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Abstract. This paper employs the reproducing kernel (RK) approximation for evaluation of field
theory-based incompatibility tensor in a polycrystalline plasticity simulation. The modulation patterns,
which is interpreted as mimicking geometrical-type dislocation substructures, are obtained based on the
proposed method. Comparisons are made using FEM and RK based approximation methods among
different support sizes and other evaluation conditions of the strain gradients. It is demonstrated that the
evolution of the modulation patterns needs to be accurately calculated at each time step to yield a correct
physical interpretation. The effect of the higher order strain derivative processing zone on the predicted
modulation patterns is also discussed.
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1. Introduction

Dislocation substructures evolved during the course of plastic deformation can be roughly

classified into two kinds, i.e., mechanically-necessary type and geometrically-necessary-type, although

their distinctions have not been always made appropriately. Particularly, the evolution of the former,

exemplified by the dislocation cells, has been confused with incidental of structures of tangled

dislocations or even with subgrains, although it essentially stems from the collective behavior of

tremendous number of interacting dislocations thus cannot be properly described by continuum

mechanics-based approach. The developments of the latter, on the other hand, can in principle be
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simulated based on continuum mechanics, but it requires incorporation of additional defect degrees

of freedom responsible for dislocation rearrangements for effectively lowering the energy of the

system. Historically, many attempts have been made in vein to reproduce the dislocation substructures

either simply based on conventional settings of the crystal plasticity only with geometrically-

necessary-type of dislocation density not taking into account of proper defect degrees of freedom.

An incompatibility tensor, given by the double curl of strain tensor in continuum mechanics, has

recently been proposed for identification of deformation-induced, i.e., geometrically-necessary type,

intra-granular substructures in metallic materials. For example, dense dislocation walls and

microbands modeled by field theory based crystalline plasticity (Hasebe 2004a, 2004b, 2006,

Aoyagi and Hasebe 2007). The accuracy of the incompatibility tensor-based substructure prediction,

however, relies heavily on the numerical calculation of the higher-order differentiation. Standard C0-

finite element approximation requires ad hoc averaging procedures in the higher order

differentiation and thus induces considerable amount of errors.

This study introduces a reproducing kernel approximation (Liu et al. 1995, Chen et al. 1996) for

the computation of incompatibility tensor. Reproducing kernel approximation offers flexibility in

adjusting continuity, polynomial reproducibility, locality, and discretization adaptivity that are

particularly effective for the proposed incompatibility tensor-based substructure identification. The

method has been applied to application to a structural analysis in terms of gradient calculation

(Wang et al. 2008). In this study, the effects of kernel function continuity, locality, and the order of

basis functions in the reproduction kernel approximation on the predicted incompatibility tensor

distribution are identified. Comparison of the results obtained by the standard finite element and the

proposed reproducing kernel approximation is made in several numerical examples.

2. Incompatibility tensor

In the field theory of plasticity (Hasebe 2004a, 2004b, 2006, Aoyagi and Hasebe 2007), two

tensors of the differential geometrical kinds, i.e., torsion tensor and curvature tensor, play crucial

roles in describing not only dislocation and defect fields but also more generalized

inhomogeneously deforming fields in any scale levels. The torsion and curvature tensors are defined

respectively as, 

(1)

(2)

where  are the coefficients of connection expressing the relation between two adjacent frames,

further given as a function of the metric tensor of the crystalline space, gij of gij i.e.,

, while [ ] represents the skew-symmetric part with respect to

the indices enclosed in it. Here, the change in the metric tensor before and after deformation

measures the strain. Particularly, the curvature tensor yields an additional physical interpretation

(Hasebe 2004a) as a quantity which measures the degree of incompatible deformation (curvature of

the Riemannian kind) driven out of compatibility (flat space of the Euclidean kind). For a crystalline

space, the Einstein tensor of the curvature Eq. (2) corresponds to the so-called incompatibility tensor

(2nd-order divergenceless tensor), i.e.,
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(3)

where  is the Ricci curvature, and  is called the scalar curvature. Note, the

combination given in Eq. (3) satisfies the divergence free condition, i.e., .

In the framework of continuum mechanics, the incompatibility tensor is further expressed as a

double curl of plastic strain tensor, i.e.,

(4)

where  is the permutation symbol.

Regarding the torsion tensor, since the closure failure of a crystalline space means the existence of

dislocations, it physically accounts for dislocation density. The 2nd-rank dislocation density tensor

 is obtained by a contraction of the torsion tensor, and is further expressed as a curl of plastic

distortion tensor , i.e.,

(5)

3. Constitutive equations

A constitutive equation applicable to BCC metals which relates slip rate  with effective stress

 has been proposed by Hasebe (2006) and Aoyagi and Hasebe (2007),

(6)

 (7)

where  represents the drag stress responsible for isotropic hardening,  is the back stress

contributing to kinematic hardening,  are materials constants, and  represents

the effective stress for overcoming the Peierls potential, i.e., 

(8)

Here  is the threshold stress for  at absolute zero temperature, k the Boltzmann

constant, T the temperature, ∆G the activation energy and  the referential strain rate. The

evolution of the drag stress  is given by,

(9)

where  denotes the hardening ratio,  the hardening modulus, and  where 

is the slip strain in each slip system. In order to take into account the inhomogeneities in different

scale levels, the dislocation density and incompatibility tensors are introduced as strain gradient
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terms,  and , into the hardening ratio i.e.,

 (no sum or α) (10)

where  is the dislocation interaction matrix and  the matrix expressing the loading history

further given as a function of plastic work in each slip system. From , the effective cell size is

evaluated via

 (10’)

where k corresponds to a fraction of the initial grain size and N is the number of slip systems.

The explicit forms of the strain gradient terms are proposed by Aoyagi and Hasebe (2007) as

(11)

(12)

where b denotes the magnitude of the Burgers vector and  represents a referential size normally

corresponding to the initial grain size, ,  and  are the material constants, and  and

 are the resolved components of  and  into (α) slip system, respectively. In the present

paper, the following projections are used, 

(13)

(14)

where  are unit vectors expressing the slip direction and slip plane normal, respectively,

and . Here the incompatibility tensor is resolved into slip line direction as

indicated in Eq. (14) considering our purpose here, i.e., to mimic geometrical-type dislocation

substructures based on a comparison with experimental observations (Sugiyama 2005).

4. Simulation model

Fig. 1 illustrates a multi-crystal model discretized into 96 × 96 C0-type crossed-triangle elements.

Here, heterogeneity in the grain shapes, such as those numerically reproduced by Zhang et al. (2008)

is ignored, assuming geometrically isotropic hexagonal shape. In the following, simulation results for

displacements, strains and incompatibility tensors along the solid cross sectional line in grain 4 are

shown. Intra-granular modulation formations on a similar model have been discussed in light of the

geometrically-necessary type dislocation substructure evolutions (Aoyagi and Hasebe 2007). The

model consists of seven grains of BCC iron accommodated with {110}<111> slip systems. Crystal

orientations allocated to each grain are given in Fig. 1(b). Tension up to 20% nominal strain is

applied to the FEM model. Plastic distortion field is evaluated based on the standard kinematics, i.e.,

(15)
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addition, total distortion is separately evaluated from the displacement field by utilizing the RK

approximation, from which vanishing incompatibility tensor is further evaluated to confirm the

accuracy of the method.

5. Reproducing kernel approximaton

For an accurate evaluation of incompatibility tensor field via of Eq. (4) used in the strain gradient

terms in Eqs. (10) and (11), we utilize the reproducing kernel approximation (Liu et al. 1995, Chen

et al. 1996) in this work. The calculation of the incompatibility tensor needs approximation of

displacement field with at least C2-continuity. The three-dimensional RK approximation is given by

(16)

where  is the RK approximation of u,  is the coefficient, a refers to the support size which

will be explained later, NP is the number of discrete points, and, , is the reproducing

kernel expressed as,

(17)

where  is called the correction function used to impose polynomial reproducibility, and

 is the multi-dimensional kernel function. In this paper, the following cubic B-spline

kernel function with C2 continuity is used:
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Kernel functions with further higher order continuity may be used for evaluation of higher-order

derivatives. The correction function is constructed to achieve reproducibility of polynomials in the

approximation for convergence purposes or to reproduce specific functions representing important

characteristics of the problem to be solved. In this work, we introduce monomial bases in the

correction function for reproduction of n-th order monomials: 

(19)

where 

 (20)

Here,  is determined so as to satisfy the following reproducing conditions for n-th order

monomials,

,     (21)

Upon solving  from Eq. (21) and substituting it back to Eqs. (19) and (17), we have the

following RK approximation function:

 (22)

where

(23)

(24)

6. Results and discussions

In the following model problem, the deformation of the grain structure is governed by the

standard equilibrium equation, and the Galerkin weak form of equilibrium equation requires only

C0-continuity in the test and trial functions. Thus finite element method is employed to obtain the

displacement solution of the equilibrium equation of the grain structure. The identification of

modulated patterns using incompatibility tensor, on the other hand, requires evaluation of second

order derivatives of strain. It is noted that this evaluation of higher order derivatives using standard

C0 finite element approximation of displacement field requires averaging schemes that yields errors

in the averaging processes. In this approach, we first use fine finite element discretization to model

deformation of grain structure with refinement until the solution converges to desired accuracy. The

finite element strains are then evaluated at the integration points and projected onto RK

approximated strain field for evaluation of the incompatibility tensor and the corresponding strain

gradient term for modulation identification.

Fig. 2 shows distribution of the plastic distortion along the cross section of the central grain as

depicted by the solid line in Fig. 1(a). The FE plastic distortions evaluated at integration points are
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indicated by dot symbols, and the plastic distortions obtained by the projection to the RK

approximation are plotted by continuous lines. RK approximation with linear and quadratic

monomial bases are denoted by N = 1 and N = 2, respectively, and solutions obtained by different

support sizes “a” are compared in the figure. As can be seen, RK plastic distortion approximations

with smaller support size better approaches finite element plastic distortion data at the integration

points. This is expected as RK approximation functions are not interpolants in general, and using

smaller support size in the RK approximation yields nearly interpolation properties. Increasing a, on

the other hand, results in flatter distributions. In addition to the kernel function support size, the use

of higher order monominal basis functions yields approximations closer to the data points.

The accuracy of the above FE solution has been confirmed via convergence study, where

refinements of the finite element discretization are made until a convergence is reached. The

displacement solution is obtained for coarser FE mesh models (those with 48 × 48 and 72 × 72

divisions) first in addition to the current model (with 96 × 96 divisions) and then examine the L2

norm of the solution difference between the consecutive mesh refinements. The L2 norm is defined

here as the square root of the integral of the square of the solution difference over the whole

Fig. 2 Distributions of plastic distortion along transverse cross section of multi-grain model
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domain. The convergence criterion is set to be 1.0 × 10−4. Fig. 3 compares the cross sectional

distribution of the displacement solutions (for x and y directions) among the three models. The L2

norm between the adjacent two refinements uy are 3.96 × 10−6 and 6.53 × 10−6, respectively. Since

they are much smaller than the convergence criterion, we can verify the sufficient accuracy of the

current FE solution. 

Fig. 4 shows distribution contours of the incompatibility term  evaluated based on FEM

utilizing a simple linear interpolation method for the plastic distortion field over the integration

points of the elements within distance a as schematically shown in Fig. 5(a), and the derivatives of

 are then obtained by taking derivatives of finite element shape functions on the finite element

interpolated . Here, the evaluation range a is varied from 0.5 to 2.5 µm, which has similar

effects to the support size in RK approximation (Fig. 5).

As was discussed in the previous paper (Hasebe 2007), the use of the incompatibility tensor in the

elasto-crystal plasticity-based simulations results in the emergence of modulated patterns as seen in,

Fig. 4, which further yields modulations in stress, strain fields and the effective cell size distribution

evaluated based on Eq. (10’) (Hasebe 2007). One of the concerns here would be about the

sensitivity of such modulated pattern formation to discretization resolution and the finite element

evaluation method of the higher-order spatial derivatives. Fig. 4 also demonstrates that the

evaluation range a essentially does not alter the modulation formation trend: Increasing range of the

F η
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βij
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Fig. 3 Comparison of FE solutions for cross-sectional displacement of multi-grain model among three
consecutive mesh refinements for convergence study

Fig. 4 Distributions of incompatibility term obtained by FEM
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Fig. 5 Definition of range “a” for evaluation of derivative for (a) FEM and (b) RKPM

Fig. 6 Distributions of incompatibility term for central grain obtained by FEM
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gradient evaluation simply tends to make the modulated patterns fuzzy due to a loss of local

information. Note, the multiple levelset method will also be used for modeling such evolving

microstructures as the above as in Zhang et al. (2008).

Fig. 6 compares the cross sectional distribution of the incompatibility term  for the central

grain obtained by FEM with different processing range a. A gradual transition from a = 0.5 to 2.5

without an abrupt change in the modulated distribution within this range. Note that a preliminary

F η
1( )( )

Fig. 7 Distributions of incompatibility term using RA approximation

Fig. 8 Distributions of incompatibility term for central grain calculated by RK approximation (N = 2)
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one-dimensional analysis over the wider range of a, i.e., up to around 20, showed that there exist

such plateau-like regions periodically along with the increasing evaluation range, implying different

physical meaning or picture systematically depending on the scales. 

Fig. 7 show the incompatibility distribution obtained using the projected RK approximation,

where monominal basis order N = 2 is employed. The support size is varied from a = 1.0 to 2.5. The

modulation patterns evaluated based on RK approximation are essentially similar to those by FEM,

and exhibit smaller variation among different support size compared with the FEM-based results,

except for a = 1.0. The result with the support size 3a = 1.0 exhibits much finer modulation than the

others, while the directions and morphology of the pattern are basically unaltered. Since this finer

Fig. 9 Distributions of incompatibility term for central grain calculated by RK approximation (N = 1)

Fig. 10 Distributions of incompatibility term for central grain calculated by RK approximation (N = 3)
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modulation stem, at least partially, back to the non-smooth interpolation of the plastic distortion

shown in Fig. 2, a careful examination would be further needed. 

Figs. 8~10 display a comparison of the incompatibility distribution using different order of basis

functions and different support sizes. Note that the minimum support size of the RK approximation

is closely related to the order of basis functions used in the RK approximation so as to yield a non-

singular moment matrix in Eq. (23); see Chen et al. for details. In general, the use of higher order

bases in the RK approximation requires the employment of large kernel function support size for

non-singular moment matrix. Similarly to the trend observed in finite element calculation shown in

Fig. 6, a gradual transition of the modulation from a = 1.5 to 2.5 is observed, and the cases for

a = 2.0 and 2.5 yield almost identical results. 

For a quantitative comparison, the number of modulations observed in the central grain is counted

in Figs. 8~10 and is summarized in Fig. 11. As a possible interpretation, the full width at half

maximum (FWHM, see Fig. 5(b) for the definition) of the kernel function with support size a is

employed here for the comparison with the FEM-based results. The RK-processed results exhibit

larger modulation numbers than those of FEM, essentially due to the higher order continuity in the

approximation, and shows a fast convergent when support size is greater than a = 1.5. The FEM-

based results, on the other hand, shows a much slower convergence. 

It is imperative to point out that the morphological features as well as the number of the modulated

patterns based on the incompatibility tensor are essentially unaffected by the material parameters used

in the incompatibility term, i.e.,  and  in Eq. (12). They control the intensity of the

incompatibility term and ultimately affect the effective cell size dcell (Eq.(10’)) to be evaluated from

the hardening ratio Qαβ. In this sense, the present model is insensitive to  and  as far as the

morphology of the modulation is concerned. Note, an introduction of the interactions with smaller

scale inhomogeneities than the grain size, e.g., that measured by dcell, may change both the

modulation number and the morphology, which is one of the future scopes of the present study. The

interaction effects will be separately discussed in the other papers (Hasebe 2009a, 2009b).

ldefect pη

ldefect pη

Fig. 11 Variation of modulations with a comparing FEM and RK-based evaluation of incompatibility terms.
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7. Conclusions

The present study demonstrates that basic morphology of the modulated patterns including the

directionality can be obtained by computing the incompatibility tensor. The crystallography reflects

the slip system and associated slip deformations that are closely related to the crystal orientation and

the imposed deformation mode. The experimentally-observed dislocation substructures in terms of

the morphology have also been shown in some specific cases (Sugiyama 2005).

The number of modulations, on the other hand, is shown to be affected by the evaluation method

for strain gradients in the incompatibility and distortion tensors as demonstrated above. Particularly,

we have shown that the number of modulations in the incompatibility tensor distribution is affected

by the support size of the RK approximation or the “processing zone” of strain derivative averaging

in the FEM approximation. We further showed that the number of modulations converges faster as

the support size increases in the RK approximation compared to the case based on the FEM. This

implies a significant possibility in applying RK approximation to express multiple inhomogeneous

fields under different physical conditions in different scale levels by evaluating the incompatibility

tensor with properly selected kernel smoothness (order of continuity), support size, and basis

functions in the RK approximation.

The proposed RK approximation offers a straightforward and accurate calculation of higher order

derivatives of strain involved in the incompatibility tensor compared to that based on finite element

interpolation and averaging procedures. This approach becomes even more critical for simulation of

finer scale evolving dislocation substructures based on incompatibility or distortion tensors.
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