy. To get accurate solution, more

small-sized elements are needed, which implies more computing effort and cost are needed.

Therefore, for specific problems, computer software of this work enables us to make a flexible

choice between the system size and computing efficiency.

4. Summary

Through a multiscale field theory, the internal deformation of the microstructure in a nano-size

continuum under the influence of an applied external EM field is investigated. The atomic-level

behavior of this polarizable system is demonstrated by finite element analyses performed on the

concurrent atomic/continuum model. The simulation results are summarized as follows:

(1) The polarization response indicates that there is an obvious coupling between the driving

frequency of the applied EM field and the natural frequency of the system, but only in the direction

of the electric field applied. 

(2) The frequency of the external field is a crucial factor. The external field with lower driving

frequency relative to the natural frequency of the polarizable system causes larger internal

deformation, hence higher polarization. 

(3) After the EM wave propagation was terminated, the polarization response goes on with its

natural frequency irrespective of what has been applied before. 
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