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A multiple level set method for modeling grain boundary 
evolution of polycrystalline materials
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Abstract. In this paper, we model grain boundary evolution based on a multiple level set method.
Grain boundary migration under a curvature-induced driving force is considered and the level set method
is employed to deal with the resulting topological changes of grain structures. The complexity of using a
level set method for modeling grain structure evolution is due to its N-phase nature and the associated
geometry compatibility constraint. We employ a multiple level set method with a predictor-multicorrectors
approach to reduce the gaps in the triple junctions down to the grid resolution level. A ghost cell
approach for imposing periodic boundary conditions is introduced without solving a constrained problem
with a Lagrange multiplier method or a penalty method. Numerical results for both uniform and random
grain structures evolution are presented and the results are compared with the solutions based on a front
tracking approach (Chen and Kotta et al. 2004b).
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1. Introduction

Polycrystalline materials are aggregates of many small grains with different crystallographic

orientations. Grain boundaries migrate and the microstructures evolve in response to the grain

boundary driving forces. Grain boundary migration is one of the dominant processes of

microstructure evolution during grain growth and recrystallization in heat treatment (Chadwick and

Smith 1976, Gottstein and Shvindlerman 1999, Humphreys and Hatherly 1995). One of the most

important driving forces triggering grain boundary migration is the capillary force induced due to

the curvatures of the grain boundaries. As the grain boundaries migrate, the corresponding grain

structure changes influence the material’s mechanical properties, such as strength, toughness,

corrosion resistance, electrical conductivity, magnetic susceptibility, etc. For example, it has been

observed that the yield strength of a polycrystalline material increases with the decrease of grain

size (Chiang 1985). The grain boundaries act as strong obstacles to the dislocation motion as

demonstrated in the Hall-Petch relation (Hall 1951, Anderson  1984). The creep behavior such as

the Coble diffusion creep (Coble 1963) and the Nabarro-Herring diffusion creep (Herring 1950) are

also grain size dependent. Accurate prediction of grain boundary migration processes is essential to
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the understanding of fundamental material properties.

In recent years the evolution processes of grain boundary migration and grain growth have been

studied extensively through computer simulations. Direct computer simulations of the grain structure

and topological changes can be further classified into probabilistic and deterministic approaches.

Probabilistic models include the Potts model (Anderson et al. 1984, Sahni et al. 1983) and kinetic

lattice Monte Carlo methods (Huang et al. 1998, Huang and Gilmer 2002). Generally, these are of

Monte-Carlo type and have their basis in the classical spin models of statistical physics. In

deterministic models a precise description of the motion of the grain boundaries is needed. It is

assumed that the grain boundary migration velocity is proportional to the driving force. Front

tracking methods (Chen et al. 2004b, Frost et al. 1990, Kuprat 2000, Rojek and Onate 2008) and

phase field models (Fan and Chen 1997, Krill and Chen 2002, Lusk 1999, Warren et al. 2000) use

this assumption. Front tracking methods adopt an explicit representation of surfaces during the

simulation, and phase field and level set methods use an implicit representation of the geometry. In

front tracking (also called vertex models), the grain boundaries are discretized and tracked explicitly

by piece-wise linear or curved segments. The model which uses straight boundaries is simple to

implement but it does not satisfy the equilibrium requirement at the triple junction. The model that

uses curved grain boundaries requires some rearrangement or relaxation of microstructure in order to

satisfy the equilibrium requirement at triple junctions. When a driving force due to the gradient of the

strain energy density in the grain structure is considered, discretization of the grain interior is also

required. This yields a significant complexity in the remeshing process due to the evolution of grain

boundaries and grain structure topological changes. Chen et al. (2001, 2002a, 2002b, 2004a, 2004b)

introduced a double grid method, in which the meshfree method is introduced in the discretization and

approximation of grain deformation, while a finite element method is employed in discretization and

approximation of the grain boundary kinematics. Nevertheless, finite element remeshing on the grain

boundary is still required in modeling the topology changes in the grain structures. In general, front

tracking methods have difficulties in handling topology changes, such as the merging and breaking of

surfaces, and these difficulties are substantially magnified in three dimensions.

Phase field models require that an asymptotic analysis is performed to obtain a mapping between

the parameters of the phase field equations and the sharp interface equations. The asymptotics

involve expanding the phase field equations in small parameter proportional to the interface width.

As a result, the phase field model only reproduces the dynamics of the sharp interface equations in

the limit where the expansion parameter is sufficiently small. Also a refined grid is needed to

resolve the interface scale (Merriman et al. 1994).

The level set method avoids the aforementioned limitations of front tracking methods and phase

field models. The level set method was first proposed by Osher and Sethian (1998) for front

propagation with curvature dependent speed. Since then, it has been extended to numerous

applications with moving interfaces in fluid mechanics, combustion, computer animation, image

processing, among others, see (Osher and Fedkiw 2001, 2002). In the level set method the interface

is represented as the zero contour of a level set function which satisfies an evolution equation. The

physics which governs the motion of the interface motion is included naturally in this model. The

front tracking method is a Lagrangian description of the interface motion, whereas the level set

approach is an Eulerian description of the interface motion. The numerical solution of the level set

function can be solved with a standard Eulerian finite difference or finite element methods. Thus

topological changes, such as merging and breaking of the interfaces can be numerically described

with ease, and the extension of the method to higher dimensions is straightforward. It has been
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shown that for curvature induced boundary motion, the level set method yields the same results as

those obtained from the phase field reaction diffusion equation (Roosen and Carter 1998). A

superfluous stiffness is required in phase field methods due to a singular perturbation leading to

incorrect solutions without the use of adaptive grids (Merriman et al. 1994). This is not an issue in

the level set method. 

The standard level set method is typically applied to problems with two phases. Methods have

been proposed to extend the approach to multiple phase problems. An attempt has been made to

apply the level set method to triple junctions in grain structures (Merriman et al. 1994), where a

separate level set function is assigned to each grain, and each grain boundary moves independently

according to the given interface speed. Voids and overlaps developed due to independent grain

boundary motions are corrected by a reassignment step which modifies each level set function by a

coupling function. In Zhao et al. (1996), a variational approach with Lagrange multiplier method is

employed to couple the multiple level set functions at triple junction through local and/or global

constraints. However, this approach encounters computational complexity and stability issues (LBB

condition, Babuska 1973). A binary level set method (Chan and Vese 2001) has been proposed to

track the evolution of multiple interfaces. For a N-phase problem,  level set functions are used

in this method. With proper partitioning of problem domain and with adequate assignment of

multiple level set functions associated with the domain partitioning, triple junctions and topological

changes can be represented without any voids and overlaps. However, the interface velocity can be

incorrect in this approach for the problems we discuss here. A novel projection algorithm based on

the particle level set method has been proposed in Losasso et al. (2006) to study the multiple

liquids (and gases) interacting with each other. This approach allows interactions between liquids or

gases with distinct viscosities, densities, and viscoelastic properties. This is achieved by using

separate level sets for different regions, and each level set evolves independently. When independent

level set evolutions contradict another, a level set “dictionary” is used to translate between the

discrepancies in the various level sets. Smith et al. (2002) also proposed a more rigorous projection

method by introducing a symmetric projection from N level sets to an N-1 dimensional manifold

without any corrections. 

In this work, the coupled level set method proposed by Merriman et al. (1994) is employed. Each

grain is assigned an independent level set function, and they are evolved and corrected by the

coupled level set approach at the grain boundaries and triple junctions. A multiple-corrector iterative

process is introduced for convergence. A local level set method (Peng et al. 1999) is also introduced

to significantly improve the computational efficiency of this multiple level set approach. 

The layout of this paper is as follows. Grain boundary migration mechanisms under curvature-

induced driving force are presented in Section 2. The multiple level set method and its localization

are both briefly reviewed in Section 3. The coupling of multiple level set functions at triple

junctions is discussed in section 4. Section 5 demonstrates the effectiveness of the proposed

methods by solving several grain boundary migration problems, and the results are compared with

those obtained by the front tracking method. Concluding remarks are given in Section 6.

2. Grain boundary migration mechanisms

Grain boundary migration is the dominant factor that determines the evolution of the

microstructures of polycrystalline materials in the process of grain growth and recrystallization.

 log 2

N
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Consequently, the grain morphology determines their physical, mechanical, and electromagnetic

properties of polycrystalline materials. Since grain boundary migration does not involve the

nucleation of new grains, it is the growth of the existing grains at the geometry compensation of the

other preexisting grains by geometry compatibility in the grain structure (Thompson 2000). As a

result, the average size of the grains increases, which is accompanied by a reduction in the total

grain boundary energy per unit volume.

2.1 Driving forces for grain boundary migration under consideration

Migration of grain boundaries is the motion of the interface between two grains caused by a wide

variety of driving forces. To yield a stable configuration, the grain boundaries evolve to reduce the

total free energy, which is accomplished by the reduction of the total grain boundary area. The most

important driving force triggering grain boundary migration is the force proportional to the

curvature of the grain boundary. The grain boundaries migrate in response to the net driving force

acting on the grain boundary.

Let f be the driving force acting on the grain boundary as shown in Fig. 1. A kinetic law that

relates the driving force to the migration velocity of the grain boundary is given as,

(1)

where µ is the grain boundary mobility and is dependent on the temperature T through the

relationship

(2)

where  Q is the activation enthalpy associated with the motion, K is the Boltzmann constant, and

M0 has a weak dependence on temperature.

The driving force due to the grain boundary curvature can be expressed as

(3)

where γ is the surface tension (the boundary energy per unit area) which is a function of the miss-

orientation angle θ, and κ is the curvature of the grain boundary. This driving force acts towards its

center of curvature, and this grain boundary migration reduces the surface energy through the

reduction of grain boundary length or area.

2.2 Grain boundary migration topology by an explicit description of geometric changes 

Grain boundary migration leads to a topological reconstruction of the entire grain structure. Let N

denote the number of grains, V denote the number of vertices and E denote the number of grain

boundaries as shown in Fig. 1. The grain structure in two-dimensional space obeys the following

Euler equation (Smith 1952):

N + V − E = 1 (4)

The above geometry rule has to be checked as a convergence criterion in a front tracking method.

In two-dimensions, a grain structure with more than three grain boundaries intersecting at a point is

topologically unstable. Thus a topologically stable grain network will have only 3 grain boundaries

ν µf=

µ M0e

Q

KT
-------–

=

f γ– θ( )κ=
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intersecting at triple junction. For explicit simulation of grain boundary migration processes via a

front tracking method, it is necessary to clearly define rules governing the topological reconstruction

of the grain structure. Morral and Ashby (1974) identified two types of grain topology

transformations, namely the interchange of grain neighbors and the disappearance or appearance of

a three sided grain. These changes were denoted as the T1 and T2 changes. 

A T1 change involves the switching of the grain boundaries when two triple junctions come very

close to each other. This leads to a topological instability in the grain network and results in the

formation of a new grain boundary. Two grains lose an edge while two other grains gain an edge,

thus maintaining the total number of edges and grains in the grain structure, as shown in Fig. 2.

This transformation is called a topological change of the first kind. In numerical simulations using a

front tracking method the T1 change is done by rotating the grain boundary by 90o as shown in Fig.

2, with the length of the new grain boundary slightly increased such that the boundary does not

undergo a T1 change immediately. This is needed for numerical stability.

A T2 change represents the topological change of a second kind where a three sided grain shrinks

to a point, as shown in Fig. 3. After this happens, each neighbor of the three sided grain loses a side

and the total number of grains and edges decreases. In front tracking methods this three sided grain

is replaced by a triple point at the centroid of the disappearing grain, and the grain boundary

connectivity is updated accordingly.

Note that these T1 change and T2 change operations are needed for numerical purposes due to the

nature of discretization of grain boundaries in front tracking methods. It will be shown below that

Fig. 1 2-D grain structure

Fig. 2 Topological change of the first kind (T1) in front tracking methods
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these intricate operations are eliminated in the level set approach when topology changes are

naturally represented by the evolution of multiple level set functions and their interactions.

3. Basic level set equations 

The main idea of the level set method is to represent a moving interface  bounding a open

region  in Rn of co-dimension one by a Lipschitz continuous function  which has the

following properties

(5)

Since the interface  is represented as the zero level set of function , the motion of

 can be translated into an evolution equation for  by taking the time derivative of

= 0 to yield

          given φ (x, t = 0) (6)

where v is the interface velocity. The initial conditions of  are often defined to be the signed

distance function to the interface, at least near the interface 

(7)

By projecting the velocity v onto the normal direction of the interface, we have

          given φ (x, t = 0) (8)

where .

Typically, the interface  has a prescribed velocity v which could be a function of space

variables x, time t, the normal direction of interface, the curvature of interface, or some external

physics which governs the motion of . 

One of the advantages of the level set method is that some geometric quantities can be expressed

by using derivates . For example, the unit normal n and curvature κ of  can be

Γ t( )
Ω t( ) φ x t,( )

φ x t,( ) 0>  if x is inside Γ t( )
φ x t,( ) 0=  if x is at Γ t( )
φ x t,( ) 0<  if x is outside Γ t( )⎩

⎪
⎨
⎪
⎧

Γ t( ) φ x t,( )
Γ t( ) φ x t,( )
φ x t,( )

φt v ∇φ⋅+ 0=

φ x t,( )

φ x 0,( )
 dist x Γ 0( ),( )+  if x is inside Γ 0( )

0  if x is at Γ 0( )
dist x Γ 0( ),( )–  if x is outside Γ 0( )⎩

⎪
⎨
⎪
⎧

=

φt νn ∇φ+ 0=

∇φ φx

2
φy

2
+( )

1 2⁄

=
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Γ t( )

φ x t,( ) Γ t( )

Fig. 3 Topological change of the second kind (T2) in front tracking methods
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computed via the level set function  as follows:

 (9)

 (10)

In this study we consider the curvature induced driving force as the primary driving force of grain

boundary migration. The curvature of each grain boundary can be calculated by Eq. (10) (e.g. by

finite differences) without the explicit discretization along the grain boundary, which is required in

front tracking methods. The level set equation for grain boundary motion induced by curvature is:

(11)

In this work, a second-order ENO scheme is used for spatial derivative approximation of level set

equation(Engquist and Osher 1980). For time derivative approximation, a simple forward Euler

discretization is used.

Numerically, it is desirable to keep the level set function close to a signed distance function to the

interface. However, it is generally impossible to prevent the level set function from deviating from a

signed distance function. Also during time integration of the level set equation, flat or steep regions

often occur near the interface, causing numerical errors and inaccurate identification of interfaces.

Generally, a reinitialization procedure is needed to reset the level set function to be a signed

distance function to the interface. In this work, we use the following reinitialization equation for the

correction of φ at time t* (Sussman et al. 1994):

(12)

where  is the value of  at the beginning of the reinitialization step. The sign function  is

given by

 (13)

For numerical purposes, a smooth sign function (Sussman et al. 1994) is introduced as follows.

 (14)

where ε is a regularization parameter.
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4. Multiple level set method for multiphase problem

In a typical polycrystalline material, each grain has a different grain orientation and it exhibits a

multiphase nature, and triple junctions in grain structure topology represent complexity in implicit

geometric representation.

Fig. 4 Coupling of multiple level set functions around a triple junction

Fig. 5 A grain structure with 3 triple junctions (the background lines represent computational grid)
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4.1 Coupling of multiple level set functions

Multiple level set for triple junctions has been proposed (Merriman et al. 1994). In this approach,

each grain is assigned a level set function , and in the predictor phase each level set function 

is evolved independently according to Eq. (11) as a predictor . In the corrector phase, the level

set functions are corrected as

(15)

where  is the corrector of . This predictor-corrector computational procedure is illustrated by

considering a triple junction obtained from the zero level sets of 3 functions, as shown in Fig. 4. In

the predictor phase each of the 3 level set functions is evolved independently as shown in Fig. 4 (a).

In the corrector phase, each of the level set functions is corrected according to Eq. (15) as shown in

Fig. 4 (b). 

φi φi

φi

 p

φi

c 1

2
--- φi

 p max
i j≠

φj

 p
–⎝ ⎠

⎛ ⎞=

φi

c
φi

 p

Fig. 6 The evolution of triple junctions under the iteration of predictor-corrector steps (the background lines
represent computational grid)
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The numerical errors associated with this predictor-corrector approach is shown in Fig. 5 where

gaps exist after the corrector phase. These gaps can be reduced down to the grid resolution level by

a predictor-multicorrectors iteration as shown in Fig. 6. The predictor-multicorrectors multiple level

set approach for a grain network evolution is demonstrated in Fig. 7. 

Solving for a level set function only in the region close to the interface reduces the operation from

 to , where δ is the width of the region surrounding the interface. This is referred to

as the local level set method (Peng et al. 1999). Since we assign each grain an independent level set

function, the standard local level set method can be applied directly. 

4.2 Imposition of periodic boundary conditions 

For a unit cell microstructure to be representative for the macroscopic structure, periodicity of

grain structure and grain boundary migration in the unit cell needs to be considered. The initial

grain structure is generated by Voronoi cells with periodic boundary conditions. The periodicity in

the initial level set function requires

O n
2( ) O δn( )

Fig. 7 Coupling of multiple level set functions by a predictor-multicorrectors approach

Fig. 8 Ghost cells for the calculation of grain boundary curvature along the unit cell boundaries
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(16)

where  and  represent the opposite boundaries.

To avoid imposing periodicity as a constraint condition, we consider a layer of ghost cells along

the periodic boundaries created by copying the geometry and the signed distance function of the

grains on the opposite sides of the unit cell, as shown in Fig. 8. With this ghost cell approach,

periodicity can also be imposed in the local calculation. Fig. 9 shows the local level set of the

grains near the unit cell boundaries using this ghost cell approach.

5. Numerical examples

The following material parameters are used in all numerical examples: µ = 0.1 µm3/µNµs,

γ = 0.5 µN/µm, box size = 1 µm × µm.

5.1 Fundamental topological changes by the multiple level set method

A grid size of 100 × 100 is employed in all of the following numerical examples. The grain

boundary migration of the first grain structure shown in Fig. 10 is modeled by four level set

φ
Γ

+ φ
Γ

 –=

Γ
+

Γ
 –

Fig. 9 Periodic boundary conditions for construction of local level set 



202  Xinwei Zhang, Jiun-Shyan Chen and Stanley Osher

functions. The grain boundaries migrate until they reach a stable configuration, where the 3 vertices

at each triple junction are in a balanced 120o angle. In the second grain structure shown in Fig. 11,

Fig. 10 Topological change of the first kind (T1) by multiple level set method

Fig. 11 Topological change of the second kind (T2) by multiple level set method
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four level set functions are again employed. According to the initial grain configuration, the

resultant driving forces at the three triple junctions act toward the centroid of the center grain. As

such, the center grain shrinks to a point, and the vertices at the triple junction are in the balanced

120o angle. The T1 and T2 topology changes in this example are again naturally represented by the

interaction of level set functions. The numerical convergence study using three grid refinements is

also investigated for T2 change as shown in Fig. 12. It can be seen clearly that the evolution of

grain boundaries converges around a triple junction as shown in Fig. 12(b). 

5.2 Grain growth in a uniform grain network with geometric imperfection and a random

grain network

In the first case, abnormal grain growth is studied by introducing a geometric imperfection in an

otherwise perfect grain structure of uniform hexagonal grains, as shown in Fig. 13(i). The

imperfection is created by introducing two eight sided grains, two seven sided grains and six five

sided grains in the uniform hexagonal grain structure. The presence of geometrical imperfections in

the grain structure triggers the evolution of the grain boundaries. A grid size of 200 × 200 is employed,

and numerical stability requires a time step restriction of < 1 for a forward Euler time

approximation, where ∆x and ∆y are the grid sizes, µ is the grain boundary mobility, and γ is the

surface tension. The progressive evolution of grain boundaries is shown in Fig. 13. The grains with

less than six edges generate larger driving forces towards the center of the grains, compared to that

of the adjacent grains with more than six edges. Thus the grains with less than six edges continue to

shrink while the ones with more than six edges continue to grow. The level set approach effectively

model grain boundary migration and topological changes as shown in Fig. 13.

In the second case, the growth of a random grain structure with 100 grains is modeled as shown

in Fig. 14. As shown in Fig. 14 (ii), the grains with fewer than six edges in the initial configuration

continue to shrink while the ones with more than six edges continue to grow due to the curvature

effects. Any front tracking method would require remeshing and adaptivity in response to the grain

structure topology changes, consuming considerable computational effort. Note that the curved grain

∆t
2µγ

∆x
2

---------
2µγ

∆y
2

---------+⎝ ⎠
⎛ ⎞

Fig. 12 Convergence study of T2 change by multiple level set method
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boundaries are naturally represented by the level set approach, whereas in a front tracking approach,

higher order approximation functions are required for the representation of grain boundary

kinematic variables and grain boundary geometries. 

Fig. 13 Evolution of a uniform grain structure with geometric imperfection
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5.3 Comparison with front tracking method

In this section, we compared simulation results obtained by the proposed multiple level set

method and the front tacking method (Chen et al. 2002a, Chen et al. 2002b). Although similar

results are obtained with the two methods in the uniform grain with imperfection, as shown in Fig.

Fig. 14 Evolution of a random grain structure
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15, some differences can be seen in the random grain structure evolution case as shown in Fig. 16.

For a precise comparison of simulation results, the evolution of five triple junctions as shown Fig.

17 are followed closely. In the front tracking method, a couple of T1 changes, one inside the circle

domain and two inside the square domain, are triggered as shown in Fig. 18 due to the ad hoc rules

of topological changes and the piecewise linear approximation on the grain boundaries. For multiple

level set method, the T1 changes in the circle domain in Fig. 17(b) yield the similar configuration

as shown in front tracking method. However, a significant difference can be observed in the square

domain in Fig. 17(b), where errors due to topological changes ad hoc rules and the piecewise linear

approximation are avoided in the level set method. Similar situations can be observed in the regions

with circle markers displayed in Fig. 16. In the random grain network case, comparable CPU time

of 216 minutes in the multiple level set method is achieved compared to 181 minutes in the front

tracking method. 

Fig. 15 Uniform grain growth modeled by multiple level set method and front tracking method

Fig. 16 Random grain growth modeled by multiple level set method and front tracking method
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6. Conclusions

In this work, a multiple level set method for modeling grain boundary migration in polycrystalline

materials has been presented. A predictor-multicorrectors approach has been introduced in the

evolution of level set functions near triple junctions. The numerical results show that this iterative

approach reduces the gaps in the triple junctions down to the grid resolution level. For grain

boundary migration under curvature induced driving forces, it is shown that the topological changes

are properly modeled by the multiple level set method without the need of the ad hoc geometric

rules that are required in the front tracking methods. We also show that the curved grain boundaries

can be naturally represented with the level set method, whereas higher order approximation

functions are required in the approximation of grain kinematics variables and grain boundary

geometry using front tracking methods. A ghost cell approach for imposing periodic boundary

conditions has been introduced without solving a constrained problem with a Lagrange multiplier

Fig. 17 A local grain structure with five triple junctions

Fig. 18 A local grain structure with T1 changes modeled by multiple level set method and front tracking
method
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method or a penalty method. In order to improve the computational efficiency, a local level set

method has been used. Numerical results for both uniform and random grain structures have been

presented, and they compared favorably with the solutions based on front tracking method. It is also

demonstrated that the errors induced due to topological changes ad hoc rules and the piecewise

linear approximation in the front tracking method are avoided in the level set method. This

framework can be easily extended to 3-D grain growth simulation. Additional driving forces, such

as the grain boundary migration due to strain energy difference between anisotropic grains, will be

included in future work.
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