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Abstract. Current methodologies used for the inference of thin film stresses through curvature measurements
are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/
substrate system. These methodologies have recently been extended to non-uniform stress and curvature states
for the thin film subject to non-uniform, isotropic misfit strains. In this paper we study the same thin film/
substrate system but subject to non-uniform, anisotropic misfit strains. The film stresses and system curvatures
are both obtained in terms of the non-uniform, anisotropic misfit strains. For arbitrarily non-uniform, anisotropic
misfit strains, it is shown that a direct relation between film stresses and system curvatures cannot be
established. However, such a relation exists for uniform or linear anisotropic misfit strains, or for the average
film stresses and average system curvatures when the anisotropic misfit strains are arbitrarily non-uniform.

Keywords: anisotropic film misfit strains and stresses; non-uniform film stresses and system curva-
tures; stress-curvature relations; non-local effects; interfacial shear.

1. Introduction

Stoney (1909) used a plate system composed of a thin film, of thickness 4, deposited on a
relatively thick substrate, of thickness h,, and derived a simple relation between the curvature, x, of
the system and the stress, o'/), of the film as follows:
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Fig. 1 A schematic diagram of the thin film/substrate system, showing the cylindrical coordinates (7, 6, z)
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In the above the subscripts “/” and “s” denote the thin film and substrate, respectively, and £ and
v are the Young’s modulus and Poisson’s ratio. Eq. (1) is called the Stoney formula, and it has been
extensively used in the literature to infer film stress changes from experimental measurement of
system curvature changes (Freund and Suresh 2004).

The Stoney formula was derived for an isotropic “thin” solid film of uniform thickness deposited
on a much “thicker” plate substrate based on a number of assumptions. The assumptions include the
following: (1) Both the film thickness /4, and the substrate thickness 4, are uniform and /s, <<h,<<R,
where R represents the characteristic length in the lateral direction (e.g. system radius R shown in
Fig. 1); (2) The strains and rotations of the plate system are infinitesimal; (3) Both the film and
substrate are homogeneous, isotropic, and linearly elastic; (4) The film stress states are in-plane
isotropic or equi-biaxial (two equal stress components in any two, mutually orthogonal in-plane
directions) while the out-of-plane direct stress and all shear stresses vanish; (5) The system’s
curvature components are equi-biaxial (two equal direct curvatures) while the twist curvature
vanishes in all directions; and (6) All surviving stress and curvature components are spatially
constant over the plate system’s surface, a situation which is often violated in practice.

The assumption of equi-biaxial (x. = x,, = kK, &, = K= 0) and spatially constant curvature (x
independent of position) is equivalent to assuming that the plate system would deform spherically
under the action of the film stresses. If this assumption were to be true, a rigorous application of the
Stoney formula would indeed furnish a single film stress value. This value represents the common
magnitude of each of the two direct stresses in any two, mutually orthogonal directions (i.e.
O = Oy = o'\, Oy = Oy =0, o) independent of position). This is the uniform stress for the entire
film and it is derived from measurement of a single uniform curvature value which fully
characterizes the system provided the deformation is indeed spherical.

Despite the explicitly stated assumptions of spatial stress and curvature uniformity, the Stoney
formula is often, arbitrarily, applied to cases of practical interest where these assumptions are violated.
This is typically done by applying the Stoney formula pointwise and thus extracting a local value of
stress from a local measurement of the curvature of the system. This approach of inferring film stresses
clearly violates the uniformity assumptions of the analysis and, as such, its accuracy as an
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approximation is expected to deteriorate as the levels of curvature non-uniformity become more severe.

Following the initial formulation by Stoney, a number of extensions have been derived by various
researchers who have relaxed some of the other assumptions (other than the assumption of uniformity)
made by his analysis. Such extensions of the initial formulation include relaxation of the assumption of
equi-biaxiality as well as the assumption of small deformations/deflections. A biaxial form of Stoney
formula, appropriate for anisotropic film stresses, including different stress values at two different
directions and non-zero, in-plane shear stresses, was derived by relaxing the assumption of curvature
equi-biaxiality (Freund and Suresh 2004). Related analyses treating discontinuous films in the form of
bare periodic lines (Wikstrom ef al. 1999a) or composite films with periodic line structures (e.g. bare or
encapsulated periodic lines) have also been derived (Shen et al. 1996, Wikstrom et al. 1999b, Park and
Suresh 2000). These latter analyses have also removed the assumption of equi-biaxiality and have
allowed the existence of three independent curvature and stress components in the form of two, non-
equal, direct components and one shear or twist component. However, the uniformity assumption of all
of these quantities over the entire plate system was retained. In addition to the above, single, multiple
and graded films and substrates have been treated in various “large” deformation analyses (Masters and
Salamon 1993, Salamon and Masters 1995 Finot er al. 1997, Freund 2000). These analyses have
removed both the restrictions of an equi-biaxial curvature state as well as the assumption of infinitesimal
deformations. They have allowed for the prediction of kinematically nonlinear behavior and bifurcations
in curvature states. These bifurcations are transformations from an initially equi-biaxial to a
subsequently biaxial curvature state that may be induced by an increase in film stresses beyond a critical
level. This critical level is intimately related to the system’s aspect ratio, i.e., the ratio of in-plane to
thickness dimension and the elastic stiffness. These analyses also retain the assumption of spatial
curvature and stress uniformity across the system. However, they allow for deformations to evolve from
an initially spherical shape to an energetically favored shape (e.g. ellipsoidal, cylindrical or saddle
shapes) which features three different, still spatially constant, curvature components (Lee et al. 2001).

None of the above-discussed extensions of the Stoney methodology have relaxed the most
restrictive of Stoney’s original assumption of spatial uniformity which does not allow either film
stress or curvature components to vary across the plate surface. This crucial assumption is often
violated in practice since film stresses and the associated system curvatures are non-uniformly
distributed over the plate area. Huang and Rosakis (2005) and Huang et al. (2005) have recently
made progress to remove the two restrictive assumptions of the Stoney analysis relating to spatial
uniformity and equi-biaxiality. They have studied the cases of thin film/substrate systems subject to
non-uniform but axisymmetric temperature distribution 7(r) and misfit strain &,(r), respectively. Their
results show that the relations between film stresses and system curvatures feature not only a “local
part which involves a direct dependence of stresses on curvatures at the same point, but also a “non-
local part which reflects of the effect of curvatures at other points on the location of scrutiny. The
“non-local effect comes into play in the axisymmetric analysis via the average curvature in the thin
film. The “non-local” analysis has been extended to general non-uniform temperature (Huang and
Rosakis 2007) and misfit strains (Ngo et al. 2006), thin film with non-uniform thickness (Ngo et al.
2007) or different radius from the substrate radius (Feng et al. 2006). The X-ray diffraction and
coherent gradient sensing experiments have verified the non-local analysis (Brown et al. 2006, 2007).

The main purpose of the present paper is to extend the nonl-local analysis for the general case of a thin
film/substrate system subject to arbitrary anisotropic misfit strain distribution gg(r, 6). Our goal is to
relate film stresses and system curvatures to the misfit strain distribution, and explore a relation between
the film stresses and the system curvatures for general anisotropic misfit strain distributions.
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2. Governing equations

A thin film of radius R and thickness /4, is deposited on a substrate of the same radius and
thickness 4, and h,<<h; <<R. The Young’s modulus and Poisson’s ratio of the film and substrate
are denoted by Ej vs; E, and v, respectively. The thin film is subject to arbitrary anisotropic and
non-uniform misfit strains g;;(r, 6) in the film plane, where r and @ are polar coordinates (Fig. 1).

. m __ 1, m m~ _ 1, m m m_l m mo__ 1, m m m .
For convenience we use & = 5(5,,+ Epp) = 5(8”+ &), EN = 5(8,,—893)— 5(8”_8yy) cos20+ g,,sin20,

and y"'=2&,=2¢. €082 60— ( )sin26?, where x and y are the Cartesian coordinates. For
uniform mlsﬁt strams &, gyy, and gf("y= constants in the Cartesian coordinates (Freund and Suresh

2004), & is also uniform, but &, and y" become linear combinations of cos26 and sin26.
The thin film is modeled as a membrane that has no resistance against bending due to its small
thickness s, << h;. Let u and ug denote the displacements in the radial (7) and circumferential (6)

. o : ou'” 1" 1oud o ouf
dirgstions. The strains in the thin film are ¢, = L,cﬂga:— lﬁ, and v,p = 194, Yo _
Ug or r r o6 r 06 or

r

The stresses in the thin film can be obtained from the linear elastic constitutive model as
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The membrane forces in the thin film are N(f ) = h; o,,, N(gf )= hy G, and Nf{g) = hy G-

For non-uniform misfit strains distribution, the normal stress traction &,, still vanishes, but the
shear stresses o,, and o, at the interface do not vanish anymore, and are denoted by 7. and 7,
respectively. The equilibrium equations for the thin film, accounting for the effect of interface shear
stresses 7. and 75 become

5N§f)+N§f)—N(gﬂ+l(3N£Q_

or  rae v 0 )
/) 2]
ajv{_r'g-}_zN(/g—i—laN(H _ngo
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The substitution of Eq. (2) into (3) yields the following governing equations for u(f ) u(gf ), z.and 7,

2 (f) o 0 2 (f) 2 (f) )

ou lau u; 1- vla 1+v16 3— vflau

arz r or 2 592 2 r&r@@ 2 200 (4a)
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Let ufs) and uS denote the displacements in the radial () and circumferential (6) directions at
the neutral axis (z=0) of the substrate, and w the displacement in the normal (z) direction. It is
important to consider w since the substrate can be subject to bending and is modeled as a plate. The

6u£s) w _ lau (lﬁw 10 W) _
— - and v, =
ror 2 Y a
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strains in the substrate are given by &,, =

—— | The stresses in the substrate can then be obtained from the linear
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1au(s) au(S) uS)+ 5. 8(18w)

elastic constitutive model as
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The forces in the substrate are obtained by averaging the stresses over the thickness as Nﬁ” =—
1—v;
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The moments in the substrate are obtained from — J'zo;-jdz as M = 5—32[6—2} +v (law 19 wﬂ
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The shear stresses 7, and 7, at the thin film/substrate interface are equivalent to the distributed
forces 7 in the radial direction and 7, in the circumferential direction, and bending moments 4,/ 27,
and h,/27, applied at the neutral axis (z=0) of the substrate. The in-plane force equilibrium
equations of the substrate then become
aMS) +]\]§£)_]\/(§) 1 alv(s)

tot =y =
or r r o0 " 0 ©)



128 Y. Huang, D. Ngo, X. Feng and A.J. Rosakis
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The substitution of Nfs) ,NS) , and Nfg in terms of the displacements into the above equation yields

the following governing equations for u' ) u(gs) , T, and 75
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The out-of-plane moment and force equilibrium equations are given by
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where O, and Oy are the shear forces normal to the neutral axis. Elimination of O, and Qy from the
above two equations in conjunction with the moments-displacement relation, give the following
governing equations for w, 7. and 7y

V(i) = 80=Y) )( 15y 10%) (10)
E, K or r roé
where V° = 62+lg+la—
ot ror Jof
The continuity of displacements across the thin film/substrate interface requires
JH =@ _hdw o o hlow (11)

r r Ug =Ug
20r 2rof
Egs. (4), (7), (10) and (11) constitute seven ordinary differential equations for u(f ), u(gf), ufs) , uS) ,
w, 7. and 75 Under the limit 4, << A, these seven equations can be decoupled to solve u’ 9 ( 9 first,
followed by w, then u(f ) and u(f ), and finally 7. and 7, as discussed in the followmg
(i) Elimination of 7. and 7, from Egs. (4) and (7) yields two equations for u , u(gf ), u,(.s) , and ug).

For hy<<h,, u(f ) and ugf ) disappear in these two equations which give the following governing

equations for u ) and uy only,
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Y from Egs. (4) and (11) gives 7. and 7, in terms of u, , Uy’ and w

(i1) Elimination of u, and u,
(and &, &\, 7).

(iii) The substitution of 7, and 7, in (ii) into Eq. (10) yields the following governing equation for the
normal displacement w. For h,<< h,, the governing equation becomes
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This biharmonic equation can be solved analytically, which gives the substrate displacement w.
(iv) The displacements ufﬂ and ufgf) are obtained from Eq. (11). The leading terms of the interface
shear stresses 7. and 7, are then obtained from Eq. (4) as
E - h 68 ag m 10
- f[(1+ V)t (1= == A+(1 o +—22 ang

r
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These are remarkable results that hold regardless of boundary conditions at the edge » = R. Therefore
the interface shear stresses are proportional to the gradients of misfit strains. For uniform misfit strain
g, 8yy , and 8;;, =constants in the Cartesian coordinates (Freund and Suresh 2004), the interface shear
stresses do NOT vanish unless &, =8;"y =constant and gfy =0 (i.e. the isotropic Stoney formula).
We expand the arbitrary non-uniform misfit strain distributions & (r, 8), &x(r, &) and y" (r, 6) to

the Fourier series in order to solve the above partial differential equations. analytically

g (r,0) = Z &£ (r)cosn 6+ Z &£(r)sinn

gvr,0) = z & () cosn O+ z & (r)sinn 6

Y'(r, 6 = 31 (r)cosn6+ S 1 (r)sinn 6 (15)
n=0 n=1

27 2n
m m m 1 m m(n
where & )(r)— je;(r 0)do, eA“”(r)— 5= [& 0d0, () = 5 [Y'(r, 00, &) =
0 0
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12n 12n 1 27
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2n 2n 2n
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(n> 1). Without losing generality, we focus on the cos n@ term in & (r, ) and &£,(r, d) and
sin n6 term in y"(r, @) in the following. The corresponding displacements and interface shear
stresses can be expressed as

u® = u""(r)cosn8, ul = u$” (r)sinn 6, w = w”(r)cosn @ (16)

Eq. (12) then gives two ordinary differential equations for u,(.s") and uf;”), which have the general
solution
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where 4y and D, are constants to be determined, and the condition of finite displacements at the
center » =0 has been used.
The normal displacement is obtained from the biharmonic Eq. (13) as

(1+vf)‘_1 7 .[771 "gg"fn)dn—f"J'UM gz(")dry}
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2 B r r
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where A4, and B, are constants to be determined, and the condition of finite w at the center » =0 has been
used. The displacements in the thin film are obtained from the interface continuity condition (11).

It is important to point out that Eqs. (17) and (18) hold for »> 0. For n =0 the displacements are
given and discussed in details in Section 5.

3. Boundary conditions

The first two boundary conditions at the free edge » = R require that the net forces vanish,
NP+N =0 and M) +N) =0 atr=R (19)
which give 4, and D, as
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Dy = A E P LV () (1 v )R Ui @y dn (20b)

0

R
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under the limit /s, << h,. The other two boundary conditions at the free edge » = R are the vanishing
of net moments, i.e.,
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which give 4, and B; as
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4. Thin-film stresses and system curvatures

We provide the general solution that includes both cosine and sine terms in this section. The
system curvatures are

8w law law
K

0 (1 (3w)
2 2 KF 23
" arz 00~ rar 6492 ° or\roe @3)
The sum of system curvatures is related to the misfit strains by
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The average curvature sum over the entire thin film .+ &y, = L.[ HJ'n(K,,+ Kpg)dn is then
obtained as R
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where & = Lz _[dﬁ_[ngg dn is the average misfit strain sum. The subtraction of the average curvature
T

sum from Eq. (24) gives
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The difference between two curvatures, x,,— &y, and the twist x,., are given by
2
= 7§E£hf1—vs
rr 06 2 2 P
1 v, E; hj
4(1+v)d+4(1-v)ei—(1 +vf) jn &Vdn
+H4(1+v) > (n- l)r"_z{cosn 49_[771 " dn+ sinn Hjnl "ggns(")dn}
n=1 R R
—4(1+v)> (n+ l)r("ﬂ)[cosn 0]’77" 'O dn+ sinn 49_[77" leg"s(")dn}
n=1 0
«) +(1 —vf)z n(n+1)r {cosn ofn’ Q&N + 4 ydn+ sinn 6.[77 g m("))dﬂ} (27)

s

+(1vf)Zn(n1)r"{cosn0.[77"l(2gzc(,") ’"("))d77+ sm;qHJ';y” 1(252(")+ ’"("))dq}
n=1 0

8As

f(lfvf)in(nfl)r {cosnﬁjiy "+ Ndn+ smnHJ'ﬂ "2 - '"("))dq}
n=1

(1vf)Zn(nJr])r("+2)|:cosn9_[77"+1(2820(") 7ydn+ smnejq" "2+ '"<">)d,7}
n=1 0

3E/hyld —v1-v,
21 ViE, ;3




Ko~

Anisotropic, non-uniform misfit strain in a thin film bonded on a plate substrate 135

) n R R
4(L+v) Y n(n+ l)lﬁ{cosn Hjnnﬂggc(")dn-i- sinn 6?J'77 lg'zns(")dn}
n=1 0

0 n R
—(1—vf)Zn(nz—l)?{cosné?.[n"1(2525,") 7Ndn+ smn&J'i]" "2 + '"("))dﬂ}

+(1- vf)Zn (n+1) I ]){cosnﬁfry "2& - m("))dr]+smn6‘J'77" '2¢ '"(")+7/5("))d77}

{cosn Hjn"+ ' dn+ sinn 67'[77"+ lg'zns(")dn}
0

cosn@jn "2 Dyan

U S [N Chay Kalt

+sinn 0'[77 'Q& + M Ndn

—(1-vy) Z

)

R
|:C05n0.[77n 1(2 m(n) m(n))d77+ Sinng-[nn+l(2glAﬂ(H)+ M(n))dﬂ:|
0

27)

I\)

Eﬁhfl
1 f Sh

-PIUJ

LI

4(1+Vf)i(n—1)rn_2|:sinn9-[771 ngggn)dﬂ—cosné?.[ql ng;ns(n)dn}
n=1 1 F

+4(1+vf)i(n+1)r("”){sinnﬁ]'i]" & dn— cosnﬁj’n" lgg\(")dn}
n=1 0

+(1-v) Z.O: n(n+1)r"| sinn 0].77,(“ ])(26215”) + }/_:"("))dry—cosn 6?]'777('“r I)(2 g'A"_f")— }/T("))dﬂ}
n=1 R R

—(1—vf)§n(n—1)f” sinn 0" (26, - 7' ")dn- cosnejq (282"(")+}/C("))d77}
n=1 0

—(1—vf)in(n—1)r {smn@jry '8+ P Ndp— COSI’l@I?] "2 m(”))dn}
n=1

n (1 7Vf) i I’l(l’l n 1)r(n+2)|:sinn0]~77n+ l(zgrAngn) M( ))dﬂ COSI’l@I?] (2EZ(M)+ m(n))dn:|
n=1 0



136 Y. Huang, D. Ngo, X. Feng and A.J. Rosakis

2
V3B A 1-vi 1o,
41—V;Esh§ 3+vs

n

4(1 +vf)i n(n+ I)RZZ’M1){sinn0jn"“5§"§")d77—cosn@jry Hggns(")dn}
n=1 0 0

0 n R R
~(1=v) Y n(n’~ 1)%{5111;7 O[n" e\~ 7" )dn-cosn[n" ' 28"+, (”))dn}
n=1 R 0 0

n

© R
+(1—vf)2n2(n+1)R2; H){sinn@jnnﬂﬂgﬂ") 7Nd - cosnejn &M+ (”))dn}
n=1 0

sinn 6’]’77"+ ' dn— cosn QIU &My
0 (28)

R
sinn Hjn"_ "R Dyan
0

n—2

+(1—vf)il(n—1) [(n2—1)+(%::)ZJR’;(n1)

—cosn@jn "2+ 7 Ndp

—(1- vf)Zn(

{smn@jn "Q&Y Y gy cosn@jn "2+ " Ndn

The stresses in the thin film are obtained from Eq. (2). Specifically, the sum of stresses o;(f )+

0'99 is related to the misfit strains by

E m
0.+ oy = T-(2£) (29)
The difference between stresses, O'U) - O'g;) , and shear stress O'(f ) are given by
0,0y = —L< -2} (30)
0 = (") (31)
2(1+v f)

5. Limiting cases

We present a few limit cases to further illustrate the thin film stresses and system curvatures in
Section 4.
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5.1 Uniform misfit strains in the Cartesian coordinates

Freund and Suresh (2004) obtained the solution for arbitrarily anisotropic but uniform misfit
strains in the Cartesian coordinates, £, &, and vy, =2&, constants. For this case & =1 (& +¢),)

is a constant, but &\, = %(g)':(— &,,)c0s26+ %yﬁfy sin 20 and " =y} cos20- (&, —&,,) sin 26 depend

m(0) _

on 6. These give the non-vanishing coefficients of the Fourier series of the misfit strains as &, %
(enteh), &P = %y;"(z) = ;( x— &) and &P = ;ym(z) ;ym Egs. (24)-(28) give the system

curvatures, which can be transformed to curvatures in the Cartesian coordinates as

K, +K =—6—&E _1—VS(€Z;+ 4

&y )

(32)

which are also constant curvatures. The thin-film stresses in the Cartesian coordinates can be
obtained from Egs. (29)-(31) as

(f) O Erom | om
+ o yy _t%(gxx + gyy) (33)
IR Ee— &y
Ter Otvy = —_LE m
) L+ve Yoy
O'xy 2

which are constant stresses in the thin film. Elimination of misfit strains from Egs. (32) and (33)
gives the relation between thin film stresses and system curvatures

R L

xx yy 6(1 v)h XX

{GX’ - Gy‘i’} __ER {Kxx— Kyy}
o 6(L+voh|  x,

xy

(34)

which is identical to Freund and Suresh (2004).
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5.2 Axisymmetric normal misfit strains

We consider the axisymmetric normal misfit strains &, = &..(r), &gy = £pe(r) and y., = 0, which give
& = %[g’.’f.(r) +&p(r)] and &\ = %[g’.’f.(r)—g'gg(r)] . The non-vanishing displacement in the substrate
is

4O = Ephil- {P;Wjﬂgzd,ﬁu vf)rj—AdU+(1+Vf) I;; qu} (35)

! lszh

The normal displacement is given by

dw E hd—vi[1+v/ "En
— =611 { I (neidn+(1-v)r —Adn+(1+v)
dr ]*V/%E‘hs J. z 2 .[ f

j ne; zdﬂ} (36)

which gives the non-vanishing system curvatures as

rom

m m &,
) (I+v)eg +(1—-vp)g+2(1 —vf)'[;Adn

Krr+K96‘ = _65&%1_‘3 R K
l—V ES hs 1* m
! +(1+v) Y lj.ﬂé‘zdﬂ
1+v, R (37)

2
Ky — Koo = 6£Lh£1
1- h

{(1 )+ (- di— z”f)'jne;”dn}
r

0

. . E E
The non-zero stresses in the thin film are ,([ )+ O'l(gfg) —L_(—2&) and o;(,f ) O'é,fg) +f (=2&Y).
v v
J A
Eq. (37) seems to provide two equations to determine & and &, (and therefore the thin-film
stresses) in terms of curvatures. However, these two equations are NOT independent, as to be
shown in the following.

The average curvature sum over the entire thin film &, + k= i _[ K, + Kpp)dn can be
obtained from Eq. (37) as R 0

L= E E, h

(f)

where & and ¢+ 9 (f)

are the average of & and Gf? + Gy, respectively. It is clear that (S,(./:.) +0y

and «,,+ x,, satisfy the Stoney formula. The subtraction of Eq. (38) from Eq. (37) yields
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v d (1=l +2(1-v) [Rdy

n
Krr+K¢919_ Krr+K6’€ =-6 Ef hfl v K
1 VfE h 2R m
—(1 +Vf)1§ _[77520177
’ (39)

E h,1 2(1+v)

K, — Kpg = —6—L f {(1+Vf)3z+(1 V) Er— _Lfﬂgzdﬁ}
vf 0

It can be shown that, if the misfit strains satisfy (1-v)&, = (—L J'ngz dn—(1+v) e , the right
l”

sides of both Eq. (39) vanish. The curvatures then become uniform and equi-biaxial, &, = Ky =

1- & E
-6 —th Vs gt v but the stresses are still non-uniform and non-equibiaxial given by o, (f) =7 (f%

1 va\h 1 — Vf

Ji] &dn) and oY) = I—ELIZ g + % _[nggd 77] . Therefore, for axisymmetric misfit strains, the thin-film
0 .

0
stresses may not be expressed in terms of the system curvatures. This point will become clearer in
the next section 35.

5.3 Axisymmetric shear misfit strain

m

We consider the axisymmetric shear misfit strain &, = &5, =0 and y., = y"(r). The substrate
displacement in the radial direction vanishes, u( =0, and that in the circumferential direction is

given by
+
u(s) Ef hfl Vg J-’y_ (40)
1—v Eshf MU

The normal displacement also vanishes w = 0, which gives vanishing system curvatures
Ky = Koo = Ko = 0 (41)

The normal stresses in the thin film are also zero, but the shear stress does not vanish

0, = 035 = 0,079 = m< v") (42)

It is clear that, for axisymmetric shear misfit strain, the non-vanishing thin-film stresses cannot be
expressed in terms of the vanishing curvatures.

6. Extension of Stoney formula for nonuniform anisotrpic misfit strains

Freund and Suresh (2004) obtained the anisotropic relation between thin film stresses and system
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curvatures for uniform misfit strains. In this section we extend it to nonuniform, linearly distributed
misfit strains, i.e.,

(1+ax+by) (43)

:gc‘f)
I
s | sl

where a and b are constants, and 5711 are the average misfit strains, which can be related to the
average system curvatures by

E-hl—v,
Kxx+Kyy:_6T_LviEhz wx T Epy

(44)

{Kxx_Kyy} _ 76E.h.1 +v, gg—g;"y

_ T 2] —
K, 'rE h, 8,':;

The constants a and b in Eq. (43) can be obtained by averaging x(x,,+ «,,) and y(x,, +«,,) over
the entire thin film as

[t )-S5 0= e ) - (1w )

_ 2(3+v,)
u L1425 7 5,)] —[(1 W] 10w,
T G >+( e ) PR 1)~ (1= R (R )

® [0+, (K 7 5] —[“ o

(45)
where x(x,, + x,,) and y(x,, + x,,) are the average of x(x,, + x,,) and y(x,, + &,,) , respectively.
The thin-film stresses in the Cartesian coordinates can be obtained from Egs. (29)-(31) as
ol 0lf) = (it )
{ o O_(f} - _EL { & 8}'}} (46)
o 1l g

Elimination of misfit strains from Egs. (44) and (46) gives the relation between thin film stresses
and system curvatures
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(f)+ (f) Ehz (1+v)( )
B 1 A R @
6(1-v))h,
O')(C};) (1*\13)1(}),

7. Concluding remarks and discussion

The stresses and curvatures are given in terms of anisotropic misfit strains in Section 4. For
uniform misfit strains in Cartesian coordinates, the direct relation (34) between the thin-film stresses
and system curvatures is established, and it is identical to Freund and Suresh (2004). However, for
axisymmetric normal and shear misfit strains in Sections 34 and 35, such a film stress-curvature
relation cannot be established because some components of anisotropic misfit strains give vanishing
system curvatures but non-vanishing film stresses. This observation of no direct relation between
film stresses and system curvatures also holds for non-uniform, anisotropic misfit strains. It is
somewhat puzzling why a direction relation can be established for uniform, anisotropic misfit
strains (in Cartesian coordinates) as in Eq. (34) but not for non-uniform misfit strains.

The average curvatures in Cartesian coordinates provide an explanation. The average curvature
sum over the entire thin film in Eq. (38) can be rewritten in terms of the Cartesian components as

Ehl—v,
( ) = _6]_'%‘)1/[}; h2 Ext yy (48)

The curvature components «,,—k,, and &, in Cartesian coordinates can be obtained from
K,,— kyy and k,, in Egs. (27) and (28), and their average over the entire thin film gives

{Kxx - Kyy} = L (49)

- 1+v 2 o
ny fEshs g)’:;

Egs. (43) and (44) suggest that the average misfit strains (and average film stresses) can be linked
directly to the average curvatures. In fact, they become identical to Eq. (32) if the average misfit

strains are replaced by uniform misfit strains.

The subtraction of curvatures by their averages gives i, + &, — i, T &

s Ko Ky — K — K, and

xx Ryy

m m m m m m m m m .
Ky K' in terms of & + &= EnT 8y, En—&,— &, &, and & ,—¢& . However, these relations

cannot be inverted to express the misfit strain deviation &, 5— &5 in terms of the curvature deviation
Kup— Kqp- This is because all curvatures are related to the same displacement w such that their
derivatives are not independent. For example, for axisymmetric misfit strains in Section 34, the
. . . d 2 _ 2 d . . . .
derivatives of curvatures satisfy aTr[,, (K, —Kpp)] = 7 E/(KNJF Kpp) This relation becomes trivial

for uniform curvatures. For non-uniform curvatures, however, it indicates that the derivatives of
curvatures, or equivalently the curvature deviation «,;— &4, are not independent. This is the reason
that the misfit strain deviation 8’;'3* e';ﬂ cannot be solved from the curvature deviation x,;— k.
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However, for linear misfit strain distributions, the direct relation between the thin film stresses and
system curvatures can be established.

The interface shear stresses are related to the gradient of misfit strains via Eq. (14), and cannot be
given in terms of curvatures directly.
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