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Abstract. Owing to the growing size of the eigenvalue problem and the growing number of
eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which
however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient
iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method
and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined
under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic
nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among
the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more
stable than those based on eigenvalues only. Compared with ANSYS’s subspace iteration and block
Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos
approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests
show that the improvement in terms of CPU time and storage is tremendous. Also reported is an
aggressive shifting technique for the subspace iteration method, based on the mode error convergence
criteria. A backward technique is introduced when the shift is not located in the right region. The
efficiency of such a technique was demonstrated in the numerical tests.

Keywords: aggressive shifting; generalized eigenvalue problem; finite element analysis.

1. Introduction 

In the Finite Element Analysis (FEA) of engineering problems, some of the lowest eigenpairs of

the following generalized eigenvalue problem are often required:

(1)

For eigenvalue problems with the total number of degrees of freedom greater than 10, 000, the

subspace iteration, Ritz vector and Lanczos methods are recognized as the most efficient algorithms

of solution. Although most commercial FEA packages offer different algorithms for the solution of

eigenvalue problems, the results in general are not satisfactory due to the following problems: 

1. Missing of eigenvalues;
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2. Generation of false eigenvalues;

3. Generation of incorrect free modes; and 

4. Convergence is achieved for the eigenvalues, but not for the eigenvectors.

Traditionally, the solution of Eq. (1) depends on the solution method used for the following equation:

(2)

In general, the  decomposition of the shifted matrix  consumes the major portion of

computing time, say 70 to 90%. In this paper a well developed cell storage sparse solution strategy

is incorporated, instead of using the conventional skyline scheme. Very high efficiency is achieved

using such an approach.

The subspace iteration method emerged in the 1970s as a new method for the solution of

generalized eigenvalue problem. At that time, the size of structures considered is generally less than

10,000 degrees of freedom and the number of the lowest eigenpairs required is less than 20. In the

1980s, some direct solution algorithms appeared, among which the most efficient two are the

Lanczos method and WYD Ritz vector method proposed by Wilson et al. (1982). The subspace

iteration method was considered rather inefficient, even though it is generally stable and accurate.

Nowadays, the size of structures considered is in the scale of millions degrees of freedom and even

larger, and the number of eigenpairs required can be 200 or even more. For such problems, the

accuracy of the eigenvalues and eigenvectors desired cannot be guaranteed by the direct methods.

This is the main reason for the iterative methods to come back.

If the number of eigenpairs required is less than 20, direct methods such as the Ritz vector and

Lanczos methods can be used with high efficiency. By average, they can show a speed of 4~10

times that of the subspace iteration method, see Gong et al. (2005). However, the convergence

criteria for the standard Ritz vector and Lanczos are only given in terms of eigenvalues, which

sometimes cause problems.

Conventionally, the convergence criteria for the subspace iteration is given in terms of the relative

error for the adjacent iterations:

(3)

Meanwhile, the Lanczos method uses the following inequality as the convergence criterion:

(4)

In practice, if the tolerances are chosen as , the accuracy of part of the eigenvectors

may not be satisfied by both the subspace iteration and Lanczos methods, and especially for the latter. 

Improved results can be obtained if the following mode-error criteria are used:

(5)

The physical meaning for the preceding criterion is as follows. Kϕk represents the maximum elastic

nodal forces corresponding to the eigen mode ϕk, and λkMkϕk the associated maximum inertial

nodal forces. The left side of Eq. (5) is the ratio of the unbalanced nodal forces to the maximum

elastic nodal forces, and the middle term of (5) is the ratio of the unbalanced nodal forces to the

maximum inertial forces (see Bathe and Ramaswamy 1980).
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Many numerical examples showed that using Eq. (5) as the convergence criterion, more stable

convergence characteristics can be achieved. With such a consistent mode error criteria, the

efficiency of all the three algorithms, i.e., iterative Ritz vector, iterative Lanczos and subspace

iteration, are generally similar. The iterative Ritz vector is the fastest, and the subspace iteration the

slowest. A comparison with the subspace iteration in ANSYS version 8.1 and blocked Lanczos is

given by Gong et al. (2005).

The classical subspace iteration method (SIM) was developed and so named by Bathe and

Ramaswamy (1980), and Bathe (1996). This method simultaneously combines the inverse iteration

method and a Rayleigh-Ritz procedure on the subspace as outlined in Appendix. The aim of the

subspace iteration method is to find the p lowest eigenpairs for the general eigenvalue problem in

Eq. (1), where the real matrices K and M are assumed to positive definite and positive semi-

definite, respectively and (λi, ϕi) is the ith eigenpair. If the order of K and M is N, i.e., K, M

, there are N eigenpairs as follows:

ϕ1, ϕ2, ϕ3, , ϕN (6)

In order to speed up the efficiency of the subspace iteration method, many techniques have been

developed in the past two decades, namely, the shifting techniques by Bathe and Ramaswamy

(1980), Chebyshev polynomials by Yamamoto and Ohtsubo (1976), over-relaxation method by Akl

et al. (1979, 1982), multiple inverse iteration steps by Bertolini and Lam (1995), alternative

projection by Rajendran and Liew (2003), Newton-Raphson acceleration by Lee and Kim (2005),

etc. Among these techniques, the shifting technique corresponding to constant size subspace

deserves special mentioning. Without the shifting technique, it is difficult to extract a relatively

large number of eigenpairs. In our experience of computation for the 200 lowest eigenvalues of

Harwell-Boeing automobile shock absorber assembly model, the classical supspace iteration method

(SIM) without shifting showed very poor efficiency. The CPU time recorded for SIM without

shifting was 232.84 sec compared with 38.73 sec for the case with shifting. However, quite a few

improvements on SIM ignored the shifting technique because of its associated computational cost.

In fact, the shifting technique is no longer expensive for applications to structures with up to

300,000 degrees of freedom, due to the fact that the property of sparse matrix in finite element

analysis has been utilized for 15 years.

The shifting technique is to replace an inverse iteration

(7)

by a shifted inverse iteration

(8)

In the subspace iteration method, the best choice for the convergence criterion of eigenvalues is the

computable error bound proposed by Matthies based on an estimatd Rayleigh quotient of the

approximated eigenvalue with its expression in the subspace, which guarantees convergence of both

eigenvalue and eigenvector and is computable with minimal operations. However, its original form

cannot be used for the case of nonzero shift with positive semi-definite mass matrix. In this paper,

the original form without shift is generalized to nonzero shift. This generalized error bound can also

be used as a convergence criterion of eigenpairs with nonzero shift. 

R
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It has been demonstrated by Wilson and Itoh (1983) that the rate of convergence for the

progressive evaluation of eigenpairs by using a constant size subspace and Gram-Schmidt

orthogonalization can be greatly improved through application of an optimum shifting strategy. The

iteration with shifting not only produces several converged eigenvalues, but also allows to estimate

the next group of eigenvalues desired (see Wilson and Itoh 1983). However, the shifting strategies

proposed by Bathe and Ramaswamy (1980) and Wilson and Itoh (1983) place the shift at the left of

not-yet-converged eigenvalues, which thus take advantage of only the right side of the spectrum

transformation. Ideally, a more aggressive approach is to place a shift into the region of the next

group of eigenvalues desired so as to yield rapid convergence. However, such an aggressive shifting

strategy may encounter troubles if the traditional convergence criterion, i.e., relative difference of

eigenvalues of consecutive iterations, is used. Firstly, the ghost eigenvalue(see Hughes 1987) may

be encountered during iteration. Secondly, the shift may be located beyond the range of convergence

of lower eigenvalues in the group, resulting in missing of eigenvalues. In this paper, we shall present

an aggressive shift with a convergence criterion based on the computable error bound.

2. Three iterative algorithms and their comparisons

2.1 Subspace Iteration

Subspace iteration is an extension of the inverse power method, which was first proposed by Clint

and Jennings (1970). Then Bathe and Wilson (1972) incorporated the Rayleigh-Ritz procedure in

the subspace to improve the convergence speed. The steps are as follows:

I. Initialization

1. Determine the dimension of the subspace, q

2. Select an initial vector matrix X

3. Set the maximum number of iterations for each shifting, Imax

II. Shifting and Sturm Sequence Check

1. Calculate the shifting µ, ensure that µ is not the eigenvalue

2. Decomposite K − µM = LDLT

3. Perform Sturm sequence check

III. Performing Imax iterations, go to I

1. M-orthonormalize X

2. Solve X1 = (LDLT)−1 MX

3. Calculate the projects of K and M on X1, K* = X KX1, M* = X MX1

4. Solve the q by q generalized eigenvalue problem K*Φ* = M*Φ*Λ*

5. Form the updated eigenvectors X = X1Φ*

6. Judge the convergence based on the criterion of “mode-error”, remove the converged

eigenvectors and add the random vectors in X or reduce the size of subspace

As it is usual with the subspace iteration method, the dimension of the subspace is assumed to be

q, and q initial vectors are assumed to start the iteration simultaneously. If p convergent

eigenvectors are required, then q is taken as q = min(2p, p + 8). If p is very large, this cannot be realized.

Experience shows that we can take , here s is the average number of the

nonzeroes in one row of L, which can be determined by taking steps II and III into account.

R
N q×∈
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2.2 Iterative Ritz vector method

The iterative Ritz vector method was proposed by Wilson et al. (1982), and also named the

WYD-Ritz vector method. Initially, this method was used to get a better basis than eigenvectors for

the direct dynamic response. Later, it was used by Yuan et al. (1989) to calculate the eigenvectors

of large systems, and demonstrated to be efficient for solving eigenpairs.

By introducing iteration to the Ritz vector method, the accuracy of eigenpairs can be improved.

The steps are as follows:

I. Initialization

1) Determine the size of the block q, and generate the number of steps r

2) Select the initial vector matrix Q0

3) Set the maximum number of iteration for shifting, Imax

II. Shifting

1) Calculate the shifting µ and ensure that it is not the eigenvalue

2) Decomposite the shifted stiffness matrix K − µM = LDLT

3) Perform Sturm sequence check

III. Iterate until reaching Imax, then go to II

1) Solve LDLT
k +1 = MQk for k = 0,1,…,r-1. Then M-orthonormalize the converged

eigenvectors Q1, Q2,…,Qk by using k +1, and form Qk +1.

2) Calculate the projection of K on Q = (Q1, Q2,…,Qr), K* = QTKQ

3) Solve the q×r standard eigenvalue problem K*Φ* =Φ*Λ*

4) Form the new eigenvector X = QΦ*

5) Judge the convergence based on the mode-error criterion. Then remove the converged

eigenvectors.

6) If the required number of eigenvalues has been obtained, exit; otherwise, take the

unconverged first q vectors as the initial vectors and go to the next iteration.

2.3 Iterative Lanczos method

Lanczos method was presented in the 1950s. It transforms a symmetric matrix into a tri-diagonal

matrix, thereby making the procedure more efficient. This method was recognized to be unstable

before the 1970s and was not used widely. Paige proved in 1972 that the sufficient and necessary

condition for losing the orthogonality is that the eigenvalues of the projected matrix converge to the

eigenvalues of the original matrix. Afterwards Wilkinson proposed the strategy of re-

orthogonalization, Golub (1972), Underwood (1975) proposed the Block Lanczos method, and

Underwood proposed the iterative Lanczos method (see Golub 1972, Underwood 1975).

In this paper, an iterative block Lanczos with re-orthogonalization is used. Steps I and II for

this method are the same as the iterative Ritz vector method. The difference is that the Lanczos

method used the orthonormalizing coefficients in generation of the Ritz vector. Step III is as

follows:

III. Iterate until reaching Imax, go to II

1) Solve LDLT
k +1 = MQk for k = 0,1,…,r. Then M-orthonormalize the converged eigenvectors

Q1, Q2,…,Qk by using k +1, and form Qk +1. In this procedure form T*.

2) Solve the q×r standard eigenvalue problem T*Φ* = Φ*Λ*

R
N q×∈

Q̃

Q̃

Q̃

Q̃
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2.4 Implementation

In the implementation, the cell storage sparse solver developed by Chen et al. (2003) will be used

in the triangular decomposition of the shifted matrix, forward reduction and back substitution. The

efficiency of such a scheme is about 1 to 2 orders faster than that of the skyline solver. The

unrolling technique is also used in the orthonormalization, etc., to accelerate the calculations. The

double orthogonalization will be processed if the ratio of the norms of a vector before and after

orthogonalization exceeds a certain threshold, which means twice orthogonalization will be

implemented. In the following tests, the threshold is taken as 1012.

According to experience, for the subspace iteration,

(9)

For iterative Ritz vector and iterative Lanczos, take q = 4, r = 6 and

(10)

Firstly take the shifting as . If this fails, then take ,

where λk is the last converged eigenvalue and ,  are the next eigenvalues to be converged.

2.5 Numerical examples

Several practical problems are used to compare the above three methods. Part of them are listed in

Table 1 and Table 2, in which the PKUSTK series have been used in our previous papers (see Chen

et al. 2003, Chen and Sun 2005). 

2.6 Comparison of three algorithms

For comparison, all the numerical examples are calculated in core, 512 MB memory. All the results

are generated by SAP84 and transferred to Harwell-Boeing RSA format (see Yuan et al. 2005).

In Table 1, neq means the number of equations, and |K| and |L| are the memory occupied by

stiffness and its triangularized factor, respectively. In eight examples of Tables 1 and 2, PKUSTK03,

PKUSTK13 and MM-08 have a closed distribution of eigenvalues.
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Table 1 Description of the numerical examples

Examples Description neq
Size (MB)

|K| |L|

PKUSTK01 Beijing Botanical Garden 22,044 3.86 15.97

PKUSTK03 Group Storage 63,336 12.37 65.94

PKUSTK11 Cofferdam 87,804 20.54 214.53

PKUSTK12 Jijian Plaza 94,653 30.07 127.06

PKUSTK13 Machine part 94,893 26.09 234.21

MM-08 Stadium 160,074 25.68 175.56

GUIZHEN Shijitang 6,840 1.48 6.82

PALACE Palace for Children 10,860 2.28 12.82
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In the calculation, the tolerance is taken as  for PKUSTK03, and as  for

others. The first 6 digits of all the eigenvlues calculated by the three methods are consistent. The

maximum relative error is  and the average error is . This means the

reliabilities of the three methods. Averagely speaking, the iterative Ritz vector method is the fastest

one. It is about 2 times faster than the subspace iteration. The iterative Lanczos is a bit slower than

the iterative Ritz vector and faster than the subspace iteration.

In the tests with subspace iterations, a tolerance of  for mode convergence criterion is

adopted for the eigenvectors, which is roughly equivalent to  for the eigenvalue

convergence criterion; also, a tolerance of  is about equivalent to . In this paper

the procedures of the iterative Lanczos and iterative WYD-Ritz vector methods are quite similar, so

the results obtained by them are basically consistent.

2.7 Comparison with ANSYS

For comparison, the three examples described in Table 3 are solved by the subspace iteration,

iterative Ritz vector and iterative Lanczos of this paper and the subspace iteration and block

Lanczos of ANSYS 8.1. The CPU times spent by each method is listed in Table 4. In the tests, we

take  as the convergence criterion for all the three methods. The convergence criterion in

Eq. (3) is used with  for the subspace iteration in ANSYS. 

The eigenvalues for the example TABT are not dense. The example BUAA1 has rigid modes and

closed eigenvalues. The results appear to be consistent for 6 digits for the eigenvalues solved by

ANSYS and this paper, except BUAA2. The example BUAA2 is an axisymmetric structure with 6

εϕ 10
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Table 2 CPU time (sec), number of shiftings and iterations to calculate 10 and 80 eigenpairs by the three
methods

Examples

No. of 
eigen-
pairs

Subspace Iteration Iterative Ritz vector Iterative Lanczos

CPU
(sec)

No. of 
shiftings

No. of 
iterations

CPU
(sec)

No. of 
shiftings

No. of 
iterations

CPU
(sec)

No. of 
shiftings

No. of 
iterations

PKUSTK01 10 6.41 2 22 4.27 1 4 3.89 1 4

80 70.83 9 169 35.78 7 21 39.03 7 25

PKUSTK03 10 53.53 3 41 28.95 2 7 28.88 2 8

80 330.84 11 201 154.42 8 26 133.85 9 30

PKUSTK11 10 51.14 1 6 48.52 1 3 47.67 1 3

80 945.62 8 145 399.32 7 26 330.17 6 21

PKUSTK12 10 39.70 1 14 32.66 1 4 40.92 2 5

80 651.35 11 201 237.76 6 23 257.73 7 28

PKUSTK13 10 73.20 1 11 50.91 1 3 50.86 1 4

80 504.18 4 75 375.18 6 21 416.45 7 25

MM-08 10 129.64 2 30 78.64 2 6 79.64 2 6

80 1098.28 10 185 418.78 7 27 523.98 10 35

GUIZHEN 10 1.30 1 11 1.05 1 3 0.95 1 3

80 19.90 7 129 7.25 5 20 7.12 6 22

PALACE 10 3.59 2 15 2.70 1 4 3.61 2 5

80 39.01 7 126 19.93 7 24 19.84 7 25
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rigid modes, multiple and closed eigenvalues. In the calculation, the Lanczos method in ANSYS failed to

recognize 6 rigid body modes correctly. The subspace iteration in ANSYS failed to find all the multiple

eigenvalues. Four multiple eigenvalues were lost in calculation of the 10 eigenvalues, resulting in the

failure of iterations. Also, no convergence was achieved in calculation of the 20 eigenvalues.

Comparing the subspace iteration with ANSYS, the subspace iteration algorithm in this paper is

much more efficient and stable. Comparing the block Lancozs in ANSYS, the iterative Ritz vector and

iterative Lanczos methods in this paper are relatively conservative and safer. The efficiency in this

paper by using the cell sparse algorithm is a bit better than ANSYS. The iterative Lanczos in this

paper is more effective than the block Lanczos in ANSYS when there exist multiple eigenvalues.

3. Discussion of convergence criteria

There are generally three distinct convergence criteria in the implementation of SIM for an

approximated eigenpair  at iteration k:

A. The relative difference of approximated eigenvalues in terms of consecutive iterations:

(11)

B. The relative mode error or error measure with 2-norm through the eigenpair :

λi

k( )
ϕi

k( ),( )

tol1

λi

k( )
λi

k 1–( )
–

λi

k( )
---------------------------- ελ<=

λi

k( )
ϕi

k( ),( )

Table 3 Examples for comparison with ANSYS

Example Description neq |K| (MB)

TABT Tall building, 8800 SHELL63 element, 1000 BEAM188 element 60,108 11.05

BUAA1 Gear of helicopter, 2840 SOLID95 element 46,080 24.91

BUAA2 Gear of helicopter, 5360 SOLID95 element 82,800 55.26

Table 4 Comparison of CPU time (sec) solved by present methods with ANSYS

Example
No. of 

calculated modes

ANSYS Present

Subspace
Iteration

Lanczos Subspace 
Iteration

Iterative 
Lanczos

Iterative 
Ritz vector

TABT 10 68.11 15.87 18.16 16.30 12.66

20 162.53 23.20 68.83 37.91 25.77

40 254.92 29.44 146.23 49.19 41.66

80 533.22 53.45 289.31 93.81 84.03

BUAA1 10 822.16 72.42 42.14 23.92 24.16

20 1738.20 92.67 69.91 47.73 34.19

40 4752.39 132.28 166.83 84.00 87.41

80 5496.28 221.50 378.72 185.28 169.36

BUAA2 10 405.44 282.78 83.09 53.47 55.78

20 > 9000 345.89 174.27 95.55 102.33

40 No convergence 484.58 317.70 220.81 222.25

80 No convergence 649.20 586.47 448.75 481.95



Advances in solution of classical generalized eigenvalue problem 219

(12)

C. The error bound of eigenvalue through the corresponding eigenpair  in the subspace:

(13)

Consider a SIM conducted with a half-bandwidth stiffness matrix. The count of operations

required for the above three criteria is summarized in Table 5. Criterion A is the most popular one

for implementation. It is simple and clear, but can only control the accuracy of eigenvalues and

sometimes fails to identify incorrect eigenvectors and even eigenvalues. Besides, this criterion does

not allow a shift to the center of eigenvalues of concern. Using this criterion, a shift to the center of

two eigenvalues may result in the so-called ghost eigenvalue, for which an example was given by

Hughes (1987). 

Criterion B is a good choice for the convergence of eigenpairs, and has clear physical meaning.

The vector  represents the elastic nodal forces and  the inertia nodal forces when

the finite element assemblage is vibrating in the mode . Thus, tol2 is related to the out-of-

balance nodal forces. Unfortunately, this criterion requires either larger floating point operations or

extra memory in implementation. 

Bathe (1996) suggested measuring the final accuracy with tol2, but not in the SIM procedure.

Nguyen et al. (2000) implemented the convergence criterion B for both the subspace iteration

method and Lanczos method. Gong et al. (2005) examined the efficiency of several general

eigenvalue algorithms for natural vibrations with tol2. 

Criterion C is an expression of the computable error bound proposed by Matthies (1985) and can

be effectively computed in the subspace with only negligible (q + 2) multiplications, where q is the

constant size of the subspace. In contrast, criterion B requires at least N(q + 3) multiplications.

Although it is advantageous in operations, the followings are not clear from the monograph on FEA

(see Bathe 1996):

a. Whether tol3 can be used for iteration with a nonzero shift µ.

b. Whether tol3 represents the convergence of eigenvectors.

c. Whether tol3 can be used, if the mass matrix is only positive semi-definite.

The above three questions limit the applications of tol3 as an efficient convergence criterion in the

subspace iteration method. Based on the evaluation by Bathe (1996) and Matthies (1985), a

computable error bound during iterations for the Rayleigh quotient

tol2
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Table 5 Count of operations for the three convergence criteria

Criterion Count of operations

A 1 division

B 1 division, 1 square root, N(2b + 3) multiplications1

1 division, 1 square root, N(q + 3) multiplications2

C 1 division, 1 square root, (q + 1) multiplications

1b is the half-bandwidth of the stiffness matrix
2extra array memory X(N,q) for the previous subspace Xk-1 is required
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(14)

can be represented as

(15)

Here, the vectors  and  satisfy

(16)

and λj ( j = 1,2,…, n) are eigenvalues of Eq. (1). A proof of Eq. (15) can be found in the literature

(see Yuan et al. 1989, Akl et al. 1982).

If the shifting µ = 0, the right hand side of Eq. (15) can be further simplified and implemented as

a computable error bound for the subspace iteration (see Bathe 1996):

(17)

where the Rayleigh quotient  is the calculated eigenvalue approximation and  is the

corresponding eigenvector in the subspace, i.e., ( , ) is an eigenpair. 

From Eqs. (15) and (17), the quantity  evaluated in the

corresponding subspace can be used to control the convergence of eigenvalues. It should be noted

that the second equal sign in Eq. (17) is not valid for the case . However, the extension of tol3
to  requires just a slight modification of the procedure and the computation cost remains

almost unchanged.

Let us consider an eigenvector approximation of SIM in its kth iteration:

(18)

with
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Implicitly we can derive from Eq. (8)
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(23)

Combining Eq. (21), the new quantity  can be used as a convergence criterion for the subspace

iteration method with a nonzero shifting µ, i.e., the convergence criterion C can now be updated as

follows (see Chen et al. 2007):

(24)

Obviously, Eq. (24) is an extension of Eq. (15) and can be computed with just a small number of

multiplications. When µ = 0, tol4 degenerates to tol3. For convenience, we consider that tol4 and tol3
are synonym in the following discussion, and take Eq. (24) as the convergence criterion C.

In fact, the inverse M-norm of a vector defined as

(25)

is equivalent to the 2-norm, i.e., there exist two positive constants c1 and c2, c2 > c1, so that

(26)

Simple calculation leads to an equality for an approximated eigenpair :

(27)

Using Eqs. (26) and (27), we obtain

(28)

Thus, the quantities tol2 and tol4, and hence the criteria B and C are equivalent. We have to point

out here that, even if M is positive semi-definite, the inequality (28) remains valid in the subspace

iteration procedure. 

4. Aggressive shifting acceleration for subspace iteration

Since the subspace iteration has a better quality of stability and reliability in calculation,
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researchers like to use it as the default algorithm in software packages. However, the efficiency is

not satisfactory. Shifting provided the key to improve the convergence speed of the subspace

iteration. In this regard, how to obtain the value of shifting and to solve the problems caused by

shifting has been an issue of great concern. Zhao et al. (2007) proposed an “aggressive shifting”

strategy for accelerating the convergence rate and for treating the problems caused by shifting.

By denoting the converged eigenvalues as λ and approximated eigenvalues as , Bathe and

Ramaswamy (1980) proposed the largest allowable shift:

 and 1.01 (29)

where λs is the largest of the eigenvalues which have converged to a given tolerance. If Eq. (29) is

not satisfied, decrease the value of s (using s← s − 1). In order to gain higher convergence rate,

Wilson and Itoh (1983) suggested to move the shift even closer to the next approximated eigenvalue

, that is, 

 or , if (30)

Experience showed that this shifting strategy often leads to singularity of the shifted matrix (K −

µM), since  may be quite close to an eigenvalue. Transforming to the reciprocal problem

provides the possibility of Sturm’s sequence check. Both shifting procedures require a prior Sturm’s

sequence check, i.e., to check the match of the number of converged eigenvalues s and the number

of negative diagonal entries in the matrix factor D after the triangular factorization of K −µM =

LDLT. In other words, each shifting and successive Sturm’s sequence check involves a triangular

factorization. Of course, the computation involved is expensive. The kind of SIM with conservative

shifting strategies  or  and a prior Sturm’s sequence check has been illustrated in Fig. 1.

As shown in Fig. 1 and Eq. (31), Gong et al. (2005) moved the shift beyond the converged

eigenvalues to the center of next two approximated Ritz-values  and , that is,

 and (31)

where a Ritz-value  is defined as an eigenvalue in the subspace, of which the

corresponding computable error bound is not larger than 10−1, i.e.,

(32)

This simple improvement averagely improves the speed of computation by up to 17% compared

with SIM with the shift  of Eq. (29), if the high performance cell sparse fast direct solver
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(CSFD) (see Chen et al. 2003, Chen and Sun 2005) is used. To guarantee the stability condition in

Eq. (31), the Ritz-value  and  can be substituted by their upper bound and lower bound,

respectively. Since singularity may occur in the shifting process as an accelerated scheme, the shift

value must be carefully chosen to avoid singularity. In this sense, a knowledge of the error bound of

eigenvalues is helpful to avoid singularity encountered by any shift, because we can establish a

series of small intervals that consist of individual eigenvalues and prevent the shift from being

placed in these small intervals (see Bathe 1996).

In their early study, Bathe and Ramaswamy (1980) discussed the allocation of a possible shift

under the assumption that the lowest s eigenpairs have converged to certain tolerance. The effort of

λ̃s 1+ λ̃s 2+

Fig. 2 Flowchart of SIM with conservative shifting and prior Sturm’s sequence check
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next shift is to accelerate the convergence rate for eigenvalues between  and , allowing

further shift. Considering the next subspace iterations, it is important to assure that the iteration

vectors do not converge to already calculated eigenvectors, by employing the Gram-Schmidt

orthogonalization, such that all q vectors are orthogonalized with respect to the s converged

eigenvectors. In order to achieve better performance, i.e., the eigenpairs located at the left to µ

should be converged faster than those at the right to µ, the shift µ should satisfy the following

condition: 

(33)

which means that µ is in the left half of the eigevalue spectrum  to . After shifting, the

new convergence rate for each individual eigenpair is , j = s + 1,…, s + q. To

solve the inequality for , we have

  with α < 1 / 2 (34)

where  is the converged eigevalue and  is an estimated eigenvalue. 

Obviously, the stability of subspace iterations requires that µ must be relatively far away from any

eigenvalue. The shift µ is therefore chosen to lie midway between two well-spaced Ritz-values,

which can be found through the error bound formula tol4. In the implementation, Bathe and

Ramaswamy (1980) and Wilson and Itoh (1983) have made a very conservative choice of µ, as

shown in Eqs. (29) and (30), respectively. The condition α < 1 / 2 was only used as an additional

control of the shift given in Eq. (29). The success of the shifting strategy in Eq. (31) proposed by

Gong et al. (2005) encourages us to shift more aggressively, that is, to the interval between 

and , where s denotes the highest converged eigenvalue and u the depth of the aggressive

shifting, satisfying 0 < u ≤ q − 1. 

The SIM with an aggressive shifting strategy as shown in Fig. 3 and Fig. 4 is proposed as

follows:

I. Replace the convergence criterion A by C as described in previous discussion. The convergence

criterion C also provides individual upper and lower bounds for each eigenvalue, which are

used in identifying the Ritz-value and finding a new shift.

II. The shift µ should be located in the left half of the interval bracketed by two converged

eigenvalues: [λs + 1, λs + q]. In implementation we chose a shift , where

s denotes the highest converged eigenvalue and , satisfying . The

parameter u is the depth of the aggressive shifting and α is a parameter of the relative depth.

The upper bound  and lower bound  of two Ritz-values can be evaluated from

their approximations and error bounds, respectively (Eq. (28)). In this study, we have tested a

series of α and found that the optimum value of the parameter α is around 0.4. 

III. Perform as many iterations as necessary, so that all eigenpairs located to the left of µ are

converged. To ensure that, a posterior Sturm’s sequence check is necessary. In addition, for

each shifting a maximum number of iterations, say Imax, should be carried out.

IV. Since all the above Ritz values are approximated in the iteration procedure, it is not

guaranteed that the shift µ is really located in the left half between [λs + 1, λs + q] as was

required. In this case the convergence rate will be slow down as too many iterations are

required. It is better to set an additional control to terminate the iteration of the current shift

and turn on a new shift. In this study, if the count of iterations reaches 1.5 Imax and not all

eigenpairs in the left of the current shift µ have been obtained, a backward shifting is
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conducted, by moving to a point to the left of the lowest eigenvalue approximation in the current

subspace. The backward shifting is included in the flowchart of Fig. 4 with a dashed frame.

Fig. 3 An aggressive shift

Fig. 4 Flowchart of SIM with aggressive shifting and posterior Sturm’s sequence check
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5. Numerical tests

The SIM with the following shifting strategies will be tested:

BSIM: SIM with the classic shift µB of Eq. (29).

ISIMG: SIM with the shift µG of Eq. (31).

ISIM0.4: SIM with the proposed aggressive shift (α = 0.4).

ISIMB0.4: SIM with the proposed aggressive shift (α = 0.4) and backward option.

All the SIMs are conducted with a sparse solver CSFD (see Chen et al. 2003, Chen and Sun

2005). The SIM parameter Imax (iterations per shift) and q (optimum subspace size) are selected as

proposed by Wilson and Itoh (1983). The convergence criterion C with εq = 10−4 for the

eigenvectors is roughly equivalent to the tolerance ελ = 10−7 for the eigenvalues. Structural models

with the number of equations between 10,800 and 160,074 are listed in Table 6, with their

wireframes plotted in Fig. 5. These problems are selected from our home collection. All test

problems have arisen from mechanical and civil engineering applications and have been extensively

used in earlier research works. In Table 6, neq, and nzr denote the number of equations and number

Table 6 Test examples and their descriptions

Problem Description neq nzr

PALACE Museum in Shenzhen 10,800 295,302

WENSHI Botanical exhibition hall 22,044 500,712

JIJIAN Twin tower tall building 94,653 3,803,485

MM-08 A model of stadium 160,074 3,304,314

Fig. 5 Examples from home collection. a) PALACE, b) WENSHI, c) JIJIAN, d) MM-08
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of non-zeros in the upper parts of the stiffness matrices, respectively. Our home test data are

produced by SAP84 (see Yuan et al. (2005)). All the SIMs are conducted on the platform: A

Pentium IV 3.0 GHz with 2 GB RAM machine. For the sake of comparison of related computations,

no out-of-core strategy is considered for the triangular factorization, forward reduction, back

substitution and SIM itself. All programs are compiled by Compaq Visual Fortran 6.5, with

compiler options /architecture:p6p /tune:p6p.

Fig. 6 shows the CPU time curves in the solution of 200 eigenpairs with BSIM, ISIMG, and

ISIM0.4. In Fig. 6(d) there occurs a jump in the ISIM0.4 CPU time curve around k = 181 of MM-

08. A check of the iteration history indicates that at the shift  (roughly at the

center of  and ), the convergence of the left eigenvalues  and  in the interval

[ ] requires 25 iterations alone, since there is an

eigenvalue jump between  and , and an eigenvalue cluster around .

Hence, the selected shift  is no longer located in the left half of [ ] as

µ 0.99484 10
3×=

λ184 λ185 λ180 λ181, λ182

λ180 0.963499 10
3× λ192 0.100820 10

4×=,=

λ182 λ183 λ192 0.100820 10
4×=

µ 0.99484 10
3×= λ180 λ192,

Fig. 7 Spectrum of MM-08 near the shift m = 0.99484 × 103

Fig. 6 CPU time of BSIM, ISIMG and ISIM0.4 for extracting 200 eigen pairs. a) PALACE, b) WENSHI, c)
JIJIAN, d) MM-08
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initially conceived. After convergence of  to , the current shift is still located in the right

half of the interval [ ], meaning that the asymptotic convergence rate is quite low. Such a

phenomenon was referred to as convergence delay. Fig. 7 shows the spectrum around this shift. In

order to overcome such a difficulty, ISIMB moves the shift backwards to the center of

[ , ] after a certain number of iterations, say 1.5Imax =

7, so that  to  can converge rapidly. In Fig. 8, the CPU time of BSIM, ISIMG, ISIM0.4 and

ISIMB0.4 are compared. It was found that ISIMB0.4 can effectively reduce the convergence delay,

and the problem with a too far shifting was resolved.

In fact, this example mirrors a serious difficulty arising from aggressive shifting, i.e., the shift is not

located in the left half of an eigenvalue interval as desired. Fortunately, such a problem can be solved

by a backward shifting. In addition, the CPU time reduced by aggressive shifting is more significant

for SIM with sparse solver than with skyline solver. ISIMB0.4 gains an average speedup of 1.573 in

comparison with BSIM in extracting 200 eigenvalues, and of 1.133 in comparison with ISIMG. 

We have tested weaker and stronger convergence condition, i.e.,  and ,

respectively, for the above examples. For , difficulty arose in Sturm’s sequence check if

higher eigenpairs are to be extracted for the problem JIJIAN, since the relative differences between

eigenvalues are very small. For , Sturm’s sequence check failed at the same position. For

, an average of 11% more CPU time is required for ISIMG, and of 7% for ISIMB0.4.

6. Conclusions 

In this paper we reported some advances in the classical iterative methods for generalized

eigenvalue problems. The major conclusions are summarized as follows:

I. After comparison of subspace iteration, iterative Ritz vector and iterative Lanczos methods, the

iterative Ritz vector method appears to be the most efficient one.

II. Using cell sparse solution scheme, instead of the traditional skyline solver, considerable

improvement in efficiency was obtained.

III. Using the “mode error” convergence criterion, instead of the eigenvalue-only criterion, a more

λ183 λ188

λ180 λ196,

λ179 0.95276 10
3×= λ180 0.963499 10

3×=

λ180 λ182

εq 10
3–

= 10
5–

εq 10
3–

=

ελ 10
6–

=

εq 10
5–

=

Fig. 8 CPU time of BSIM, ISIMG, ISIM0.4 and ISIMB0.4 for extracting 200 eigen pairs of MM-08. a)
Complete CPU time curves, b) Local CPU time curves
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stable and efficient iteration strategy for all three iterative methods was established.

IV. An aggressive shifting strategy is presented for the subspace iteration method in solution of

eigenvalue problems arising from finite element analysis. The extended computable error

bound has been conducted with an aggressive shifting strategy to accelerate the convergence

of the classic subspace iteration method. Numerical examples showed the proposed

combination can tremendously reduce the computational effort in terms of the count of

iterations and shifttings, as well as the CPU time. A posterior Sturm’s sequence check is

necessary. If the aggressive shift is in trouble, then a backward shifting can be adopted to

solve the problem.
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Appendix: Flowchart of the classical subspace iteration method with shift.

I. Initialization

I.1. Determine subspace dimension q

I.2. Select initial vectors 

I.3. Set up maximum iteration number Imax for each LDLT decomposition

I.4. k = 0

II. Shifting and Sturm sequence checking

II.1. Compute shifting µ, which is not an eigenvalue

II.2. LDLT decomposition for 

II.3. Perform Sturm sequence check

III. Perform Imax iterations, and then go to II

III.1. k = k + 1

III.2. Solve trial vectors 

III.3. Find the projection of the matrices K and M, , 

III.4. Solve the eigensystem for the projected matrices, 

III.5. Find an improved approximation to eigenvectors 

III.6. Check convergence, move out converged eigenvectors and if necessary, add random

vectors to Xk

III.7. If the number of the converged eigenpairs has reached the required ones, stop the process
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