
Interaction and Multiscale Mechanics, Vol. 1, No. 1 (2007) 33-51 33

Partitioned analysis of nonlinear soil-structure interaction 
using iterative coupling
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Abstract. This paper investigates the modelling of coupled soil-structure interaction problems by
domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into
soil and structure subdomains, which are independently modelled. Coupling of the separately modelled
partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-
Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries
of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms,
including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence
of the iterative method, are discussed. Based on the presented coupling algorithms a simulation
environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is
developed which is used here to demonstrate the performance characteristics and benefits of various
algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction
analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative
performance of the various considered coupling algorithms in modelling real soil-structure interaction
problems, in which nonlinearity arises in both the structure and the soil, and leads to important
conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Keywords: soil-structure interaction; nonlinear analysis; domain decomposition; iterative coupling; adap-
tive relaxation

1. Introduction

There are many examples of functionally distinct physical systems interacting with each other, where

finding a solution of any one system is impossible without considering the interaction with the other

systems. Such systems are categorized as “Coupled Systems” (Zienkiewicz and Taylor 1991). One of

the generic classes of coupled systems in the field of Civil Engineering relates to modelling of soil-

structure interaction problems where, due to the interaction between soil and structure subdomains

at the interface, neither domain can be solved separately from the other without undue simplification,

especially in the nonlinear range of response.

In principle, there are two possible approaches for dealing with coupled problems, namely: direct

(monolithic / simultaneous) and domain decomposition (partitioning) techniques (Felippa et al. 2001).
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Although coupled modelling of soil-structure interaction problems may be achieved using a monolithic

treatment, with the whole problem modelled as a single computational entity, a partitioned treatment,

with different partitioned domains modelled as separate computational entities amongst which interaction

effects are communicated (Fig. 1), offers major benefits in the context of nonlinear soil-structure

interaction. Such benefits include: i) allowing field-specific discretisation and solution procedures

that have proven performance for each partitioned domain, ii) facilitating the reuse of existing nonlinear

analysis software with all the resource savings that this brings, and iii) enabling parallel computations

through problem partitioning (Lai 1994). 

Partitioned analysis is mainly carried out by using staggered or iterative coupling methods. The

staggered approach is particularly suited to transient dynamic analysis where the governing equations of

the partitioned domains are solved independently at each time step using predicted boundary conditions

at the interface (either force or displacement), obtained from previous time step(s) by a predictor.

Application of the staggered approach to coupled mechanical systems has attracted significant

research interest over the past years, mainly in the context of fluid structure interaction analysis

(Piperno 1997, Huang and Zienkiewicz 1998, Farhat and Lesoinne 2000). An example application of

the staggered approach in the context of soil-structure interaction analysis is that of Rizos and Wang

(2002). The authors developed a partitioned method for soil-structure interaction analysis in the time

domain through a staggered solution, where a standard Finite Element Method (FEM) model, representing

the structure domain, was coupled to a Boundary Element Method (BEM) model, representing the

soil domain as an elastic half-space. Further to this, O’Brien and Rizos (2005) considered the application

of the staggered approach for the simulation of high speed train induced vibrations.

This staggered approach is illustrated in Fig. 2 for a problem involving two physical partitions. In

the context of soil-structure interaction, domain ΩB stands for the soil, while ΩT represents the structure.

The prediction stage typically stands for prediction of displacements from the soil model at the soil-

structure interface, while the substitution stage typically stands for the substitution of the reaction

forces from the structural model into the soil model at the same interface. This approach is clearly

approximate, since the predicted interface displacements, obtained using displacements/velocities/

accelerations from previous steps, are invariably different from the displacements evaluated following

force substitution into the soil model, thus violating the compatibility conditions at the interface.

Fig. 1 Partitioned treatment of soil-structure interaction
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As a result, the staggered approach should be used with great care, since its stability is conditional

on the size of time step. Stability and accuracy issues related to the staggered approach typically demand

excessively small time steps, rendering this scheme computationally prohibitive for many coupled

problems. This has led to the development of coupling algorithms that are stable and accurate for a

wider range of time step size, which is mainly achieved by introducing corrective iterations, hence

the name iterative substructuring methods (Quarteroni and Valli 1999). It is worth mentioning that iterative

coupling approaches, in addition to the aforementioned enhancement in stability and accuracy of the

staggered approach, facilitate parallel computing through problem partitioning which could lead to

much greater computational efficiency. 

Fig. 3 shows a soil-structure interaction coupled system, decomposed into the soil and structure

subdomains, treated by an iterative coupling algorithm. The governing equations of the partitioned

domains are solved independently at each load increment (or time step), using predicted boundary

conditions (either force or displacement) at the interface. These predicted boundary conditions are

then successively updated using corrective iterations, until convergence to equilibrium and compatibility

is achieved at the interface and within the partitioned domains. Frequently, a relaxation of the iteratively

updated boundary conditions is augmented to the iterative coupling algorithms in order to improve

the convergence characteristics, hence the term interface relaxation (Marini and Quarteroni 1989). 

An example application of the sequential Dirichlet-Neumann iterative coupling approach for coupling

BEM and FEM in elastostatic analysis was given by Elleithy et al. (2001). Later, Elleithy, and

Tanaka (2003) presented an overview of a variety of interface relaxation schemes for coupling BEM

and FEM models in elastostatic analysis. Based on these techniques, Hagen and Estorff (2005) presented a

hybrid approach for transient dynamic investigation of dam-reservoir-soil problem, where the formulation

was based on coupling BEM and FEM in the time domain. 

Despite the significant potential benefits of iterative coupling, a major issue relates to whether

convergence to equilibrium and compatibility at the interface can always be achieved through successive

iterations. In this respect, work by El-Gebeily et al. (2002) on static coupling of BEM-FEM domains

and that of Estroff and Hagen (2005) on coupling of BEM-FEM in dynamic analysis have shown that

convergence is considerably influenced by the employed combination of the partitioned subdomain

mesh density, material properties and the adopted relaxation scheme. Although the superiority of the

partitioned approach, as highlighted before, has been recognised more recently for coupled modelling of

soil-structure interaction, there remain significant technical challenges related to algorithmic and

Fig. 2 Staggered coupling approach
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computational issues, particularly with respect to the convergence of iterative coupling methods.

Here the convergence characteristics of algorithms based on the sequential Dirichlet-Neumann iterative

coupling method are investigated for soil-structure interaction problems. The efficiency of employing a

relaxation scheme to enhance the convergence characteristics and the effect of nonlinearity in the

partitioned domain on these characteristics is demonstrated through a detailed case study. Furthermore, it

is proposed that the performance of iterative coupling methods for nonlinear soil structure interaction

problems may be effectively enhanced through the use of an adaptive relaxation scheme. Similar

approaches have been introduced by Funaro et al. (1998) for iterative coupling of partitioned second-

order elliptic problems and Wall et al. (2007), focusing on fluid-structure interaction. In contrast with the

traditional relaxation scheme, in which the relaxation parameter is typically evaluated by trial and error,

an adaptive relaxation scheme offers improved prospects for achieving convergence and computational

efficiency in complicated large scale nonlinear problems. The evaluation of such prospects and the

comparison against conventional relaxation schemes are therefore primary objectives of this paper,

particularly considering soil-structure interaction problems with nonlinearity in both structure and soil.

2. Soil-structure interaction partitioning 

Before some variant coupling algorithms are introduced, it is beneficial to illustrate the domain

decomposition strategy and discrete representation of the partitioned subdomains in coupling algorithms.

Discretisation of a linear coupled soil-structure system can be shown in general as: 

[K]{U} = {F} (1)

where [K], {U} and {F} represent the global stiffness matrix, the displacement vector and external

force vector of the coupled soil-structure interaction system. 

For a partitioned treatment of a coupled nonlinear soil-structure interaction problem, a common practice,

which allows field-specific discretisation and solution procedures, would be to decompose the coupled

system into two subdomains according to their physical and material properties, namely soil and structure

subdomains. Here it is assumed that the soil-structure interaction coupled system is partitioned into

soil (ΩB) and structure (ΩT) subdomains as shown in Fig. 1, where each subdomain is independently

Fig. 3 Schematic of sequential iterative coupling approach
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discretised by FEM. 

Eq. (1) can then be re-written in its general form as:

(2)

where vectors  and  correspond to displacements and external loads respectively, for the

non-interface degrees of freedom in subdomain ΩX, while vectors  and  correspond to displa-

cements and external loads, respectively, for the interface degrees of freedom. Henceforth, for the sake

of simplicity, it is assumed that there is no external load applied at the interface of the coupled

system (i.e. = 0). 

According to this partitioning strategy, the soil and structure subdomains can be formulated

independently as in the following, where, without loss of generality, the response of individual

subdomains is assumed to be linear elastic.

Governing equilibrium conditions for partitioned structure subdomain:

(3)

Governing equilibrium conditions for partitioned soil subdomain: 

(4)

where vectors  and  correspond to displacements and external loads for the interface

degrees of freedom in subdomain ΩX, respectively. 

Clearly, Eqs. (3) and (4) for the soil and structure partitions cannot be solved independently of each

other. This is due to existence of unknown displacements/forces  at the interface.

However, by applying an iterative coupling scheme and coupling the subdomains at interface level,

the partitioned problem can be solved. The proposed solution scheme couples the response of the soil

and structure subdomains by enforcing explicitly compatibility and equilibrium conditions at the

interface. This task is achieved by employing a sequential Dirichlet-Neumann iterative coupling

algorithm. Here, it is assumed that the soil and the structure remain always in contact at the interface,

while the separation and slip can be treated as a simple extension of this approach through the use of

interface elements that may be considered to be either part of one of the subdomains, or part of the

interface model. The partitioned structure domain is considered subject to Dirichlet (displacement)

boundary conditions at the interface, whereas the partitioned soil subdomain is subjected to a

Neumann (force) boundary condition at the same interface. This is purely due to the fact that in static

problems only essential Dirichlet boundary conditions can be imposed on the interface of the

structure subdomain, since applying the natural Neumann boundary conditions at this interface results

in singularity of the equilibrium equations for the structural subdomain. The sequential Dirichlet-

Neumann iterative coupling algorithm can be formally defined by the algorithmic steps presented in

the following section, where a linear response is assumed, again without loss of generality.
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3. Sequential Dirichlet-Neumann iterative coupling algorithm

For n = 0,1,2,...(number of load/time increments)

STEP 1: At the start of each increment, the structure domain is loaded by the external forces ,

while the displacements at the interface nodes, , are prescribed in accordance with the initial

conditions: 

 

where I superscript and n subscript denote the iteration number and the increment number, respectively. 

STEP 2: The structural solver computes the response of the structure using Eq. (3) for and

 : 

(5)

It should be noted here that although Eq. (5) is for a linear response, the same entities can be

obtained for a nonlinear response from the model of the structural subdomain.

STEP 3: The corresponding interface forces at the soil domain can be calculated by applying

equilibrium: 

(6)

STEP 4: Based on the forces  and the external loading applied to the soil domain , the soil

solver computes the response of the soil domain using Eq. (4). for  and :

(7)

It again noted here that although Eq. (7) is for a linear response, the same entities can be obtained

for a nonlinear response from the model of the soil subdomain.

STEP 5: If convergence to compatibility at the interface of partitioned domains has been achieved the

solution will proceed to the next time step:

If , and go to STEP 1 

STEP 6: If convergence to compatibility has not been achieved, the new estimation of the displacements

will be applied to the structure domain: 

If 

(8)

I = I + 1 and go to STEP2

where α is a real positive relaxation parameter that can improve convergence of the iterative scheme.

4. Iterative coupling with constant relaxation 

Despite the significant potential benefits of iterative coupling, a major concern relates to convergence

of the method to satisfy compatibility at the soil-structure interface after successive iterations. In this
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respect, the use of a relaxation scheme as in Eq. (8) can enhance convergence, where it is assumed

here that the relaxation parameter is constant during the coupling iterations (i.e., α1,...,αI = α). There

are several issues regarding the applicability of such a technique, namely: i) determination of the range

of suitable relaxation parameters for the specific problem under consideration in order to achieve

convergence, and ii) selection of the optimum relaxation parameter in order to achieve maximum

computational efficiency. The convergence characteristics of the method can be established by

considering the sequential Dirichlet-Neumann algorithmic steps presented in the previous section.

Using Eqs. (5), (6) and (7) the interface displacements of the soil subdomain at iteration I, ,

can be written as: 

(9)

where, 

(11)

and,

: Condensed stiffness matrix of the structure subdomain corresponding

to the interface degrees of freedom. 

: Condensed stiffness matrix of the soil subdomain corresponding

to the interface degrees of freedom. 

Substituting Eq. (9) for K successive iterations using a constant relaxation parameter, the compatibility

default at the interface of the decomposed soil-structure system can be obtained by the following

difference equation: 

(12)

In view of Eq. (12), the convergence of the presented coupling algorithm can now be related to the

eigenvalues of matrix ([I] − α([λ] + [I])), where the matrix ([I] − α([λ] + [I]))K can be regarded as the k th

error reduction factor. For the above successive iteration process to converge for any initially prescribed

value, it is necessary and sufficient that all eigenvalues of the matrix ([I] − α ([λ] + [I])) be less than

one in modulus, that is: 

(13)

where, µi is the ith eigenvalue of matrix [λ]. 

Assuming that eigenvalues of [λ] are positive, which is true for a positive definite [λ], the above

condition simplifies to: 

(14)

where, µmax is the largest eigenvalue of [λ].

Considering Eq. (14) it can be clearly shown that for all possible partitioned soil and structure

subdomains, there exists a range of relaxation parameters that guarantees convergence to compatibility

of the coupling algorithm: 
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Moreover, the best choice of α is that for which (Fox 1964):

1 − αopt(µmax + 1) = −1 + αopt(µmin +1) (16)

where, µmin is the smallest eigenvalue of matrix [λ].

Therefore, the optimum relaxation value that ensures the convergence and holds the best convergence

rate can be defined as: 

(17)

However, in large multi degree of freedom problems finding the optimum relaxation parameter based

on Eq. (17) will require solving for the eigenvalues of [λ], which is not readily available using black

box field solvers. Therefore, the optimum constant relaxation parameter is usually found by a process

of trial and error for every case under consideration. 

Eqs. (10), (15) and (17) clearly indicate that convergence of the Dirichlet-Neumann iterative coupling

method depends on the stiffness ratio of the partitioned soil and structure domains. In linear analysis,

the stiffness matrix remains constant at all computational steps. However, for nonlinear analysis the

effective stiffness depends on the deformation state. This change of the stiffness of the partitioned

domains will have a significant effect on the convergence characteristics of the coupling method at the

interface level, where the optimum relaxation parameter will change over the load/time increments.

Accordingly, ensuring convergence and computational efficiency in large scale nonlinear problems,

where the optimum relaxation parameter is to be determined over the full range of response by trial

and error, would be very difficult if not impossible. Instead, such a scenario requires a dynamic

change of relaxation parameter to ensure optimal convergence and associated computational efficiency.

This leads to the concept of adaptive relaxation, where the relaxation parameter is determined during

coupling iterations, using error minimization techniques. With adaptive relaxation, the use of trial and

error for determining the relaxation parameter is avoided, whilst leading to significant improvement in

the convergence rate of iterative coupling, as discussed hereafter.

5. Iterative coupling with adaptive relaxation parameter

Consideration is given here to an iterative coupling algorithm utilising an adaptive relaxation parameter

that changes during successive iterations. In this respect the relaxation parameter is obtained, for a

specific coupling iteration, from minimizing the compatibility and equilibrium default at the next

iteration by using the compatibility and equilibrium default history of the previous iterations. 

By assuming that different relaxation parameters are used for various iterations, Eq. (12) can be

extended to: 

(18)

Allowing a change in the relaxation parameter for iterations (I > 1), the proposed method defines the

adaptive relaxation parameter αI + 1 based on minimizing the following function: 
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(20)

where:

(21)

Minimizing Ω(αI+1)with respect to αI+1leads to: 

(22)

(23)

With:

(24)

where, in view of Eq. (24), the solution in Eq. (23) corresponds to the minimization of Ω(αI+1)in

Eq. (20).

Eq. (23) can be further simplified to : 

(25)

where: 

(26)

The automatic choice of relaxation parameter by Eq. (25) or (23) can be used for successive evaluation

of the interface displacements using the iterative coupling algorithm for I > 1(STEP 6). For the first

iterative stage (I = 1) the relaxation parameter can be chosen as an arbitrary real value. Although the

choice of the first relaxation parameter does not have influence on the convergence rate, a choice

which is close to the optimal value of Eq. (17) will result in better error reduction of the first coupling

iteration, and hence to a fewer coupling iterations with adaptive relaxation. This method enhances

the constant relaxation scheme, as it avoids the trial and error for establishing the optimum relaxation

parameter for the specific coupled system under consideration. Furthermore, the computational cost

of determining the adaptive relaxation parameter is quite small, as evidenced by the simple vector algebra

in Eqs. (23) and (25). 

6. Simulation environment for nonlinear soil-structure interaction 

Coupled modelling of nonlinear soil-structure interaction is considered here through the coupling

of two powerful FEM codes, ADAPTIC (Izzuddin 1991) and ICFEP (Potts and Zdravkovic 1999), that

have been developed at Imperial College London for advanced nonlinear structural and geotechical

analysis, respectively. ADAPTIC and ICFEP run on separate processors as independent black box

solvers, where the task of communication and synchronization between the two individual codes is
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achieved via an interface program that implements the iterative coupling method with constant and

adaptive relaxation. In this respect, the interface program manages the retrieval, manipulation and

passing the necessary data between the two field programs during coupled analysis. A schematic

diagram and a flowchart of the developed simulation environment are shown in Fig. 4. 

7. Convergence studies 

The theoretical aspects of the Dirichlet-Neumann (D-N) iterative coupling algorithms discussed above

show that the convergence characteristics of the constant relaxation scheme are highly sensitive to the

partitioned domain parameters, specifically the condensed stiffness of the partitioned subdomains at the

interface. Here, these convergence findings of the coupling algorithms are demonstrated through an

illustrative example. The plane strain problem of Fig. 5(a) is considered, which is descretized using

eight noded quadrilateral elements. The presented system is partitioned into two subdomains, namely

ΩT and ΩB, where each partitioned domain has 9 nodes at its interface as shown in Fig. 5(b). The

resulting partitioned problem is treated by the D-N iterative coupling technique. As pointed out before,

prescribing Neumann boundary condition on ΩT will result in singularity of the matrices; therefore, the ΩT

and ΩB partitioned subdomains are treated by Dirichlet and Neumann boundary conditions, respectively.

The proposed problem is analysed using the partitioned treatment with constant relaxation for

different stiffness ratios of the partitioned subdomains ΩT and ΩB. This is achieved by analysing the

Fig. 4 Coupling procedure
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problem with different ratios of the respective elastic moduli (EΩT / EΩB). The results obtained from

coupled partitioned analysis match very well with those obtained from the monolithic treatment

within the prescribed compatibility tolerance. A list of the analysed models, including the considered

elastic modulus ratios, range of suitable relaxation parameters and the optimum relaxation parameter

associated with the least computational cost, is presented in Table 1. These values have been obtained

by a process of trial and error for each model, where the relaxation parameter is chosen as a real

value in the range of ]0,2] according to Eq. (15).

Fig. 6 shows the number of coupling iterations required for various constant relaxation parameters

for each of the considered coupled systems, where convergence is assumed at a tolerance of 1 × 10−3L

for the compatibility defaults, with L being the characteristic element size. The results confirm that the

convergence behaviour is significantly influenced by the stiffness ratios of the partitioned subdomains.

Considering Fig. 6, the optimum relaxation parameter for each model can be easily defined as the

one corresponding to the minimum number of iterations. The fact that the optimum relaxation

parameter varies and depends on the partitioned model stiffness ratios has been discussed earlier,

and is confirmed by the obtained results. The sensitivity of the convergence rate and value of the

optimum relaxation parameter with respect to the problem parameters is even more critical for cases

where the stiffness of the domain treated by Dirichlet boundary condition is relatively higher than

that of the other domain treated by Neumann boundary condition. 

In general, as this stiffness ratio increases the optimum relaxation parameter tends to smaller

Fig. 5 (a) Plain strain example, (b) Problem partitioning

Table 1 Range of suitable and optimal relaxation parameter for different 

Model EΩT / EΩB Range of relaxation Optimum relaxation

M1 8.0 (0-0.148] [0.13-0.14]

M2 4.0 (0-0.275] [0.25-0.27]

M3 2.0 (0-0.484] [0.4-0.45]

M4 1.0 (0-0.79] [0.6-0.7]

M5 0.5 (0-1.12] [0.7-0.9]

M6 0.2 (0-1.52] [0.9-1)
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values, while the range of an applicable relaxation parameter significantly reduces. Moreover, the

convergence rate is considerably reduced, leading to a significant increase in computational cost.

The above coupled models are also analysed using the adaptive relaxation technique with the same

prescribed tolerance, where a comparison between the number of coupling iterations using optimum

constant relaxation and adaptive relaxation is provided in Table 2. 

These results clearly indicate that the adaptive relaxation method is far superior to the constant

relaxation scheme, since not only does it avoid the process of trial and error for finding the relaxation

parameter, but it also enhances the convergence rate of the coupling method significantly. This fact

is further demonstrated in Fig. 7 for the most critical case with regard to convergence, namely Model

M1, where it is clear that adaptive relaxation method achieves the prescribed tolerance on compatibility

defaults with far fewer iterations than with optimum or non-optimum constant relaxation.

8. Case study: Nonlinear soil-structure interaction

It has been long been recognized that the nonlinear behaviour of the soil and structure has a

significant influence on the soil-structure interaction analysis (Jardine et al. 1986, Noorzaei et al.

Fig. 6 Influence of relaxation parameter on convergence porperties

Table 2 Number of required coupling iterations with adaptive and optimum relaxation 

 Model Optimum relaxation Adaptive relaxation

M1 29 8

M2 16 7

M3 10 6

M4 6 5

M5 4 3

M6 3 3
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1995). Here, the developed coupled environment utilising ADAPTIC and ICFEP is employed to

study the nonlinear soil-structure interaction of a plane frame resting on a soil subjected to ground

excavation, where nonlinear elasto-plastic constitutive behaviour of the soil, as well as geometric

and material nonlinearity of the structure, are taken into account. The chosen problem represents a

typical urban situation, where ground works can often induce significant movements to the soil-

structure system, such a problem typically requiring consideration of nonlinearity in both the soil

and structure for an accurate assessment of potential damage.

The objective of this study is to: i) establish the applicability and efficiency of the presented

coupling algorithms for nonlinear soil-structure interaction analysis, ii) evaluate the convergence

sensitivity of the coupling algorithms to the algorithmic parameters, and iii) assess the need for further

enhancements in the coupling algorithms in view of their achieved convergence characteristics.

A four-storey, two-bay steel plane frame is considered, supported by soil subjected to ground

excavation as shown in Fig. 8, for which the geometric and material properties and the loading

conditions are provided in Table 3. The left hand side boundary of the problem is an axis of symmetry.

According to the partitioned treatment, the considered soil-structure system is partitioned physically

into two subdomains, soil and structure, where each subdomain is discretised separately according

to its characteristics.

The frame structure is modelled with ADAPTIC using cubic elasto-plastic 2D beam-column element

(Izzuddin and Elnashai 1993), which enables the modelling of geometric and material nonlinearity.

The frame is discretised using 6 and 12 elements per member for columns and beams, respectively,

and the material behaviour is assumed to be bilinear elasto plastic with kinematic strain hardening. 

The soil subdomain is modelled with ICFEP, using an elasto-plastic Mohr-Coulomb constitutive

model, with parameters chosen to represent the behaviour of London clay, with φ ′ = 22o, c’ = 20 kPa

and dilation angle ν = 11o. The stiffness, in terms of the Young’s modulus E, was chosen to vary

with depth from 10,000 kPa at the ground surface. The non-linear solution procedure employed for

analysing the soil subdomain is based on Modified Newton-Raphson technique, with an error controlled

sub-stepping stress point algorithm. The soil continuum is discretised using 8-noded isoparamteric

quadrilateral elements.

In the coupled nonlinear analysis using ADAPTIC and ICFEP, both constant and adaptive relaxation

methods are employed, where the excavation in the soil and loads on the structure are applied in

Fig. 7 Error reduction for different relaxation schemes
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one increment. Table 4 presents the range of constant relaxation parameters which guarantee convergence,

the optimum relaxation parameter and the number of coupling iterations required for convergence to

the prescribed tolerance of 1 × 10−3L for both adaptive and constant relaxation schemes, where L is

the characteristic element size which is equal to 1 m. 

Fig. 9 illustrates the convergence characteristic of the coupling scheme for both adaptive and

constant relaxation for the considered coupled problem. It is clear that the convergence rate of the

iterative scheme using constant relaxation is so sensitive to the chosen relaxation parameter, rendering

its selection a very difficult task, as evidenced by the significant increase in number of iterations

between (α = 0.23) and (α = 0.235). These results also demonstrate the superiority of adaptive relaxation

scheme, which achieves much faster convergence than the constant relaxation scheme, whether optimal

Fig. 8 Soil-structure interaction of plane frame resting on soil subject to ground excavation

Table 3 Geometric and material properties and loading of the coupled frame-soil problem

Structure subdomain Size/Material properties

All beams Steel - Length = 6.0 m - Cross section = 0.1 × 0.1 

All columns Steel - Length = 4.0 m - Cross section = 0.2 × 0.2 

Elastic modulus of steel 210 × 106 kN / m2

Yield stress 300 × 103 kN / m2

Loading Beams at all storey level : 30 kn / m

Soil subdomain Size/Material properties 

Angle of shearing resistance (φ ′) 22º

Cohesion 20 kPa

Young’s modulus Vary with depth from 10,000 kPa at the ground surface

Foundation beam Concrete - Length = 1.0 m - Second moment of area = 0.0142 m4

Elastic modulus of concrete 300 × 103 kN / m2

Excavation Width = 20 m - Depth = 6 m- Distance from the structure = 2 m

Effective out-of-plane depth 1 m
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or not. It is, however, worth observing that the adaptive relaxation scheme still requires 20 iterations,

which is relatively large in comparison with what would be necessary in a typical monolithic treatment,

thus highlighting the need for further enhancement in iterative coupling algorithms.

Notwithstanding the need for improved coupling algorithms, the potential benefits of the developed

simulation environment in the practical assessment of nonlinear soil-structure interaction problems

can be readily demonstrated by considering the results of this case study.

The frame structure with its loading conditions imposes loading on the soil, which in turn deforms

due to cumulative action between these loads and the excavation. As a consequence, the soil deformations

beneath the structure transmit back additional deformations and corresponding forces to the structure.

This interactive process is continued until the whole coupled system reaches a compatible equilibrium

state. In the following, the deformation and stress states of the coupled problem are presented. 

The vertical deformation profile of the soil surface with respect to the distance from the excavation

edge obtained from coupled analysis is given in Fig. 10, where the three troughs correspond to the

locations of the corresponding footings. Clearly, the level of vertical displacements, of the order of

10cm, requires the structural analysis model to account for geometric nonlinearity. On the other

hand, the horizontal movement of the excavation wall is presented in Fig. 11, where the maximum

horizontal displacement is also of the order of 10 cm. A vector plot of the displacements at the

various points of the soil subdomain is also shown in Fig. 12. The absolute magnitudes of these vectors

are not important, it is their relative magnitude that shows the mechanism of ground deformation.

Only part of the original mesh is shown around the excavation for clarity. It is evident from the

vectors underneath each of the three footings that they all experience rigid tilting, indicated previously

in Fig. 10. However, the footing nearest to the excavation has the smallest tilting, as its deformation

is also dominated by the horizontal movement towards the unsupported excavation. 

Table 4 Convergence characteristics of constant and adaptive relaxation schemes

Relaxation
range

Optimum
relaxation 

Number of iterations
with optimum relaxation 

Number of iterations
with adaptive relaxation

(0,0.235] 0.23 36 20

Fig. 9 Convergence of different relaxation schemes
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Fig. 10 Vertical displacement of the soil surface

Fig. 11 Horizontal displacement of the exacvation wall

Fig. 12 Vectors of displacements in soil subdomain
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Fig. 13 shows contours of the drained stress level after the full excavation to 6 m depth is achieved

under the applied load on the structure. The depicted stress level is the ratio, at the same mean

effective stress, of the current deviatoric stress to the deviatoric stress at failure. It therefore varies

from 0 to 1, where 1 indicates full plasticity and failure. It is evident from Fig. 13 that the applied

loading conditions have mobilised an extensive plastic zone underneath the building. This zone is,

however, smaller and shallower under the right hand side footing, which is in agreement with the

previous figures that show most of the deformation and load concentration nearer the excavation. 

Finally, Fig. 14 shows the deformed shape of the structure subdomain following excavation and

load application.

Fig. 13 Contour plot of stress levels in soil and plasticity induced in soil subdomain

Fig. 14 Deformed shape of frame (Displacement scale: 3.0)



50 H. Zolghadr Jahromi, B.A. Izzuddin and L. Zdravkovic

9. Conclusions 

This paper has investigated domain decomposition methods for nonlinear analysis of soil-structure

interaction problems, where particular emphasis is given to iterative coupling methods. In this respect,

the overall domain is divided into physical partitions consisting of soil and structure subdomains.

Coupling of the separately modelled subdomains is undertaken with various algorithms based on the

sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium

at the interface boundaries of the subdomains. In order to enhance the convergence characteristics of

the iterative coupling method, a relaxation of the interface Dirichlet entities is employed in successive

iterations. Various mathematical and computational characteristics of the coupling method, including

the governing convergence rate and choice of relaxation parameter, are studied where it is demonstrated

that the constant relaxation scheme is very sensitive to the stiffness ratio of the partitioned

subdomains. This renders the selection of the relaxation parameter rather difficult, leading to considerable

computational inefficiency, especially for realistic large-scale nonlinear problems. 

An adaptive relaxation scheme is also considered for enhancing the performance of iterative coupling

algorithms, where the choice of the relaxation parameter is easily guided by the iterative corrections

of Dirichlet entities at the interface. Based on the presented coupling algorithms, a simulation environment

has been developed, which employs two specialist programs for nonlinear structural and geotechnical

analysis, ADAPTIC and ICFEP, previously developed at Imperial College London. In addition to

demonstrating the key convergence characteristics of the considered coupling algorithms, the overall

tool has been used in a case study involving nonlinear soil-structure interaction analysis between a

plane frame and soil subjected to ground excavation. It is shown that the adaptive scheme improves

the convergence characterises in both linear and nonlinear analysis significantly, where the number

of coupling iterations required for convergence is often reduced by over 50%. Moreover, the adaptive

scheme has the advantage of avoiding trial and error for the selection of an optimum, even

adequate, constant relaxation parameter.

Although using the adaptive scheme removes significant difficulties in the conventional relaxation

iterative coupling scheme, it is proposed that further enhancement is possible, particularly for nonlinear

analysis, through the use of the condensed tangent stiffness of the structure and soil model at the

interface. Such enhancements are currently being investigated by the authors, where again particular

emphasis is placed on coupled modelling of soil-structure interaction with nonlinearity in both

physical subdomains.

Finally, it should be emphasised that the considered methods are generally applicable to the

coupling of various computational procedures that are used for nonlinear structural and geotechnical

analysis. In this context, these coupling methods have the potential to provide an integrated interdisciplinary

approach which combines the advanced features of both structural and geotechnical modelling for a

variety of challenging problems in the field of nonlinear soil-structure interaction. 
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