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Abstract. A combined stochastic diffusion and mean-field model is developed for a systematic study of
the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity
equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is
investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on
the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional
grain systems, and the corresponding growth exponents are ~ 0.33 and ~ 0.25, respectively. With the
increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth
exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15
nm with boundary energy of 0.01-1 J m–2 in two- and three-dimensional systems, respectively. The grain
size distribution of a three-dimensional system changes dramatically with increasing time, while it changes
a little in a two-dimensional system. The grain size distribution from the combined model is consistent
with experimental data available.

Keywords: grain growth; stochastic diffusion; curvature-driven process; mean-field model; the finite
difference method.

1. Introduction 

Most materials, including metals and ceramics, are polycrystalline composed of many small

crystalline grains and separated by boundaries or interfaces. The physico-mechanical properties of

these materials are closely related to their microstructures, and various structures at different length

scales can be formed during grain growth. To improve the physico-mechanical properties and

prepare novel materials, many efforts have been made to get a better understanding towards grain

growth processes, as reviewed by Tjong and Chen (2004). After Lifshitz and Slyozov’s (1961)

work, various models have been proposed to describe grain growth, and they can be mainly

classified into two categories: deterministic and stochastic models. Both kinds of models have

predicated that grain growth follows a power-law kinetics and that their grain size distribution

(GSD) approaches a log-normal distribution (Atkinson 1988, Gusak and Tu 2003, Mulheran and
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Harding 1992, Zheng et al. 2006a, Zheng et al. 2006b). Usually, only one of the deterministic

curvature-driven and stochastic diffusion-controlled mechanisms is involved in most models, which

makes the models incomplete and introduces discrepancies between experimental observations and

theoretical predictions. Recently, an attempt to formulate a combined model involving both

mechanisms was made by Helfen et al. (2003), but GSDs obtained from the model are still

inconsistent with experimental data due to some simple assumptions such as the migration rate of a

grain boundary being proportional to its curvature. Here, we propose a special form of continuity

equation for grain growth to perform a systematic study of the grain growth in two- and three-

dimensional systems, and to explore the competition and interplay between both kinds of mechanisms.

2. Continuity equations

To derive the continuity equations for grain growth, two general assumptions are usually made:

(1) Large grains grow by consuming surrounding small grains during grain growth and (2) grains

may be classified into groups based on their sizes at a given time. Then the growth process may be

described effectively as the change of GSD with time. For a deterministic curvature-driven process,

the overall flux jd(R, t) caused by a driving force is (Atkinson 1988)

(1)

where f (R, t) is the probability that a grain has a size between R and R + dR, and v(R, t) is the drift

(or grain boundary) velocity. Here, the change of grain density is due to the difference between

incoming and outgoing overall fluxes of grains (Atkinson 1988), namely, f (R, t) / t = – j(R, t) / R.

Therefore, the continuity equation for the deterministic process is

(2)

The key problem is to determine the exact expression of the drift term, v(R, t) = dR/dt. Following

the analysis of Gusak and Tu (2003), we consider an m-dimensional system consisting of N grains,

in which a “central” grain of size R is embedded in a grain “reservoir” of all others, as depicted in

Fig. 1. Assuming that the grain boundary energy is isotropic, then, the total free energy of GBs of

the system is

(3)

where γ is the GB energy per unit length/area, q a geometrical factor and Ri the size of the i-th

grain. Introducing a characteristic size Rc, which is proportional to the average grain size of the

system, the total free energy in a normalized size space is

(4)

where  is the normalized size of the i-th grain and <·> denotes the average value of a

given variable over the size space. Since the ratio of the average grain size to the characteristic size

is approximately a constant, the second right-side term in Eq. (4) becomes constant (Gusak and Tu

2003). Then the pressure and the velocity in the normalized size space are
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(5)

and

(6)

where  is the normalized area/volume and  the isotropic GB mobility in the normalized space.

From a simple dimension analysis, it can be found that the real mobility M and the normalized mobility

 follow the relationship:  (Gusak and Tu 2003). Thus, Eq. (6) becomes

(7)

where k = q · γ · M / 2π. In addition, from the conservation of total volume/area, we have

(8)

Then the real space velocity can be derived from Eqs. (7) and (8) to take the form of

 (9)

Substituting Eq. (9) into Eq. (2), the continuity equation for the deterministic curvature-driven

grain growth process becomes]

(10)
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Fig. 1 Sketch map of a single-phase system, in which a “central” grain is embedded in a “reservoir”
composed of all others.
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limits of R→ 0 and R→  (Helfen et al. 2003, Mulheran and Harding 1992), and the stationary

solution is (Gusak and Tu 2003)

(11)

where C is a constant, k1= (2 / 3)m−2k, and <R>GT = (π k1t)
1/2 / 2. In another normalized space, u = R / <R>,

Eq. (11) is a Rayleigh-type distribution function

(12)

where the subscript GT represents that the GSD is derived based on the Gusak and Tu’s analysis

(Gusak and Tu 2003).

On the other hand, grain growth may be considered as a stochastic diffusion-controlled process,

namely, all grains undergo purely random walks in the grain size space. The overall flux is assumed

to be proportional to the gradient of the probability (Mulheran and Harding 1992) as follows:

(13)

where B(R, t) is a diffusion term. Louat (Atkinson 1988) assumed that B(R, t) = D (the diffusion

coefficient), and obtained a Rayleigh distribution that violates area/volume conservation (Helfen et

al. 2003). To ensure this conservation condition, a special diffusion term, B(R, t) = D / Rm − 1, which

was proposed by Mulheran and Harding (1992), is adopted here to model two- and three-

dimensional grain growth. Then the continuity equation corresponding to Eq. (13) is

(14)

In a normalized space, û, the stationary solution, PMH, is

(15)

with

where the subscript MH represents that the GSD is derived based on Mulheran and Harding’s

assumption (Mulheran and Harding 1992), Γ(·) is the Gamma function, û = u for m = 2 and û = u/

{Γ(3 / 2) · [Γ(5 / 4)]−2} for m = 3. The corresponding grain growth kinetics is: <R>MH = Γ[(m + 2) /

(m + 1)][(m + 1)2D]1 / (m + 1)t1 / (m + 1).

Actually, grain growth is a very complex process and many different mechanisms may operate

during the process. In the pure curvature-driven process, grains with the same size grow in the same

manner. This assumption is obviously too simple since equal-size grains have different local

environments, which may introduce flux fluctuations during the course of growth. Thus, both

curvature-driven and diffusion-controlled mechanisms should be taken into account simultaneously.
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As illustrated in Fig. 2, the overall flux becomes a summation of the two distinct parts,

(16)

and the corresponding Fokker-Planck continuity equation can be written as,

(17)

3. Finite difference scheme

To solve Eq. (17), we will resort to a finite difference scheme since it is difficult to derive an

analytical solution. Noting that the grain size is in the range of 0 to + , the form of the continuity

equation should be modified to overcome the difficulties from the integration among an infinite

range. This can be done by transforming Eq. (17) to a reduced space, y = R / (R + 1), then region R

∈ (0, ) becomes y ∈ (0, 1). Thus, we obtain

(18)

with

j R t,( ) v R t,( ) f R t,( ) B R t,( )∂f
 

R t,( )
∂R

-------------------–=

∂f
 

∂t
------ ∂

∂R
------

k

2
--- f 

R R
m 2–〈 〉

R
m〈 〉

----------------------
1

R
---–⎝ ⎠

⎛ ⎞ ∂
∂R
------

D

R
m 1–

------------
∂f

 

∂R
------⎝ ⎠

⎛ ⎞+–=

∞

∞

∂g y t,( )
∂t

------------------ b g y t,( )⋅ c
∂g y t,( )

∂y
------------------⋅ d

∂2
g y t,( )

∂y
2

---------------------⋅+ +=

ym 1

1 y–( ) 2–
g y t,( ) yd

0

 1

∫

y
m

1 y–( )
m– 2–

g y t,( ) yd
0

 1

∫
-----------------------------------------------------------+

1–

=

a
ym 2–

1 ym 2––
--------------------

1 ym–

ym

--------------⋅=

b
k

2
--- 1 y–( )2 a

1 y–( )2
------------------

1

y
2

----+⎝ ⎠
⎛ ⎞–=

c
k

2
--- 1 y–( )2

a
y

1 y–
-----------⋅ 1 y–

y
-----------–⎝ ⎠

⎛ ⎞– m 2y 1–+( )D 1 y–( )m 2+

y
m

-------------------------–=

d D
1 y–( )m 2+

y
m

------------------------- 1 y–( )y=

Fig. 2 A sketch of the overall flux of the grain number in the range of R to R + dR.
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The boundary conditions in the reduced space are g(0, t) = g(1, t) = 0.

Here, a backward Euler difference scheme in temporal domain and a second-order difference

scheme in spatial domain are adopted to solve the equation (Press et al. 1992). The corresponding

discrete equations are

(19)

where ∆t is the time interval and ∆y is the grid spacing. The superscript l denotes time step and

subscript j denotes the grid node index in the reduced size space. According to von Neumann’s

stability analysis (Press et al. 1992), the amplification factor for Eq. (19) is

(20)

Here i is the imaginary unit. It can be easily found that b < 0 and d > 0, then | ξ | < 1 for any time

interval ∆t, which implies that the implicit difference scheme is unconditionally stable. In the

following calculations, we choose time interval ∆t = 10–8 and grid spacing ∆y = 10–6. 

4. Results and discussion

Generally, the growth kinetics can be described by a power law, <R>1/n – <R0>
1/n = H1/n·t, where n

is referred to as the growth exponent, <R0> the initial average grain size, <R> the average grain size

at time t and H a constant dependent on temperature (Atkinson 1988). In the case of <R> » <R0>,

the kinetics becomes <R> = H · tn. 

To investigate the effect of the stochastic diffusion-controlled and the deterministic curvature-

driven mechanisms on the growth kinetics, we vary one of the two parameters, D and k, keeping

another one unchanged. For two-dimensional systems, e.g., columnar polycrystalline materials, the

growth kinetics are shown in Fig. 3 for various D and k values. From Fig. 3(a), it can be seen that

the diffusion coefficient has a strong effect on the growth of small-size grains in the early stage.

With the decrease in diffusion coefficient, the kinetics curve approaches the analytical curve of a

deterministic growth process with k = 2, which is denoted as the solid line in Fig. 3(a). Fig. 3(b)

shows the effect of the curvature-driven mechanism on the grain growth in two-dimensional systems

with a constant diffusion coefficient of 10–2. From these curves, it can be seen that the curvature-

driven mechanism has an obvious effect on the growth of large-size grains in the later stage. For all

studied two-dimensional cases, the growth kinetics curves have a bilinear characteristic in the

double-logarithm plots and the corresponding growth exponents in the two distinct stages are ~ 0.33

and ~ 0.5, respectively.

Fig. 4(a) shows the effect of the diffusion-controlled mechanism on the grain growth kinetics of

three-dimensional systems with k = 2. Square, circle and triangular symbols are the kinetics curves

corresponding to D = 10–4, D = 10–2 and D = 1. It can be found that, at the large size region, these

curves approach the solid line, which is the kinetics (<R>GT ~ t) of a pure deterministic three-

dimensional growth process. These curves are separated in the small size region while they are

superposed in the large one. This indicates that the diffusion-controlled mechanism is dominant for

small grains. Fig. 4(b) shows the effect of the curvature-driven mechanism on the grain growth
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kinetics of three-dimensional systems with D = 10–4. Contrarily, these kinetics curves plotted in Fig.

4(b) are separated in the large size region while they are superposed in the small one, which implies

that the curvature-driven mechanism is dominant for large grains. In these three-dimensional cases,

it can be also seen that the kinetics curves have a bilinear characteristic in the double-logarithm

plots and the corresponding slops are ~ 0.25 and ~ 0.5 for small and large grain size regions,

respectively.

From the above analysis, it can be found that small grain growth is dominated by the stochastic

mechanism and the exponents approach 1/3 and 1/4, exact values for two- and three-dimensional

systems, respectively (Mulheran and Harding 1992); and the curvature-driven mechanism becomes

dominant for large grains and the exponent closes to 1/2, a theoretical result for both two- and

three-dimensional systems obtained by Gusak and Tu (2003). These different dominative

Fig. 3 Effect of (a) the diffusion-controlled and (b) the curvature-driven mechanisms on the grain growth
kinetics in two-dimensional systems. The solid lines in (a) and (b) are analytical solutions for the
deterministic curvature-driven process with k = 2 and the stochastic diffusion-controlled process with D =
10–2, respectively.
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mechanisms for different stages are mainly due to different effects of atomic jump on the grain

growth (Zheng et al. 2006b). For a single-phase system, various experimental results show that the

growth exponents vary from 0.25 to 0.5, that is, they were obtained at different stages of grain

growth (Atkinson 1988).

As shown in Figs. 3(a) and 4(a), the average grain size decreases as decreasing the diffusion

coefficient at a given growth time for various systems, which indicates that diffusion motions of

atoms can enhance the growth of grains. From Figs. 3(b) and 4(b), the curvature-driven boundary

migration has a similar enhancement effect on the grain growth as the diffusion motion. It is well

known that impurities have very strong effects on grain growth, they can reduce the mobility of

grain boundaries (i.e. the curvature-driven coefficient k) (Atkinson 1988). From Figs. 3(b) and 4(b),

we can see that it will take a longer time for a system to grow to a specified average grain size

from the same initial configuration with decreasing the curvature-driven coefficient, which reveals

Fig. 4 Effect of (a) the diffusion-controlled and (b) the curvature-driven mechanisms on the grain growth
kinetics in three-dimensional systems. The solid lines in (a) and (b) are analytical solutions for the
deterministic curvature-driven process with k = 2 and the stochastic diffusion-controlled process with
D = 10–4, respectively.
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that the grain growth is inhibited due to the presence of impurities and is consistent with

experimental observations (Atkinson 1988).

In Fig. 5, the average grain sizes of different systems are scaled as x = (k / 2D)1 / (m – 1)R and plotted

as functions of scaled time t' = (km + 1 / 2m + 1D2)1 / (m – 1)t. This figure shows the collapse on a single

curve of five data sets corresponding to various D and k parameters for both two- and three-

dimensional growth processes. This indicates that there are scaling laws in general grain growth

processes and the results are independent of curvature-driven and diffusion coefficients in the scaled

size-time space, which is similar with the results of Helfen et al. (2003) obtained from another

combined model and may be used to determine the grain growth stage in experiments and to

extrapolate the material parameters. The bilinear curves in Fig. 5 show two transition regions from

the stochastic to the deterministic kinetics and the corresponding bounds are 3.0-6.5 and 3.5-4.3 in

the scaled size space for two- and three-dimensional systems, respectively. Based on the Einstein-

Nernst relationship, the real space transition grain size, Rtr, relates to the scaled one, xtr, according to

Rtr = 2xtr(πKBT / qγ)0.5, where KB is the Boltzmann constant (Helfen et al. 2003, Zheng et al. 2006b).

Then the real space transition regions can be estimated to be 2-26 and 2-15 nm for two- and three-

dimensional systems with GB energy of 0.01-1 J m–2, respectively. However, a much larger

transition size may be obtained in experiments due to fast grain growth induced by high stress and

large plastic deformation during cutting and rolling processes (Zheng et al. 2006b).

Fig. 6 shows the GSD evolution at various times in two- and three-dimensional systems with k =

2, D = 10–2 and k = 2, D = 10–4, respectively. In the early growth stage, the GSDs in both systems

are narrow and approach the theoretical solutions PMH (m = 2) and PMH (m = 3). With the increase in

time, the GSDs become broader and broader, and are close to the GSD of a pure curvature-driven

system finally. However, it can be seen obviously that the GSD has a dramatic change in a three-

dimensional system, while it changes smoothly in a two-dimensional one, which may be attributed

to the additive geometrical constraints in a lower dimensional system.

Fig. 7 shows a comparison of the GSD from present work with those from experimental data and

Helfen et al.’s results in a three-dimensional grain system. It can be seen that the result obtained

from the combined model is in good agreement with experiment data on grain growth in an iron

system (Zhang et al. 2004), which validates the proposed model.

Fig. 5 The scaling laws in two- and three-dimensional systems: the average grain sizes <R> are scaled as x =
(k / 2D)1 / (m – 1)R and plotted as functions of scaled time t' = (km + 1 / 2m + 1D2)1 / (m – 1)t.
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Fig. 6 Evolution of the grain size distribution at various times in (a) two- and (b) three-dimensional systems
with k = 2, D = 10–2 and k = 2, D = 10–4, respectively.

Fig. 7 Grain size distributions obtained from theoretical models and experiments, where bars are experimental
data (Zhang et al. 2004), dashed and solid curves are the three-dimensional results obtained from
Helfen et al. (2003) and combined model, respectively.
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5. Conclusions

Based on the diffusion-controlled and curvature-driven mechanisms, a combined model for grain

growth in a single-phase system has been developed. An implicit finite difference scheme has been

used to integrate the corresponding continuity equation that is discretized in spatial domain with a

second-order finite difference scheme. The growth kinetics obtained from this model reveals that

there exist scaling laws in general growth processes. It has been found that the stochastic diffusion-

controlled and deterministic curvature-driven mechanisms are dominant for small and large grains,

respectively. The transition sizes between these two mechanisms are 2-26 and 2-15 nm in two- and

three-dimensional systems, respectively, for most metals. Good agreement between predicted GSD

and experimental data available verifies the proposed combined model. From our knowledge,

however, it should be noted that there isn’t available experimental data in the opening literatures

that can be used to validate these scaling laws, and an integrated experimental, analytical and

computational effort is required to improve the proposed model-based simulation procedure.
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