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Abstract. The effect of porosity on the thermo-mechanical behavior of simply supported fnctionally graded plate
reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined
hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and
the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity.
The present formulation is based on a refined higher order shear deformation theory, which is based on four variables
and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the
FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the
Winkler-Pasternak model. A new modified power-law formulation is used to describe the material properties of FGM
plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results
are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses
are affected by the porosity volume fraction, constituent volume fraction, and thermal load.
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1. Introduction

Currently, functionally graded materials (FGMs) are alternative materials commonly used in
many kinds of engineering structures: aerospace, nuclear, civil, automotive, biomechanical,
electronic, chemical, and mechanical industries. In fact, FGMs have been developed and
successfully used in industrial applications since 1980°s (Koizumi 1993). The most well-known
FGM is compositionally graded from a ceramic to metal to incorporate such diverse properties as
heat, wear, and oxidation resistance of ceramics with the toughness, strength, machinability, and
bending capability of metals.

The plates under different mechanical applications may be subjected to different loads.
Therefore, the knowledge of the characteristics of FGM plates is of much practical importance for
the design of plates. From the literature, it should be noted that the behavior of plates resting on the
Winkler-Pasternak foundation subjected to a thermo-mechanical loading drew the intention of many
researchers (Adim 2016b, Benferhat 2018, Rabia 2016a, Hassaine Daouadji 2012a). The plates
supported by an elastic foundation are very common in structural engineering. To describe the
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interaction between the plate and foundation, several foundation models have been proposed. The
simplest one is the Winkler or one-parameter model (Winkler 1867). In this model, it is assumed
that there is a proportional interaction between pressure and deflection of the applied point in the
foundation. This model was improved by Pasternak (1954) by adding a shear spring to simulate the
interactions between the separated springs in the Winkler model. The Pasternak or two-parameter
model is widely used to describe the mechanical behavior of structure foundation interactions and
will be used here to simulate the interactions between the plate and foundation (Belkacem 2016b,
Benferhat 2019a, Hassaine Daouadji 2016c, Hadji 2015, Mohamed Amine 2019 and Bekki 2019).
Many studies have been conducted on the mechanical and thermo-mechanical behavior of FGM
structures. Zenkour (2010) performed A hygrothermal bending analysis is presented for a
functionally graded material (FGM) plate resting on elastic foundations. The elastic coefficients,
thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the
thickness direction. Tinh (2016) presented the new numerical results of high temperature mechanical
behaviors of heated FG plates, emphasizing the high temperature effects on static and dynamic
response. Yaghoobi (2014) studied the nonlinear vibration and post-buckling analysis of beams
made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to
thermo-mechanical loading. Shuohui (2016) developed a novel and effective approach based on
isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for the Numerical
results of buckling and free vibration of functionally graded plates considering in-plane material
inhomogeneity. Bouderba (2013) presented an analytical solution to the thermo-mechanical bending
response of FG plates resting on Winkler-Pasternak elastic foundations using a refined trigonometric
shear deformation theory (RTSDT). Pakar (2018) studied the nonlinear vibrations of the
unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation where the
governing equation of the problem is derived by using Galerkin method. Thom (2017) proposed a
new third-order shear deformation plate theory (TSDT) for numerical analysis of buckling and
bending behaviors of 2D-FGM plates without the need for special treatment of shear-locking effect
and shear correction factors. Thanh Banh (2018) contributes to evaluate multiphase topology
optimization design of plate-like structures on elastic foundations by using classic plate theory.
Multi-material optimal topology and shape are produced as an alternative to provide reasonable
material assignments based on stress distributions. Reddy (2001) investigated thermo-mechanical
deformations of simply supported, functionally graded rectangular plates by using an asymptotic
method (Belkacem 2016a, Benferhat 2019b, Hassaine Daouadji 2013). The temperature,
displacements and stresses of the plate are computed for different volume fractions of the ceramic
and metallic constituents. Bouderba (2018) analyzed bending analysis of FGM rectangular plates
resting on non- uniform elastic foundations in thermal environment. Tan-Van (2018) integrated a
novel numerical method based on the Moving Kriging (MK) interpolation meshfree method with a
simple higher-order shear deformation plate theory to studied the static bending, free vibration and
buckling of functionally graded (FG) plates. Isavand (2015) investigated the dynamic response of
functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments
subjected to impulsive loads. Yadwinder (2018) developed non-polynomial shear deformation
theories are assessed for thermo-mechanical response characteristics of laminated composite plates.
Esfahani (2013) examined a thermal buckling and post-buckling analysis of functionally graded
material (FGM) Timoshenko beams resting on a non-linear elastic foundation. Thermal and
mechanical properties of the FGM media are considered to be functions of both temperature and
position. Pandey (2017) presented a finite element formulation for thermal stress analysis of
functionally graded material (FGM) sandwich beam subjected to thermal shock. A layerwise higher-
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Fig. 1 Functionally graded porous plate resting on elastic foundation

order theory is used to obtain the stress-strain relationship for three layered functionally graded
material sandwich beam. Babaei (2018) analyzed the nonlinear bending response of the functionally
graded material curved tube subjected to the uniform lateral pressure. The effect of the thermal
environment is also included (Abdelhak 2016, Adim 2016a, Rabia 2016b, Benhenni 2019, Hadji
2014, Benachour 2011, Tlidji 2014, Benferhat 2016b, Hassaine Daouadji 2017).

Recent investigations have been presented for the analysis of cracked FGM plates using advanced
numerical methods. Liu (2015) developed an accurate extended 3-node triangular plate element in
the context of the extended finite element method to study the buckling failure of cracked composite
functionally graded plates subjected to uniaxial and biaxial compression loads. Shuohui (2015)
extracted the critical buckling parameters and natural frequencies of defective FG plates with
internal cracks using an effective numerical approach. Tiantang (2017) study the thermal-mechanical
buckling of functionally graded rectangular and skew plates under combined thermal and
mechanical loads.

Moreover, the effect of porosity on the behavior of FGMs has been the aim of just a few
researchers. Benferhat (2016a) and Hassaine Daouadji (2016d), studied the static and free vibration
analysis of FGM plates with porosities resting on elastic foundations. Heshmati (2018) presented
the effect of different profile variations on vibrational properties of non-uniform beams made of
graded porous materials. Wang (2018) studied the effect of porosities on free thermal vibration of
functionally graded material (FGM) cylindrical shells by using the Loves shell theory to formulate
the strain displacement equations, and the Rayleigh-Ritz method to calculate the natural frequencies
of the system. To the authors’ knowledge, no researchers have given much attention to thermo-
mechanical loading of FGM plates containing porosities resting on elastic foundations. These
porosities can occur within the FGM plates during the process of sintering. This is because of the
large difference in solidification temperatures between material constituents (Zhu 2001).

This investigation aims to present the effect of the distribution shape of porosity on thermo-
mechanical loading of FGM plates resting on Winkler-Pasternak foundations by using an improved
version of hyperbolic shear deformation theory (Benferhat 2015, Hassaine Daouadji 2012b, Zohra
2016, Adim 2018, Benhenni 2018). Both even and uneven distribution shape of porosity are taken
into account in this study by using a modified law of mixture. This theory is rather simple to use and
accounts for a parabolic transverse shear deformation shape function and satisfies shear stress free
boundary conditions of top and bottom surfaces of the plate without using shear correction factors.
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Navier solution is used to obtain the closed-form solutions for simply supported functionally graded
plates. Comparison studies are performed to verify the validity of the present results. The influences
of several parameters are also discussed.

2. Theoretical formulation

The volumetric gradation of FGM plate containing porosities is shown in Fig. 1. In this figure,
the top layer is made up of 100% ceramic and graded to 100% metal at the bottom. The porosities
inside the shell disperse evenly or unevenly along the thickness direction. A simply supported square
FGM plate with side length a in the x-direction, b in the y-direction and total thickness h is
considered in this study.

For even and uneven types of effective properties are defined as (Benferhat 2016a, Rezaei 2017,
Hassaine Daouadji 2016b and Pinar 2019)

Even distribution

1 B
P= (P~ Pp)G+ D"+ Pp— (Pc+ Pp) e
Uneven distribution
1 B 2|z|
P=(P.~Pp)G+ D"+ Py~ (Pc+Pp)(1 -7 )

where P is the effective material properties, & is the power law index and /f is the porosity parameter.
Subscript ¢ and m denotes ceramic and metal, respectively.

Based on the higher order shear deformation plate theory, the displacement components are
assumed to be:

a0 =t -5 2
v(x,y,2) = vo(x,y) — zaa_";’/b - f(Z)%_V;s 3)

w(x,y,2) = wp(x,y) + ws(x, )
where uy and vy are the in-plane displacements of the neutral plane in the x and y directions
respectively. The transverse displacement through thickness direction is separated into bending (w3)

and shear (wy) components. f{z) is the shape function. In this paper hyperbolic shape function is used
(Hassaine Daouadji 2016a)

f@ =z[14Zsec i O] -2 rtani(?) 4)

The origin of the material coordinates is at the middle surface of the plate. The linear strain can
be obtained from kinematic relations as

2
e =l + 2kl + (z[1+ 5 sech Q)| - T htani(D)) k3
— 20 b 3n SE N L Y kS
&y —£y+zky+(z[1+ > sec/ (2)] > ﬁtanﬁ(/z)) k3
3 21 3
Yoy = ¥y + 2kl + 2 [1+ Tsech Q)] - htana(2) ks,
Yyz =g(Z)y;z
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= 9(2)¥xz
& =0 (%)
Where
u, 92w,
e =50 kx = _aZ’kS__aa‘c/Z
o_ v ,p_ 0wy ,s  0%wg
& =%y y__ayz’ y__ayz
dugy 61;0 b _ s _ 62wS
ny By kx axa s ke axay
_ BwS s _ aws
Vyz - E) Vxz = ga
2
d(z |1+ sec s Q)| - = htani(%)
f@ = T
d(z[1+45 sec 1 Q|- tani()
9@ =1-f(z)=1- = , ©)
Constitutive relations for linear elastic functionally graded plate can be given:
-rE(z) VE(2) 0 0 0
1-vZ  1-v?
Ox VE(z) E(2) 0 0 0 &y — aAT
ay 1-v2  1-v? ) &, — adT
Tyz ¢ = 0 0 2(1+v) 0 0 Vyz (7)
Txz 0 0 0 E(z) Vxz
‘[xy 2(1+v) yxy
E(2)
L L L 0 2(1+v)d

where AT=T-T) is the temperature rise from the reference temperature 7.
where the temperature distribution 7(x, y, z) through the thickness is assumed to be

T(x,y,2) = To(x%,y) +>T2(%y) + f(DTs(x,y) ®)

For porous FG plate the equilibrium equations are derived by using the virtual work principle,
which can be written as

e
f-/z/z fﬂ[axé‘sx + 0y08y + TyyO¥uy + Tyz vy, + sz6yzx] dndz — fﬂ(q - f.)éwd2 =0 (9)

Where Q is the top surface, g is the distributed transverse load and f. is the density of reaction
force of foundation. For the Pasternak foundation model

fo=Kuw—J1 2%~ 1,2% (10)
where Ky is the modulus of subgrade reaction (elastic coefficient of the foundation) and J; and J»
are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is homogeneous
and isotropic, we will get Ji=/,=Jy. If the shear layer foundation stiffness is neglected, Pasternak
foundation becomes a Winkler foundation.
Substituting Eqgs. (7) and (10) into Eq.(13) and integrating through the thickness of the plate, Eq.
(13) can be rewritten as
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fﬂ [N, 82 + N8y + N, 62, + M2SKS + M5SkD + M3, 8k2, + M5ebks + M35k
+M3, 8k + M3, 8k3, + S5,6V5, + 53,673,1d2 — [,(q — fo)(6wy, + 6w)d2 =0 (11)

The stress resultants N, M, and S are defined by:

Ny Ny Ny 12 1
M2 M M2, = f (Jx,oy,rxy){ z }dz
My My My, ~H2 f(2)

42
(Sxz Syz) = f_ﬁ/z(fxz' Ty,)g(z)dz (12)

Substituting Eq. (10) into Eq. (16) and integrating through the thickness of the plate, the stress
resultants are given as

N A B B(¢ NT
MPt=|A D DS[{kP{—iMPT{, S=A% (13)
MS BS DS HSI\kS MST
Where
t t t
N={N, Ny, N}, Mb={MoLM) ML}, MS={M;M; M3}
t t t
e= (0,60 y0) K= (LKLY, k= (kS ks, k)
A1 A 1 [B11 Biz 0] Dyy Dy O
A=|A12 Az 0|, B=|By; B 0|, D=(Dy; Dz O
0 0 Agl [0 0 Bl 0 0 Dy
11 B, 0 Dy, Di; 0 Hy, Hi; 0
B°=|Bi; B3 0| D°=(Dj, D3 O |, H =|Hj, H3; 0
0 0 B [0 0 bl [0 o m
t t A 0
=555 . v=lnera)'s 4 =[] (14
Where A4;, Bj;, etc., are the plate stiffness, defined by
Ayy By Dy Bi; Dy HY, o B 1
Az Bi; Dy Bj; Di; Hi, :f_g/zl_vz(LZ'ZZ'f(Z)'Zf(Z)'fZ(Z) 11_,1, (15)
A¢e Bes Des Bee Dge Hee 2
and
(A22, B2z, D33, B33, D35, Hy,) = (A11, B11, D11, B11, D1y, Hi1)
42 E(z)
Ajs = Ags = f_mm[g(z)]zdz (16)

The stress and moment resultants, Ny = NJ, M2T = M)T, M§" = M3T due to thermal loading

are defined respectively by
1
a(z)T { z }dz

f(2)

NT )

pT  _ 4/2 E(z)
Mz - f—ﬁ/z 1-v
Mmir

(17
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The governing equations of equilibrium can be derived from Eq. (15) by integrating the
displacement gradients by parts and setting the coefficients du,, dvy, dwy, and Sw, zero
separately. Thus one can obtain the equilibrium equations associated with the present shear
deformation theory

oN, ON
5“.0: X + XY =
dx dy
JN. dN.
Svy: —2 4 Y-
dx dy
o 92m? a%m2, aZMy _
6Wb. ox2 +2 9x0y + fe q= 0
M3 9% M; 9% Ms3, as , 0S5,
Swy: ax;‘+zaxa"yy+ yy+ =t fetq=0 (18)

Substituting from Eq. (17) into Eq. (21), we obtain the followmg equation
A11d11Ug + Agedaat + (A12 + Ase)di2vo — B11d111Wp — (B2 + 2Bes)d122Wp

—(Bi; + 2Bgg)d122Ws — Bi1dy11Ws = pg (19)
Apadaavo + Agedi Vo + (Agz + Age)diUg — Byadanawy
—(B12 *+ 2Bgg)d112wp — (B + 2Bgs)d112Ws — B3ydoows = Dy (20

Bi1di1ug + (Biz + 2Bgg)dia2ug + (B2 + 2Bgg)d112V0 + BazdaaaVvo
—D11d1111Wp — 2(D12 + 2Dg6)d1122Wp — Dp2d222W — Diyd1111Ws
—2(Di, + 2Dgg)d1122Ws — D3rd2222Ws = D3 (2D
Bf1d111ug + (Biy + 2Bge)d122u + (Bi; + 2Bg)di12V0
+B3,d52,v0 — Didi111wWp — 2(Di3 + 2Dgg)dq122Wp
—D35dyp0oWp — Hijdy111Ws — 2(H{; + 2Hgg)d 122w
—H35d522,Ws + AZsdq Wy + Ajadoyws = py (22)
Where {p} = {p1,p2 p3,p4}'is a generalized force vector, d;;, d;;; and d;jmare the following
differential operators

22 a3 o+ ..
dij = dx;0%;" diji = 9x,0x,0%,’ dijim = 9%,0x,0%,0%m ' di =550 G lm=12) (23)
The components of the generalized force vector {p} are given by
NI
b1 = axx'
aNT
b2 = Ty’

aZMbT aZMbT
p3_fe+q_ 92 6y2'

62M§T aZMsT
p4 =fe+q_ 9x2 - ayz (24)

To solve this problem, Navier presented the uniform external force and the transverse uniform
temperature loads in the form of a double trigonometric series

{7?1} {qo}sm(lx) sin(uy), (i=1,2,3) (25)
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where 1 =m/a, u=m/b, qoand ¢ are constants.
Clearly, the Navier solution can be assumed as

Lo U cos( Ax) sin( uy)
Vo V sin(Ax) cos(uy) (26)
wy, Wy, sin( Ax) sin( py)
Wq W, sin( Ax) sin( uy)

Where U, V, W), and W; are arbitrary parameters to be determined subjected to the condition that
the solution in Eq. (25) satisfies governing Eq. (22). One obtains the following operator equation

[K1{4} = {P} (27a)
kll k12 k13 k14-
kiz Koz kas ks
kyz ki ks ks |{4}={P} (27b)

k14 k24 k34 k44

Where {4} = {U,V,W,, W}t and [K] is the symmetric matrix.
In which

ki1 = —(A114% + Aget®)
kiz = —Au(A1z + Age)
kiz = A[B§14* + (B1z + 2Bge) 1]
kis = )L[Blsl/12 + (Biz + ZBge)HZ]
kaz = —(AeeA® + Azau®)
ka3 = u[(Biz + 2Bge)A* + Byyi?]
ko = u[(Bi, + ZBEG)AZ + sz.uz]
k33 = —(D114* + 2(D1z + 2Dge) A% 1* + Dopu®* + Ky + J12% + Jo1%)
k3s = —(D§12* + 2(D3; + 2Dg)A*u® + D3u* + Ky + J1 2% + Jou*)
kaa = —(H{1A* + 2(Hi; + 2HE)A 1P + H3op* + A3 A% + Aqap® + Ky + J1A% + Jop%) (28)

The components of the generalized force vector {P} = {P;, P,, P3, P,}¢ are given by

Pl = /1(ATt1 + Bth + aBTt3)
P2 = ‘U(ATtl + BTtZ + aBTt3)
P3 = _qO - /Z(/12 + ‘uz)(BTtl + Dth + aDTt3)

P, =—qo — #(A%2 + u®>)( °BTt; + °DTt, + SFTt3) (29)
Where
{AT BT, DT} = f i f(_zi a(2){1,2,7°}dz
{%BT, *pT} = fi f(_zi a(z)f(2){1,z}dz
(BT, DT, *F"} = [ EDa()f (){1,7 f (2)}dz (30)
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Table 1 materials properties of functionally graded plate (Ti-6Al-4V / ZrO,)

Materials E 14 a
Ti-6Al-4V 66.2 GPa 1/3 10.3%(10°5/C°).
7rO; 117.0 GPa 1/3 7.11x(10°%/C°).

Table 2 Effect of the porosity on the dimensionless deflection W of square plates (a=10k, b=a, q¢=100,
T1=T5=0, T,=0)

k Theory Porosity w

Thai H-T et al. =0 0.3737

Taibi et al. £=0 0.3734
2 £=0 0.3795406
Present £=0.1 0.4278580
£=0.2 0.4909164

Thai H-T et al. £=0 0.4101

Taibi et al. £=0 0.4094
5 £=0 0.4036893
Present £=0.1 0.4581206
£=0.2 0.5300833

Thai H-T et al. £=0 0.3988

Taibi et al. £=0 0.4178
10 £=0 0.4234319
Present £=0.1 0.4829429
£=0.2 0.5622425

In which
z=1z/h f(2) = f(2)// €2))

3. Results and discussions

The procedure outlined in the previous sections is used here to analyze the thermo-mechanical
effect on the bending of porous functionally graded plates resting on Winkler-Pasternak foundations.
A comparison study is presented between the results of the present study and those given by
Bouderba (2013), Thai H-T (2014), Taibi (2015). Here, Titanium, Ti-6Al-4V, and Zirconia, ZrO; are
used as the metal and ceramic constituents. The material properties of the used FGM's are listed in
Table 1. For all the computations, the Poisson's ratio is taken as 0.3 and the reference temperature is
taken by 7,=25°C (room temperature).

Table 2 presents the comparison study of dimensionless deflection Wwof square plates subjected
to mechanical loading. These two comparisons show that the results presented when 3+0 are in good
agreement with existing results. The results show that the porosity has a significant effect on the
dimensionless deflection of FG plate.

Tables 3 and 4 present the effect of the volume fraction exponent and elastic foundation
parameters on the dimensionless and stresses of an FG rectangular plate with porosities. Temperature
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Table 3 Effect of the porosity and volume fraction exponent on the dimensionless and stresses of an FG
rectangular plate (a=10h, b=2a, go=100, 7=0, Ko=100, Jo=100)

k Theory Porosity w O, Tz
Bouderba (2013) £=0 0.077197 0.048071 -0.044643
PSDT £=0 0.077197 0.048050 -0.043259
ceramic TSDT £=0 0.077197 0.048071 -0.044643
£=0 0.077195 0.047277 -0.04423
Present £=0.1 0.077886 0.043968 -0.04113
£=0.2 0.078589 0.040598 -0.03798
Bouderba (2013) £=0 0.079758 0.044595 -0.032215
PSDT £=0 0.079758 0.044574 -0.031170
) TSDT £=0 0.079758 0.044595 -0.032215
£=0 0.079756 0.043748 -0.03190
Present £=0.1 0.080519 0.040129 -0.02847
£=0.2 0.081304 0.036395 -0.024945
Bouderba (2013) £=0 0.080150 0.045736 -0.029922
PSDT £=0 0.080150 0.045714 -0.028921
5 TSDT £=0 0.080150 0.045736 -0.029922
=0 0.080149 0.044821 -0.02962
Present £=0.1 0.080910 0.041156 -0.026179
£=0.2 0.081693 0.037354 -0.022645
Bouderba (2013) £=0 0.081190 0.050559 -0.026565
PSDT £=0 0.081191 0.050538 -0.025744
metal TSDT £=0 0.081190 0.050559 -0.026565
=0 0.081189 0.050545 -0.026318
Present $=0.1 0.081954 0.024470 -0.022890
£=0.2 0.082733 0.020736 -0.019397

elevation is ignored (7=0) in only Table 1, and side-to-thickness ratio is set equal to a/A=10. It is
seen that the results of this study are in excellent agreement with the results of Bouderba (2013)
when (=0 and take different values when (0. As the FG plate becomes richer on metal, the
dimensionless and the stresses of the FG plate increase when (7=0) and decrease when (7#0). Table
5 shows the effect of the volume fraction of the porosity on the dimensionless deflection W of an
FG square plate (b=a) resting on the elastic foundation and subjected to a thermo-mechanical
loading. It can be seen that the dimensionless deflection decrease as the side-to-thickness ratio
increase (thin plate).

Tables 6 and 7 show the effect of the volume fraction of the porosity, volume fraction exponent,
and elastic foundation parameters on the dimensionless center deflection W of an porous FG plate
subjected to mechanical and thermo-mechanical loading, respectively. The side-to-thickness ratio is
taken to be a/h=10. It can be seen that the dimensionless center deflection of the porous FG plate
decreases with an increase in foundation stiffness, but increases with an increase in the volume
fraction of the porosity and the volume fraction exponent. Compared to the Winkler parameter Ko,
the Pasternak foundation parameter J, has a dominant effect on decreasing the dimensionless center
deflection.
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Table 4 Effect of the porosity and volume fraction exponent on the dimensionless and stresses of an FG
rectangular plate (a=10h, b=2a, qo=100, T1=T75=0, T>=10, Ko=100, Jo=100)

k Theory Porosity w O, Tz
Bouderba (2013) £=0 0.17270 -0.50052 0.38756
PSDT £=0 0.17270 -0.50034 0.37555
ceramic TSDT £=0 0.17270 -0.50052 0.38756
=0 0.17269 -0.49364 0.3839
Present £=0.1 0.16669 -0.45837 0.3571
£=0.2 0.16059 -0.42263 0.3297
Bouderba (2013) £=0 0.16819 -0.48398 0.35985
PSDT £=0 0.16819 -0.48375 0.34801
) TSDT £=0 0.16819 -0.48398 0.35985
£=0 0.16817 -0.47455 0.3563
Present p5=0.1 0.15957 -0.43542 0.3174
£=0.2 0.15071 -0.39501 0.2775
Bouderba (2013) £=0 0.16719 -0.48223 0.34986
PSDT £=0 0.16720 -0.48201 0.33789
5 TSDT £=0 0.16719 -0.48223 0.34986
£=0 0.16719 -0.47156 0.3462
Present £=0.1 0.15822 -0.43329 0.3055
£=0.2 0.14902 -0.39350 0.26367

Table 5 Effects of the porosity and side-to-thickness ratio on the dimensionless deflection W of an FG square
plate (b=a, qo=100, T'=T5=0, T»=10, K¢=100, Jo=100)

. a/h

k Theory Porosity 5 10 20 50
Bouderba (2013) £=0 0.53445 0.18171 0.077180 0.046508
ceramic /=0 0.53496 0.18171 0.077181 0.046507
Present 5=0.1 0.50155 0.17273 0.075238 0.046622
£=0.2 0.46741 0.16354 0.073262 0.046738
Bouderba (2013) =0 0.49953 0.17443 0.076803 0.048043
2 £=0 0.50013 0.17445 0.076800 0.048045
Present 5=0.1 0.45280 0.16139 0.073856 0.048053
£=0.2 0.40400 0.14789 0.070794 0.048061
Bouderba (2013) £=0 0.48761 0.17256 0.076639 0.048259
5 £=0 0.48835 0.17257 0.076638 0.048259
Present 5=0.1 0.43872 0.15895 0.073531 0.048243

£=0.2 0.38789 0.14489 0.070344 0.048229

Dimensionless deflection W of a square FG plate is presented in Table 8 for different values of
thickness ratio a’h, power-law index &, and foundation parameters (Ko, Jo). The obtained results are
compared with those given by Taibi (2015) for the perfect FG plate (£=0). It can be concluded that
the volume fraction of the porosity has a significant effect on the dimensionless deflection W of a
square FG plate resting on the Pasternak or Winkler-Pasternak foundations
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Table 6 Effect of porosity and elastic foundation parameters on the dimensionless center deflection W of an
FG square plate subjected to mechanical loading (a=104, b=a, qo=100, T1=T>=13=0)

k Theory Porosity Ko=0, Jo=0  Ko=100, Jo=0 Ko=0, Jo=100 Ko=100, Jo=100
Taibi (2015) £=0 0.6813082 0.4052251 0.08365248 0.07719493
0 £=0 0.6812934 0.4052198 0.08365225 0.07719474
Present £=0.1 0.7391629 0.4250108 0.08446419 0.07788565
£=0.2 0.8077758 0.4468341 0.08529205 0.07858903
Taibi (2015) /=0 1.109938 0.5260525 0.08781631 0.08072715
2 =0 0.9507665 0.4873809 0.08666835 0.07975602
Present £=0.1 1.071814 0.5173312 0.08756987 0.08051885
£=0.2 1.229831 0.5515355 0.08849891 0.08130363
Taibi (2015) /=0 1.181016 0.5414982 0.08823646 0.08108206
5 =0 1.009736 0.5024222 0.08713221 0.08014868
Present £=0.1 1.145591 0.5339279 0.08803308 0.08091029

£=0.2 1.325117 0.5699143 0.08895923 0.08169198

Table 7 Effect of porosity and elastic foundation parameters on the dimensionless center deflection W of an
FG plate subjected to thermo-mechanical loading (a=10A, b=2a, go=100, T1=T3=0, T,=10)

k Theory Porosity Ko=0, Jo=0 Ko=100, Jo=0 Ko=0, Jo= 100 Ko=100, Jo=100
Taibi (2015) p=0 1.524169 0.9065374 0.1871406 0.1726943
0 p=0 1.524154 0.9065366 0.1871425 0.1726961
Present =0.1 1.582024 0.9096466 0.1807779 0.1666979
=0.2 1.650637 0.9130758 0.1742886 0.1605915
Taibi (2015) p=0 2.288283 1.084526 0.1810449 0.1664296
2 p=0 2.004883 1.027741 0.1827577 0.1681818
Present [=0.1 2.124061 1.025218 0.1735411 0.1595679
=0.2 2.279672 1.022352 0.1640458 0.1507082
Taibi (2015) p=0 2.394417 1.097845 0.1788923 0.1643874
5 p=0 2.106337 1.048066 0.1817601 0.1671923
Present [=0.1 2.240229 1.044108 0.1721507 0.1582219
=0.2 2.417239 1.039620 0.1622767 0.1490200

To illustrate the effect of temperature parameters (72) on the bending responses of FG plates,
Table 9 shows the results of the dimensionless and stresses of an FG rectangular plate subjected to
mechanical and thermo-mechanical loading. It can be observed that the dimensionless and stresses
increase when the volume fraction of the porosity increase for both mechanical and thermo-
mechanical loading.

Table 10 present the effect of the distribution shape of the porosity on the dimensionless and
stresses of an FG plate subjected to a thermomechanical loading. Both even distribution and uneven
distribution of porosity are taken into account. From this table, it was found that the distribution
shape of porosity significantly influences on the thermo-mechanical behavior of FG plates, in terms
of deflection and stresses.
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Table 8 Effect of porosity and elastic foundation parameters on the dimensionless center deflection W of an
FG square plate subjected to thermo-mechanical loading (b=a, go=100, T:=0, T»=T3=10)
Ko=0, Jo=100 Ko=100, Jo=100
a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20
SPT p=0 05464189 0.1850845 0.08088404 0.5226103 0.1771234 0.07741799
HPT p=0 05459374 0.1850501 0.08088214 0.5221480 0.1770903 0.07741611
1 Taibi (2015) =0 0.5456821 0.1850325 0.08088109 0.5219026 0.1770732 0.07741516
/=0 05374418 0.1850155 0.08059350 0.5142352 0.1771592 0.07718862
Present  4=0.1 0.4908725 0.1722699 0.07775425 0.4694427 0.1648617 0.07442569
p£=0.2 0.4429306 0.1590929 0.07481506 0.4233768 0.1521627 0.07156912
SPT p=0 05288591 0.1804318 0.08005720 0.5056076 0.1725899 0.07658943
HPT p=0 05282195 0.1803852 0.08005454 0.5049920 0.1725450 0.07658675
’ Taibi (2015) =0 0.5278306 0.1803571 0.08005289 0.5046192 0.1725179 0.07658525
p=0 0.5228637 0.1822373 0.08021888 0.5001213 0.1744407 0.07680412
Present  4=0.1 0.4736050 0.1687084 0.07718506 0.4527749 0.1613975 0.07385538
£=0.2 0.4227992 0.1546860 0.07403606 0.4039917 0.1478945 0.07079844

k Theory  Porosity

Table 9 Effect of the porosity volume fraction exponent on the dimensionless and stresses of an FG rectangular
plate subjected to mechanical and thermo-mechanical loading (a=10k, b=2a, go=100, T1=T3=0, Ko=0, Jo=0)

Ts Theory Porosity w O,
Bouderba (2013) 5=0 0.68131 0.42424
PSDT p=0 0.68134 0.42408
0 TSDT £=0 0.68131 0.42424
£=0 0.68129 0.41725
Present £=0.1 0.73917 0.41726
£=0.2 0.80778 0.41730
Bouderba (2013) p=0 1.5241 0.34104
PSDT p=0 1.5243 0.34091
10 TSDT £=0 1.5241 0.34104
£=0 1.5241 0.33410
Present £5=0.1 1.5820 0.34060
£=0.2 1.6507 0.34710

Fig. 2 aims to analyze the influence of the volume fraction of the porosity on the dimensionless
center deflection of an FGM square plate subjected to thermo-mechanical loading. The gradient
index is taken to be £=2. It can be observed that the dimensionless deflection decreases when the
foundation parameters Ko, Jo increase, and the Winkler foundation parameter Ko has more effect on
reducing the dimensionless deflection than the Pasternak parameter Jo. Such behavior is because
the inclusion of foundation parameters will increase the stiffness of the plate, and thus, lead to a
reduction of deflection. It is also observed from these figures that the volume fraction of the porosity
has more effect when the plate reposed on the Winkler-Pasternak foundation. Fig. 3 shows the effect
of the porosity on the dimensionless center deflection through the aspect ratio of an FGM plate
subjected to thermo-mechanical loading. The side-to-thickness ratio is taken to be a/A=10, and the
volume fraction index is taken to be 4=2. It can be seen that the dimensionless center deflection
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Table 10 Effect of the distribution shape of the porosity on the dimensionless and stresses of an FG rectangular
plate (a=10h, b=2a, q¢=100, T1=0, T>= T5=10, K¢=100, Jo=100)

. w Oy Tyz
alh K Porosity Even Uneven Even Uneven Even Uneven
=0 0.6967 0.6967 -0.5916 -0.5916 1.3729 1.3729
0 £=0.1 0.6536 0.6832 -0.5506 -0.5893 1.2756 1.3062
£=0.2 0.6097 0.6695 -0.5087 -0.5864 1.1768 1.2368
/=0 0.6497 0.6497 -0.5277 -0.5277 1.2406 1.2406
5 2 £=0.1 0.5894 0.6304 -0.4821 -0.5191 1.1043 1.1468
£=0.2 0.5278 0.6105 -0.4348 -0.5087 0.96458 1.0470
=0 0.6366 0.6366 -0.5082 -0.5082 1.1918 1.1918
5 £=0.1 0.5738 0.6158 -0.4642 -0.4977 1.0489 1.0872
£=0.2 0.5097 0.5941 -0.4176 -0.4848 0.9027 0.9742
/=0 0.2465 0.2465 -0.6480 -0.6480 0.7207 0.7207
0 £=0.1 0.2354 0.2435 -0.6035 -0.6484 0.6701 0.6878
£=0.2 0.2240 0.2404 -0.5580 -0.6492 0.6187 0.6534
=0 0.2365 0.2365 -0.6107 -0.6107 0.6613 0.6613
10 2 £=0.1 0.2206 0.2320 -0.5594 -0.6072 0.5891 0.6141
£=0.2 0.2043 0.2275 -0.5056 -0.6027 0.5149 0.5637
/=0 0.2343 0.2343 -0.6070 -0.6070 0.6407 0.6407
5 £=0.1 0.2178 0.2295 -0.5572 -0.6034 0.5651 0.5881
£=0.2 0.2008 0.2247 -0.5046 -0.5986 0.4875 0.5308
/=0 0.1203 0.1203 -0.5262 -0.5262 0.3014 0.3014
0 £=0.1 0.1180 0.1197 -0.4905 -0.5275 0.2803 0.2878
£=0.2 0.1156 0.1190 -0.4538 -0.5287 0.2588 0.2737
/=0 0.1197 0.1197 -0.5067 -0.5067 0.2904 0.2904
20 2 p=0.1 0.1163 0.1188 -0.4642 -0.5053 0.2586 0.2699
£=0.2 0.1127 0.1178 -0.4194 -0.5031 0.2260 0.2481
=0 0.1195 0.1195 -0.5041 -0.5041 0.2839 0.2839
5 £=0.1 0.1159 0.1185 -0.4633 -0.5032 0.2505 0.2609

£=0.2 0.1122 0.1175 -0.4200 -0.5016 0.2161 0.2359

—a— =0

Dimensionless center deflexion
=
T
Dimensionless center deflexion

a/h alh

Fig. 2 Effect of the porosity on the dimensionless center deflection through side-to thickness ratio of an FGM
square plate subjected to thermo-mechanical loading



Dimensionless center deflexion

Dimensionless center deflexion

Dimensionless center deflexion

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

0,8
—m— =0
0,7 -
06 -
05+
04+
03+
02+
0,1+
0,0 1 1 1 1 1 1
2 8 10 12 14 16 18 20
a/h
4,0
—&— =0
35 —e—p=0,1
—a— 3=0,2
30F k=2; a’h=10
K,=J,=0
25+ TDZO; TZ:T3:1O
2,0
15+
10 -
05
0,0 L L L L L
0,0 0,5 1,0 1,5 2,0 2,5 3,0
a/b
0,30
—a— =0
—e—p=0,1
0,25 + s p=02
k=2; a/h=10
0,20 |- K,=0; J =100
T,20; T,=T,=10
0,15 +
0,10 +
0,05 +
0,00 +
1 1 1 1 1
0,0 0,5 1,0 1,5 2,0 2,5 3,0
a/b

Dimensionless center deflexion

Dimensionless center deflexion

Dimensionless center deflexion

513

0,7

0,6 -

0,5

04 -

03

02

0,1

0,0

N

o

o
®

o
=)

o
~

o
)

—m— (=0
—o—=0,1
—a—p=0,2
k=2; a’h=10
K,=100; J =0
T,20; T,=T =10

0,0 0,5 1,0 1,5 2,0 25 3,0
al/h
0,25
—m—p3=0
—e—p=0,1
0,20 |- —A—p=0,2
k=2; a/h=10
K,=100; J,=100
0,15 T,=0; T,=T,=10
0,10 |
0,05 |-
0,00 |
L L L L L
0,0 0,5 1,0 1,5 2,0 25 3,0
a/b

Fig. 3 Effect of the porosity on the dimensionless center deflection through the aspect ratio of an FGM plate
subjected to thermo-mechanical loading

decrease when the aspect ratio a/b increase. The results show that the imperfect FGM plate (£0)
will undergo small deflections when the plate is reposed on the elastic foundation.

Fig. 4 present the variation of the dimensionless axial stress through the thickness of an FGM
rectangular plate containing porosities and subjected to thermo-mechanical loading. The side-to-
thickness ratio is taken to be a/A=10, and the aspect ratio is taken to be b=2a. it can be concluded
that the volume fraction of porosity influences the variation of the dimensionless axial stress through
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Fig. 4 Effect of the porosity on the dimensionless axial stress through the thickness of an FGM rectangular
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Fig. 5 Effect of the porosity on the dimensionless shear stress through the thickness of an FGM rectangular
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Fig. 6 Effect of the porosity and the thermal loading on the dimensionless center deflection through side-to
thickness ratio of an FGM rectangular plate subjected to thermo-mechanical loading

the thickness. It can also be seen that the dimensionless axial stresses are tensile at the top surface
and compressive at the bottom surface when (Ko=0, J;=0) and becomes compressive at the top
surface and tensile at the bottom surface when the FGM plate reposed on an elastic foundation.

Fig. 5 shows the through-the-thickness variation of dimensionless shear stress of an FGM
rectangular plate subjected to thermo-mechanical loading. It can be observed easily from the figure
that the volume fraction of the porosity provides a greater influence on dimensionless shear stress
when the FGM plate reposed on an elastic foundation. It is also seen from the figure that, increasing
the value of the volume fraction of the porosity £ decreases the dimensionless shear stress. In
addition, it can be seen that the shear stiffness coefficient Jy increases the dimensionless shear stress,
in contrast, Winkler coefficient Ky decreases it.

To examine the influence of the thermal loading on the dimensionless center deflection of an
FGM rectangular plate with porosities reposed on the Winkler-Pasternak foundation, the variation
of the dimensionless center deflection of Ti-6Al-4V / ZrO» FG plate is displayed in Fig. 6 versus the
side-to-thickness ratio. The main conclusion of Fig. 6 is that increasing the thermal loading increases
the dimensionless center deflection.

5. Conclusions
This paper presents an analytical solution for thermo-mechanical bending of FG plates containing

porosities and resting on elastic foundation using a new refined hyperbolic shear deformation plate
theory. The variation of distribution shape of porosity is described using the modified power-law
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distribution for two material constitutions with porosity. The governing equations are solved easily
by using Navier’s solutions. The dimensionless center deflections as well as the stresses obtained
are compared with others and a very good agreement has been found which proves the precision of
the method. In accordance with numerical and graphical results, some conclusions can be drawn as
follows:
- The porosity distribution in the functionally graded materials has a significant effect on the
dimensionless center deflection and stresses of FGM plate subjected to thermo-mechanical
loading .
- The dimensionless deflection decreases when the foundation parameters K0, JO increase, and
the Winkler foundation parameter KO has more effect on reducing the dimensionless deflection
than the Pasternak parameter JO.
- Increasing value of the volume fraction of the porosity £ decreases the dimensionless shear
stress.
- The results show that the imperfect FGM plate (£=0) will undergo small deflections when the
plate reposed on the elastic foundation.
- Increasing thermal loading increases the dimensionless center deflection.
- The uneven distribution of porosity has more effect on increasing the dimensionless deflection
and stresses than the even distribution of the porosity when the FG plate reposed on the elastic
foundations.
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