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Abstract. The statistical two-order and two-scale method is developed for predicting the mechanics
parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The
representation and simulation on meso-configuration of random particle-filled polymers are stated. And
the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and
two-scale expressions for the strains and stresses of conventionally strength experimental components,
including the tensional or compressive column, the twist bar and the bending beam, are developed by
means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh
generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer
composites, including the expected stiffness parameters, minimum stiffness parameters, and the
expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the
stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical
results for predicting both stiffness and elasticity limit strength parameters are compared with the
experimental data.

Keywords: polymer matrix composites; finite element modeling (FEM); core-shell particle; elastic limit
strength

1. Introduction

In recent years, the Core-shell Particle-filled Polymer Composites (CPPC for short) are

extensively used in a variety of engineering and industrial products, such as adhesives, coatings,

electronic products, electric apparatus, aircraft and aerospace, etc. A large number of studies on the

properties of CPPC have been done. As we all known, the numerical modeling is important to

predict the properties of materials. However, less numerical models for predicting the mechanics

properties of CPPC were found due to its complex meso-configurations. In this paper, the Statistical

Two-Order and Two-Scale Method (STOTSM for short) is presented in order to predict stiffness

and strength parameters of CPPC.

The common character of CPPC is as follows: a large number of particles with various

E-mail: cjzgroup@mail.nwpu.edu.cn (Fei Han), cjz@lsec.cc.ac.cn (Junzhi Cui), yuyan@mail.nwpu.edu.cn (Yan Yu)

DOI: http://dx.doi.org/10.12989/imm.2008.1.2.231



232 Fei Han, Junzhi Cui and Yan Yu

morphologies in matrix materials subject to a certain random distribution model. Obviously, it is

difficult to generate geometric and physical samples and finite element meshes not only by hands,

but also by computers, owing to large computing capacity and complexity. Furthermore, the

property prediction of CPPC, especially for mechanical strength and behavior, needs to generate a

number of samples with randomly distributed particles by computer again and again. Consequently,

it is important for predicting the property of CPPC to develop the fast and efficient methods for

generating the samples with random distribution of complex particles, and then the FE meshes of

the domain occupied by the sample.

Yu and Cui (2006) presented a new effective computer algorithm to produce the samples with the

random distribution of a number of heterogeneous particles, which satisfies some specified

probability model. There is also a FE partition method with tetrahedron elements for the geometric

domain with randomly distributed particles was given in Li (2004). Both the methods were applied

in calculating the constitutive parameters of shell-less particle-filled composites with statistical

multi-scale methods. Li and Cui (2005) calculated stiffness parameters of composites with the

particles obeyed to uniform random distribution using the statistical two-scale method. And Cui, Yu

etc. Cui et al. (2007) improved the two-scale method to propose a two order and two-scale method

for predicting the elastic limit strength parameters of the composites with the random distribution of

a number of heterogeneous particles, and they also obtained the predicted results of valid elastic

limit strength by practically computing. However, the predicting method for mechanics property of

CPPC is rare. Therefore, in this paper a predicting method for the mechanics property with meso-

configuration of CPPC was considered systematically on the basis of above works. Firstly, a new

fast and effective algorithm is presented to construct geometric and physical model and generate

meshes for CPPC. Secondly, STOTSM is adopted for calculating the stiffness and elastic strength

parameters of CPPC. Finally, the predicted results are given.

The remainder of this paper is outlined as follows: In Section 2, the representing method and

geometry modeling for meso-configuration of composites with random distribution of many

particles are briefly illuminated, and then the statistical two-order and two-scale approximate

formulas are expressed. And Section 3 is devoted to the expansions on the strain tensor for three

kinds of conventional components made from CPPC. In Section 4 the mesh generation algorithm

for the domain of CPPC and the computing procedure of STOTSM for both stiffness and strength

parameters of CPPC are stated. And the numerical results for mechanics properties of different

CPPC in three examples are displayed in Section 5. They show that the STOTSM is feasible and

valid for the mechanics parameter prediction of the core-shell particle-filled polymer composites.

2. Statistical two-order and two-scale method

2.1 Representation for meso-configuration of polymers with random distribution of particles

For the composites with random distribution of a large number of particles, their configuration in

meso-scale is described by some probability distribution model with ε-periodicity (Yu and Cui

2006). It supposes in paper Yu and Cui (2006) that in composites there exists a least constant ε such

that the configuration of composites is regarded as the set of a great number of cells with ε-cube,

shown in Fig. 1, the probability distributions of ellipsoids in any cells are the same. So the meso-

configuration of the investigated composites is described by the probability distribution in a statistic
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screen with ε-size, and then the ε-cells are arranged periodically to form a structure. However, the

meso-configuration of CPPC is more complex. In the representation way (Yu and Cui 2006) every

core-shell particle is represented by an ellipsoid and the normalized cell with lots of randomly

distributed ellipsoids is constructed, shown in Fig. 2. Both the ‘compactness algorithm’ and

‘selection algorithm’ are given in Yu and Cui (2006).

In the compactness algorithm the randomly generated ellipsoids are arranged compactly over the

entire cell, shown in Fig. 2(a). The selection algorithm is to choose such a part of ellipsoids that

they obey a specified probability distribution, shown in Fig. 2(b). Then the shell for each core-shell

particle is generated by extending or shrinking the long axis, middle axis and short axis of ellipsoid. 

In a word, the above algorithms can generate the samples such that the following properties: The

samples satisfy a specific random distribution model; They have the higher particle volume fraction;

The shape parameters and orientation parameters of all ellipsoids also have complete randomness;

The position parameters of all ellipsoids have better randomness.

2.2 Statistical two-order and two-scale approximate formulation for mechanics parameters

As the preceding representation shown, suppose that the structure Ω is made from the composite

materials of random distribution model with small periodicity, and it is only composed of the entire

ε-cells, shown in Fig. 1(a). Then , where εQs denotes an investigated screen

with ε-size, shown in Fig. 1(b);  is a sample obeying a given probability distribution model

Ω  
ω

s
t, Z∈( )

ε Q
s

t+( )∪=

ω
s

P∈

Fig. 1 The structure of composites with random distribution of particles

Fig. 2 The geometric sample with random distribution of ellipsoids
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P of particles in the whole structure; Z is the integer set; Qs denotes a normalized cell; ω =

 in the entire structure. 

From solid mechanics, for this kind of structure Ω, the elasticity problem can be expressed as the

following virtual work equation

 (1)

where  are the elastic coefficients with probability distribution P with

small periodicity. 

From (Li 2004), it was given that displacement vector is approximately expressed as follows

 (2)

where  is the homogenization solution defined on global Ω, and  denotes the local

coordinates defined on 1-normalized cell Q,  and  (α1, α2 = 1, …, n) are n-

order matrix valued functions in unit cell Q. They have the below forms

(3)

and  and  are determined as follows:

(1) For any sample   are the solutions of the following

virtual work equation
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(3) According to Kolmogorov’s strong law of large numbers the expected homogenization

elasticity parameters  are evaluated by calculating  repeatedly

 (6)

where M is the number of samples.

(4) For any sample ,  are the solutions of the

following virtual work equation

     

 (7)

(5)  is the solution of the homogenization problem defined on the global Ω with the

expected homogenized elasticity parameters 

 (8)

(6) According to the elasticity theory, from above formula (2), the strains are evaluated

approximately

 (9)
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âijhk ω
s( )

s 1=

M

∑

M
-----------------------------=      M +∞→,)

ω
s

P∈ N
α
1
α
2
m ξ ω

s,( ), α1 α2 m,, 1 … n, ,=( )

∂vi

∂ξj

-------
∂vj

∂ξi

-------+⎝ ⎠
⎛ ⎞ aijhk ξ ω

s,( )
∂N

α
1
α
2
hm ξ ω

s,( )

∂ξk

-------------------------------------
∂N

α
1
α
2
km ξ ω

s,( )

∂ξk

-------------------------------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

ξd
Q

s

 

∫

4  
Q

s

 

∫–= a ijhk aiα
2
mα

1
ξ ω

s,( )– aiα
2
hk ξ ω

s,( )
∂N

α
1
hm ξ ω

s,( )

∂ξk

---------------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

vi
)

v H0

1
Q

s( )∈∀

 aijhα
2
ξ ω

s,( )N
α
1
hm ξ ω

s,( )
∂vi

∂ξj

------- ξd+

u
0

x( )
a i jhk{ })

∂vi

∂xj

-------
∂vj

∂xi

-------+⎝ ⎠
⎛ ⎞ a i jhk

∂uh

0
x( )

∂xk

----------------
∂uk

0
x( )

∂xh

----------------+⎝ ⎠
⎛ ⎞ ξd

Ω

 

∫ 4 fi x( )vi xd      v H0

1
Ω( )∈∀

Ω

 

∫–=
)

ε x ω,( ) 1

2
---

∂uh

0
x( )

∂xk

----------------
∂uk

0
x( )

∂xh

----------------+⎝ ⎠
⎛ ⎞=

 ε
l 1

2
--- N

α
1
…α

l
hm ξ ω,( ) ∂l 1+

u
0

x( )
∂x

α
1

…∂x
α

l
∂xk

---------------------------------- N
α
1
…α

l
km ξ ω,( ) ∂l 1+

u
0

x( )
∂x

α
1

…∂x
α

l
∂xh

----------------------------------+
α
1
…α

l
1…n=

∑
l 1=

2

∑+

 ε
l 1– 1

2
---

∂N
α
1
…α

l
hm ξ ω,( )

∂ξk

---------------------------------------
∂N

α
1
…α

l
km ξ ω,( )

∂ξh

---------------------------------------+
∂l

u
0

x( )
∂x

α
1

…∂x
α

l

--------------------------
α
1
…α

l
1…n=

∑
l 1=

2

∑+

σij x ω,( ) a i jhkεhk x ω,( )=
)



236 Fei Han, Junzhi Cui and Yan Yu

3. Calculation on mechanics parameters of CPPC

3.1 Formulation for the strains of some classic components

In this paper, three typical components are considered to evaluate the mechanical properties of

CPPC, including the tensional or compressive column, the bending beam and the twist bar. From

the two-order and two-scale asymptotic expression in section 2.2, the approximate analytic

expression on the strains of these components is obtained.

a) Column tension

The tensile behavior of the column with rectangular cross section shown in Fig. 3, which is made

from CPPC, is investigated. A denotes the area of cross section, L length of the column, x3 = 0 fixed

end and x3 = L loading end with loading T. From elasticity mechanics for the tension problem of the

column with orthogonal-anisotropic material coefficients, its displacement solution is as follows

 (11)

where  and v23 are the homogeneous elasticity moduli of three axis

directions and Poisson ratios, respectively. 

Obviously, the above displacement solution  is linear function of macro-variable in formula
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Fig. 3 Column with rectangular cross section



The statistical two-order and two-scale method for predicting the mechanics parameters 237

(11), that is to say, second and higher order partial differential derivatives of  are all zeros.

And then the displacement vector is written as

 (12)

where .

And then, the formulas on the strains inside previous column are exactly expressed as

 (13)

Substituting (11) into (13) and respecting the symmetry of , the expressions on the

strain tensor are obtained inside any cell of the column

(14)

where .

u
0

x( )

u
ε

x ω,( ) u
0

x( ) εN
α
1
ξ ω,( )∂u

0
x( )

∂x
α
1

----------------+=

ξ
x

ε
--=

εhk x ω,( ) 1

2
---

∂uh

0
x( )

∂xk

----------------
∂uk

0
x( )

∂xh

----------------+⎝ ⎠
⎛ ⎞ 1

2
---

∂N
α
1
hm ξ ω,( )

∂ξk

--------------------------------
∂N

α
1
km ξ ω,( )

∂ξh

-------------------------------+
∂um

0
x( )

∂x
α
1

-----------------+=

N
α
1
ξ ω

s,( )

ε11 x ω,( )
v13

E11

-------p p
∂
∂ξ1

--------
1

E33

-------N313

v13

E11

-------N111–
v23

E22

-------N212–⎝ ⎠
⎛ ⎞ ξ ω,( )+–=

ε12 x ω,( ) p

2
---

∂
∂ξ1

--------
1

E33

-------N323

v13

E11

-------N121–
v23

E22

-------N222–⎝ ⎠
⎛ ⎞ ξ ω,( )=

 
p

2
---+

∂
∂ξ2

--------
1

E33

-------N313

v13

E11

-------N111–
v23

E22

-------N212–⎝ ⎠
⎛ ⎞ ξ ω,( )

ε13 x ω,( ) p

2
---

∂
∂ξ1

--------
1

E33

-------N333

v13

E11

-------N131–
v23

E22

-------N232–⎝ ⎠
⎛ ⎞ ξ ω,( )=

 
p

2
---

∂
∂ξ3

--------
1

E33

-------N313

v13

E11

-------N111–
v23

E22

-------N212–⎝ ⎠
⎛ ⎞ ξ ω,( )+

ε22 x ω,( )
v23

E22

-------p– p
∂
∂ξ2

--------
1

E33

-------N323

v13

E11

-------N121–
v23

E22

-------N222–⎝ ⎠
⎛ ⎞ ξ ω,( )+=

ε23 x ω,( ) p

2
---

∂
∂ξ2

--------
1

E33

-------N333

v13

E11

-------N131–
v23

E22

-------N232–⎝ ⎠
⎛ ⎞ ξ ω,( )=

 
p

2
---+

∂
∂ξ3

--------
1

E33

-------N323

v13

E11

-------N121–
v23

E22

-------N222–⎝ ⎠
⎛ ⎞ ξ ω,( )

ε33 x ω,( ) p

E33

------- p
∂
∂ξ3

--------
1

E33

-------N333

v13

E11

-------N131–
v23

E22

-------N232–⎝ ⎠
⎛ ⎞ ξ ω,( )+=

ξ
x

ε
--=



238 Fei Han, Junzhi Cui and Yan Yu

Furthermore, from above strains expressions (14) the stresses are evaluated anywhere inside every

cell in the column. Then based on the yield criterion of basic materials, such as the matrix, the core

and shell of particle, the critical point of tensile column of CPPC is evaluated.

b) Beam bending

The bending of the cantilever with rectangular cross section is studied, as shown in Fig. 4. x3 = 0

denotes fixed end and at x3 = L the bending moment round x2 axis is imposed. From solid

mechanics, the bending problem of the cantilever with orthogonal-anisotropic material coefficients

has following solutions

(15)

where  is the moment of inertia round x2. 

Obviously, the above displacement  is quadratic function of macro-variable, that is to say,

third and higher order derivatives of  are all zeros. So the displacement vector of the bending

problem of the cantilever made from CPPC is written as
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Fig 4. The bending of cantilever
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 (17)

Further, respecting the symmetry of  and , the components of strain tensor

inside the cantilever are expressed as follows
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(18)

where .

Using the stress-strain relation, one can evaluate the stresses anywhere inside the cantilever.

c) Twist of column

The twist of the column with circle cross section is shown in Fig. 5. r denotes the radius of cross

section, L is the length of the column, x3 = 0 fixed end, and at x3 = L the twist moment is imposed.

If the column is made from orthogonal anisotropic materials, the displacement solution is expressed

as
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(19)

where G13, G23 denote the shear moduli in x1-x3 plane and x2-x3 plane. It is easy to see that the

displacements are quadratic functions. And respecting the symmetry of  and 

the components of strain tensor anywhere inside the twisting column are expressed as follows
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Fig. 5 Twist of the column with circle section
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(20)

where .

Using the stress-strain relation, one can evaluate the stresses anywhere inside the column. And

then according to the yield criterion of the matrix, the core and shell of particle, the elasticity

critical point of twist column of CPPC is evaluated.

3.2 Strength criterions

The elastic limit strength of CPPC is dominated by the elasticity strength of core, shell and

matrix, specially, taking the Von-Mises effective stress yield criterion as the strength criterion for

polymer matrix. For a fixed random sample ωs, we apply STOTSM to the solution of strains and

stresses in the investigated component, and then calculate the elastic limit strength value S(ωs) of

the sample ωs by the proper strength criterions. The expected homogenized strength  of the value

S(ωs) by Kolmogorov’s strong law of large numbers is expressed as follows

      (21)

where M is the number of the samples.

The expected strength  is only the average value of the component made from CPPC, so it

doesn’t manifest the strength performance enough. Actually in the component of random

composites, the break of any cell may result in the elasticity performance failure of the structure.

Therefore, the minimum value of all samples’ strengths is more credible in practical engineering. It

is expressed as follows

 (22)

4. Numerical modeling

In this section, the numerical modeling is discussed based on the description in section 2.1.

Firstly, a new effective mesh generation algorithm is presented for the geometric model of meso-

configuration in CPPC. Then an algorithm procedure of STOTSM is detailed.
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Ŝ

Smin min
s 1= … M, ,

S ω
s( )=



The statistical two-order and two-scale method for predicting the mechanics parameters 243

4.1 Finite element meshes of tetrahedrons

The efficiency and quality to generate meshes have important influences on the efficiency and

precision of STOTSM calculation. Therefore, a new mesh generation algorithm is developed for a

geometric sample with random distribution model of ellipsoids. Firstly, the cube of a cell is divided

into the uniform hexahedrons, namely Background Meshes. Secondly, we move the nodes of

background meshes, which are very close to the ellipsoidal surface, onto the surface as more as

possible, but it must be retained that the sides of background elements don’t pass through the

surface of ellipsoids. Thirdly, all of the background hexahedrons are divided into tetrahedrons under

compatible condition. Finally, the coordinates of nodes of bad elements are locally adjusted to

further improve the topology and qualities of the elements. Fig. 6 shows the local effect of

generated meshes.

Hexahedral background meshes localizes the global mesh generation process, and it makes the

tetrahedron generation only happens inside every hexahedron and relates to adjacent hexahedrons,

and also the position shift of a node only affects the surrounding elements. Furthermore, sliver

elements are treated and meshes are smoothed. As a result, it becomes possible to rapidly generate

meshes of the cube with lots of random distribution ellipsoid.

4.2 Prismatic meshes for the shells of particles

The shell and core of a particle are regarded as an entire ellipsoid in section 2.1. Here, shells will

be separated from the ellipsoids. In general the thicknesses of shells are all small. Due to this fact,

all the nodes of tetrahedral elements in every ellipsoid are moved a little distance to approach the

center of the ellipsoid by an affine transformation with equal proportion, but the nodes of matrix

elements hold still. As a result that a space between the matrix and the shrunk ellipsoid emerges,

and that is a shell of the particle. The shrinking operation leads to one to one correspondence

between the nodes on internal and external surfaces of any shell. So, the triangular prism elements

are generated by linking the corresponding nodes on internal and external surfaces (see Fig. 7(b)).

Furthermore, refined mesh elements of the shells are obtained by dividing triangular prisms with

equal proportion. Fig. 7 shows meshes of a cell with core-shell particles and the local shell

elements.

Fig. 6 The local effect of generated element meshes
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The high quality FE meshes are obtained by the above mesh generation algorithm (see Fig. 7(a)).

The partition of the thin shell structure by triangular prisms is easier and more effective than by

tetrahedrons, and also triangular prisms lead to fewer errors in finite elements computation than

acute tetrahedron elements.

4.3 Algorithm procedure of STOTSM based on FEM

Based on the representation in section 2.1, the geometry modeling and FE mesh generation of

CPPC in above section, the algorithm procedure for predicting the mechanics parameters of CPPC

by STOTSM is following:

1. To generate a sample  of particle random distribution with given probability distribution

model P in normalized cell Qs, and then generate its FE meshes.

2. To solve the FE virtual work equation corresponding to Eq. (4) on 1-square Q to obtain

Nα
1
m

, and then evaluate the homogenized constitutive coefficients  of

sample  by formula (5).

3. Repeat the steps from 1 to 2 for different samples  (s = 1, 2 …, M), M homogenized

coefficients  are obtained. And then the expected homogenized coefficient 

is evaluated by Eq. (6).

4. If it’s necessary, to evaluate  (α1, α2, m = 1, …, n) by solving the FE virtual

work equation corresponding to Eq. (7) on 1-square Q.

5. To obtain the homogenization displacement  for typical component, or numerical

displacement  for general structure by using FEM software, and then evaluate the high

order partial derivatives .

6. For a determinate sample, using ,  and  to calculate the stain

and stress filed of structure Ω by Eqs. (9) and (10).

7. To evaluate the elastic limit strength  of sample  according to the different strength

criterions of matrix, core and shell.

8. For the all samples  (s = 1, 2 …, M), repeat the step 6 and 7 to obtain M strength

parameters , and then to calculate the expected strength parameter and the minimum
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strength parameter by Eqs. (26) and (27).

For the space limit, some skills on computing strains and stresses inside matrix, core and shell of

each particle, are not described in detail by using FE methods in this paper.

5. Numerical experiments and results

In order to verify the availability and rationality of STOTSM for predicting CPPC, we have

developed the software on the STOTSM, and made some numerical experiments for the mechanics

parameters of CPPC in tension column, bending beam and twist column. Here some numerical

results are shown and compared with experimental data.

Example 1:

This example is about the stiffness and strength parameter computation for tension case of CPPC

column, and to compare with the experimental results in Wang et al. (2000). Table 1 summarizes

the properties of the epoxy matrix and cores and shells of particles. And the overall density of a

core-shell particle is 1.05 g/cm3 in Wang et al. (2000). It supposes that the core-shell particle is

MBS particle. Also, the core and shell are styrene butadiene rubber and poly (methyl methacrylate),

respectively, and their densities are 0.95 g/cm3 and 1.20 g/cm3. So, the ratio of shell’s thickness

value to radius of core-shell particle is 15% by mass conservation law. In paper Wang et al. (2000),

it can be found that the overall modulus of a core-shell particle is 446 MPa, and the modulus of a

rubber core is very small, only 2 MPa. Thus a core-shell particle can be regarded as a coreless

particle, that is to say, the modulus of the shell approximate 446 MPa. Since the volume fraction of

core-shell particles is relatively small in this paper, all lower than 25%, the break not happened in

core and shell but in matrix is the main cause to the yielding behavior of investigated CPPC

component under external force.

As a result, a relationship between the Young’s modulus and the particle volume fraction is

obtained by numerical prediction as illustrated in Fig. 8. STOTSM gives a stationary variation in the

modulus with particle’s volume fraction. Also, as the particle volume fraction increases, the

modulus decreases. And then, the predicted values approximate the experimental results.

Fig. 9 shows the tensile strength values with different particle-filled volume fractions. Any

predicted mean value in the figure is the average result of 50 random samples, so that the

prediction is more credible. The figure illustrates the predicted strength value decreases as the

volume faction increases. On one hand, the predicted average strength values nearly approximate

the experimental results; on the other hand, the predicted minimum values approach the lower

limits of experimental data. Thus it can be seen that the predicted average values exactly reflect

the variation of the real strength values, and also, the minimum values are more reliable in

engineering practices.

Table 1 Material properties

E (MPa) v

Matrix 3213 0.35

Core 2 0.49

Shell 446 0.37
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Example 2:

As the comparison between the predicted values and experimental data in tension column in

example 1, the predicted flexural moduli and strengths of CPPC are also satisfactory. In this

example, the material parameters of PBA core, PST shell and epoxy matrix are shown in Table 2

Ormaetxea et al. (2001).

Fig. 8 Correlation of predicted tensile modulus with experimental results

Fig. 9 Correlation of predicted tensile strength values with experimental results

Table 2 Material properties

E (MPa) v

Epoxy 2600 0.35

PBA 2 0.49

PST 1400 0.40
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As can be seen from Fig. 10, the predicted results accord with experimental data well. Fig. 11

depicts that the predicted flexural strength reduces steadily as the particle volume faction increases.

And the mean predicted curve passes through the centers of the experimental error bars, while the

minimum curve decreases nearly along the lower limits of the error bars, where error bars come

from the experimental data in paper (Ormaetxea et al. 2001). Therefore, it is further shown that the

computed results reflect an average change of the real materials and the minimum values outline the

lower limits of practical properties. They are more useful in engineering.

Example 3:

In this example, the tensile moduli and strengths with the different sizes of particles, the different

compositions and weight ratios of core/shell, are compared. The composite materials are made from

PST plastic, PBA rubber in core-shell particles and epoxy matrix Pérez-Carrillo et al. 2007. The main

Fig. 10 Correlation of predicted flexural modulus with experimental results

Fig. 11 Correlation of predicted flexural strength values with experimental results
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computing parameters are following: the tensile strength of epoxy is 52 MPa, the density of PBA is

0.90 g/cm3, and that PST’s is 0.96 g/cm3. The core-shell particles are uniformly distributed in the unit

cell, and the particle’s relative radiuses are 0.08 and 0.12. The volume factions of particle are both

25%. The rest parameters are shown in Table 3, and then the calculated results of mechanical

properties are revealed in Table 4.

The property of matrix keeps invariant in these examples, and the volume fraction of particles

keeps 25%. As we know that the changes of the whole performance of a core-shell particle are

reflected by property changes of the polymer composites. From table 4 the mechanics properties of

core-shell particles are determined by the sizes of particles and the compositions of core and shell.

The lateral comparison in the table shows that the particle becomes more rigid as the size reduces,

that is, the modulus increases and both mean and minimum strength value rises. Paper Pérez-Carrillo

et al. 2007 explains that the stress concentration increases with particle size, and the probability of

finding a large flaw within a certain volume increases. As a result, the tensile strength decreases as

the size rises. The material properties of the shell have more effects on the properties of particles

than that of the core. When the material weight ratio in particles is the same, such as the ratio PST

to PBA keeps 40/60 or 60/40, the overall property of particles, whose shell is plastic PST, is more

rigid than that particle with PBA rubber shell. The weight ratio change leads to a more evident

mechanics parameter change for particles made from hard shell (PST) and soft core (PBA) than soft

shell and hard core. The stiffness and strength properties of particles with hard shell and soft core

have less decrease than that with soft shell and hard core, as the size of the particles increase the

same measure. The above prediction for mechanics properties by analyzing numerical results of

STOTSM agree with that of experimental data in paper Pérez-Carrillo et al. 2007.

From the above examples, obviously, the STOTSM can be utilized to predict mechanics

parameters of CPPC exactly, including the stiffness and the elastic limit strength. And the predicted

values consist with the experimental data. Therefore, the STOTSM for the mechanics parameter

prediction of CPPC is feasible.

Table 4 Numerical results of mechanical properties with different composition and particle size

Core/shell 
composition

Particle Radius 0.08 (in unit cube) Particle Radius 0.12 (in unit cube)

Shell
Thickness

E (MPa)

Mean 
Tensile 
Strength 
(MPa)

Minimum 
Tensile 
Strength 
(MPa)

Shell 
Thickness

E (MPa)

Mean 
Tensile 
Strength 
(MPa)

Minimum 
Tensile 
Strength 
(MPa)

PBA/PST 40/60 0.020 2528 38.28 36.78 0.030 2437 35.91 33.86

PBA/PST 60/40 0.012 2436 35.78 34.32 0.018 2335 33.17 31.11

PST/PBA 40/60 0.022 2324 32.98 31.43 0.033 2204 29.02 26.73

PST/PBA 60/40 0.013 2348 33.45 31.95 0.020 2233 29.62 27.62

Table 3 Material properties

E (MPa) v

Epoxy 3200 0.35

PBA 2 0.49

PST 1400 0.40
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6. Conclusions

In this paper, a Statistical Two-Order and Two-Scale Method (STOTSM) for mechanics

parameters prediction of Core-shell Particle-filled Polymers Composites (CPPC) is developed based

on two-order and two-scale asymptotic expression on the displacement solution of the structure

made from composites with random particle distribution, and the related formulas are given. For the

materials with random distribution of larger numbers of core-shell particles the stiffness parameters

and elastic limit strength parameters have been predicted. The following conclusions are worked

out: 

(1) The strength parameter of CPPC doesn’t only depend on the macro-conditions, such as

geometry of the structure, the loading and constraints, but also on micro-configuration, such

as particle’s size, composition and weight ratio of core/shell.

(2) The consistencies of the predicted results with experimental data in tension and bending case

of column show STOTSM is available to predict mechanics parameters of CPPC, including

stiffness parameters, the expected strength and the minimum strength. The minimum strength

value provides a more valuable reference for the available property of CPPC. Moreover, the

influence of core-shell particle’s configuration and composition on mechanics properties is

obtained by analyzing the calculated results, which accords with experimental data. As a

result, the information of micro-behaviors can be captured exactly by STOTSM prediction.

(3) In this paper, a new effective mesh generation method is also presented for the geometric

model. It can rapidly generate finite element meshes of investigated cell with a large number

of random distributed core-shell particles. And it effectively supported the practical FE

computation by STOTSM.

It should be mentioned that for the composite materials with random distribution of a great

number of arbitrarily geometric particles the convergence of calculating the strength parameters has

not been valid. In fact, if some particles are polyhedron, the strains and stresses near any corner

point can not be more exactly calculated. The geometry modeling for micro/meso-configuration,

mesh generation method and statistical two-order and two-scale method also can be applied to

predict mechanics parameters of other core-shell particle-filled materials.
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