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Abstract.  This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame 
subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite 
element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few 
modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity 
on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF 
graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure 
under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the 
time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical 
direction. 
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1. Introduction 
 

Dynamic responses of engineering structures under the action of moving loads, such as bridges, 

gantry cranes, conveyor systems, etc., have seen considerable interests over the years. Fryba (1999) 

have presented various analytic methods for predicting the dynamic behaviour of simple and 

continuous beams under moving loads in his classical monograph. Thambiratnam and Zhuge (1996) 

have presented a study for determining the effects of some parameters, such as the foundation 

stiffness, travelling speed, length of beam and stiffness of the sprung mass, on the dynamic responses 

of beams under a concentrated moving load. Wu et al. (2000) have calculated the equivalent nodal 

forces and moments to represent the moving loads by using three approximate methods. In the first 

“full” method, equivalent nodal forces and moments have been calculated. This requires the shape 

functions for the elements. The second method simply ignores the moments calculated using method 

1. The third “simple” method ignores any moments applied at the nodes at the outset and therefore 

does not require knowledge of the shape functions. Kıral and Kıral (2007) have investigated dynamic 

responses of a symmetric laminated composite beam under a concentrated force with a constant 

velocity. Wu et al. (2001) have developed a technique for obtaining the response of three-
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dimensional structures to the movement of bodies in two dimensions on their surface. Fu (2015) has 

investigated the effect of cracks on the vibration behaviour of a continuous beam bridge under the 

moving vehicle. Zrniḉ et al. (2015) have investigated dynamic responses of a gantry crane system 

subjected to an elastically suspended moving body using a combined finite element and analytical 

method. Ozturk et al. (2015) have studied the effects of crack depth and crack location on the in-

plane static and dynamic stability of cracked multi-bay frame structures subjected to periodic 

loading using the finite element method. Koziol (2016) has presented a wavelet-based semi-

analytical solution for the infinite Euler-Bernoulli beam resting on a nonlinear foundation subjected 

to a set of moving force. Mohebpour et al. (2016) have used a finite element method based on the 

classical lamination theory to study the dynamic response of an inclined cross-ply laminated 

composite beam under moving mass. Song et al. (2016) have proposed a frequency domain spectral 

element method (SEM) for a Timoshenko beam model subjected to a moving point force. Svedholm 

et al. (2016) have investigated the dynamic behaviour of a non-proportionally damped  Euler-

Bernoulli beam with general end conditions under a moving load.       

Frame structures, for instance, gantry crane and bridges, having the combination of beams and 

columns, subjected to moving force are often encountered in engineering applications. Zrniḉ et al. 

(2015) have modelled a gantry crane system as a 1-storey frame. Yang et al. (2004) have studied 

resonance and cancellation phenomena in the train induced vibrations of railway bridges with elastic 

bearings. If the elastic support is considered as a column, railway bridges with elastic bearings can 

be modelled as a 1-storey frame. 

In this study, the case where the concentrated load speed takes small values can be considered as 

a gantry crane, and the case of high-speed values of successive moving force with constant interval 

can be considered as a train induced vibration of railway bridges. In addition, the structure having 

more than one storeys is also examined.    
The dynamic responses of a multi-storey frame under the action of moving train loads have been 

investigated by using the finite element method in this study. The train loads are modelled as loads 
of constant intervals with constant velocity. It is assumed that the boundary conditions of the frame 
are zero horizontal and vertical displacements and zero rotations at bases of columns. The main 
aspects of this paper are as follows: 

• The effect of the load velocity and force span length to beam length ratio on the dynamic 
magnification factor (DMF) has been studied by means of the 3D velocity-force span length to 
beam length ratio-DMF plots. 
• The effect of mode shapes of the multi-storey frame on the dynamic response of a multi-storey 
frame has been investigated. 
• The dominant mode shapes of the resonance vibrations in the vertical direction have been 
determined. 

 

 

2. Description of the numerical model and finite element formulation 
 

2.1 Description of the numerical model 
 

The system considered, shown schematically in Fig. 1, is a multi-storey frame subjected to train 

moving forces having a magnitude of F with a constant velocity of V. The Bernoulli-Euler beam 

theory is used in the analysis. It is assumed that beams and columns have length L, elastic modulus 

E, mass per unit length m, area moment of inertia I, cross-section area A, respectively. The distance 

between successive loads is the same and denoted as Lf. 
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Fig. 1 A multi-storey frame subjected to moving train loads 

 

 

Fig. 2 6-DOF beam element 

 

 

2.2 Finite element formulation 
 

The Euler-Bernoulli beam element has two nodes and each node has three degrees of freedom 

(DOF), as shown in Fig. 2. The element mass and stiffness matrices can be found after applying 

standard finite element procedure.  

The mass and stiffness matrices of the uniform beam element can be computed from 
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for axial vibrations where E, I, m and h are elastic modulus, area moment of inertia, mass per unit 

length and beam length, respectively. Also, the prime sign represents derivative with respect to x.  

Nb and Na are the shape functions and are defined as follows (Meirovitch 1986) 
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where ξ= x/h. 

The element mass (Eq. (1)) and stiffness (Eq. (2)) matrices are given by superposing the element 

matrices associated with the two-node elements 
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where a(i,j) defines (i,j)th element of matrix a. 

To obtain the structural mass and stiffness matrices, considering the case of an element making 

an angle α with the U3 axis (Fig. 3), the relation between local and global reference coordinates can 

be written as 
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Fig. 3 u1u2u3: Local coordinate system, U1U2U3: Global coordinate system 

 

 

where T is transformation matrix. 

Mass and stiffness matrices of each element in local coordinate system should be transformed to 

global coordinate system 

,  =T T

e e e eM = T m T K T k T  (9) 

where me and ke are the respective mass and stiffness matrices in local coordinates. Also, Me and Ke 

are element mass and stiffness matrices in global coordinates, respectively.  

By assembling the element matrices, Me and Ke, equation of motion of multi-degree-of-freedom 

undamped structural system takes the form 

M U + = F KU  (10) 

where M and K denote the overall global mass matrix and the overall global stiffness matrix, 

respectively.  𝐔̈  and U are the respective acceleration and displacement vectors for the whole 

structure. F is the external time-dependent force vector. 

To determine the equivalent forces at nodes, assume that the force F is on the sth element of the 

beam. Then the equivalent force at nodes can be obtained as 
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The Newmark integration method with parameters β and α were selected as β=0.25 and α=0.5 to 

obtain a stable solution (Bathe 1996). 

 

 

3. Modal analysis of the multi-storey frame 
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Table 1 Physical and geometric properties of the multi-storey frame 

Beam/column length (L), m 30 

Force (F), N 60822 

Elastic modulus (E), N/m2 2.87e9 

Area moment of inertia (I), m4 2.9 

Cross-section area (A), m2 8.7 

Mass per unit length (m), kg/m 2303 

Element size, m 5 

 
Table 2 The first few natural frequencies of i-storey frame (i=1,2,3,4) 

f(Hz) 
1-storey 2-storey 3-storey 4-storey 

Present Work ANSYS Present Work ANSYS Present Work ANSYS Present Work ANSYS 

f1 1.0762 1.0760 0.5020 0.5020 0.3176 0.3176 0.2307 0.2307 

f2 4.2178 4.2100 1.6503 1.6493 1.0518 1.0515 0.7479 0.7478 

f3   3.6168 3.6102 1.9017 1.9004 1.3843 1.3837 

f4   4.9873 4.9784 3.4572 3.4510 2.0335 2.0320 

f5     4.3706 4.3626 3.3939 3.3878 

f6       3.9822 3.9752 

f7       4.4549 4.4511 

 
 
 

 
 

 

 
 

(a) 1-storey frame 2-storey frame 

 
(c) 3-storey frame 

 
(d) 4-storey frame 

Fig. 4 The first few mode shapes of i-storey frame (i=1,2,3,4). The modes corresponding to the natural 

frequencies listed in Table 2 are given in increasing order from left to right 

316



 

 

 

 

 

 

Effective mode shapes of multi-storey frames subjected to moving train loads 

 

Fig. 5 2-storey frame under moving loads 

 

 

All the parameters which are used in subsequent computations have been given in Table 1. The 

values of physical properties are taken from Ref. (Yang et al. 1997). 

The first few natural frequencies are determined using both ANSYS and the developed MATLAB 

programs (present work). The beams and columns are modelled using BEAM54 element.   

ANSYS BEAM54 is used because it has the same nodal degrees of freedom with the model 

developed by present work. Element size is taken as 5 m to generate the same finite element mesh 

those of the developed model. Table 2 shows the natural frequencies of i-storey frame (i=1,2,3,4).  

The mode shapes for those natural frequencies given in Table 2 is determined. The first modes 

of the structure shown in Figs. 4 (a)-(d) correspond to the first bending modes of the columns 

forming the frame. The displacement of the beam in the vertical direction has become important in 

the second mode of the 1-storey frame. This mode corresponds to the first mode in which the vertical 

direction of the beam is effective. Therefore, the natural frequency of the structure in this mode is 

shown in Table 2 with a dark background. The 2nd mode of the 2, 3 and 4-storey frames corresponds 

to the 2nd bending mode of the columns. The 3rd mode of the 3 and 4-storey frame corresponds to 

the 3rd bending mode of the columns. Finally, the 4th mode of the 4-storey frame corresponds to the 

4th bending mode of the columns. The displacement of the top beam in the vertical direction is 

negligible in the above-mentioned modes. 

In this study, the load moves on the top beam of the structure. The study will be limited to the 

vertical vibrations of the structure. Therefore, the displacements of the top beam in the vertical 

direction are important in the resonance behaviour of the structure under the influence of the 

successive moving loads. Hence, the 2nd mode for the 1-storey frame, the 3rd or 4th mode of the 2-

storey frame, the 4th or 5th mode of the 3-storey frame and the 5th, 6th or 7th mode of the 4-storey 

frame can be expected to be dominant in the resonance behavior. 

 

 

4. Effect of mode shape on the dynamic response 
 

It is known that structures vibrate under resonance conditions in certain situations due to the 

passage of repeated groups of loads. The load velocity and force span length are important 

parameters on the resonance vibrations. The resonance vibrations can be observed in some values 

of these parameters.   
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Fig. 6 Vertical deflections at points 1 and 2 

 

 
 

4.1 Validation 
 

To prove the validity of the finite element model (present work), it is reasonable to compare the 

results with those of ANSYS software. The loads consist in a succession of 4 concentrated moving 

loads of constant intervals Lf =30 m travelling at constant speed V=2 m/s (see Fig. 5).  

The vertical vibration response for center points 1 and 2 of the 2-storey frame are shown in Fig. 

6. The time delay of successive forces is the same and its value equals Lf/V=15 s. Because of beam 

length L=Lf, the displacement/time plot, given in Fig. 6, has four peaks. Very good agreement is 

observed. 

 

4.2 Velocity-foce span length to beam length ratio-dynamic magnification factor 
 

A i-storey frame (i=1,2,3,4) subjected to successive moving forces with constant interval (Fig. 1) 

is considered here. The effect of velocity and force span length on the dynamic response was 

investigated by plotting the velocity (V) - force span length to beam length ratio (𝐿̅ ) - dynamic 

magnification factor (DMF) plot. The DMF is defined as the ratio of the maximum dynamic 

deflection to the maximum static deflection. The maximum static deflection is computed at the 

midpoint of the top beam, as shown in Fig. 7. The static forces were defined in such a way that one 

of the forces was applied at the center of the beam. 

Fig. 8 shows 3D views of V-𝐿̅-DMF plot of 1-storey frame. Three typical points (P1, P2 and P3)  

 

Fig. 7 Calculation of the maximum static deflection at midpoint of the top beam 
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(a) (b) 

Fig. 8 1-storey frame, (a) V-𝐿̅-DMF plot, (b) its 2D projection 

 

  

(a) (b) 

Fig. 9 2-storey frame, (a) V-𝐿̅-DMF plot, (b) its 2D projection 

 

 

that correspond to the maximum DMF are selected. The values V=64 m/s, 𝐿̅=0.5; V=44 m/s, 𝐿̅=0.7; 

and V=32 m/s, 𝐿̅=0.75 are read from these three points, respectively. 

The maximum DMF values of the 3D V-𝐿̅-DMF curves shown in Figs. 8(a)-11(a) depend on 𝐿̅ 

and V. If 𝐿̅ changes the specific velocity (critical velocity, Vcr), which causes the largest maximum 

displacement also changes. As can be seen in Figs. 8 (b)-10 (b), the variation of Vcr with 𝐿̅ is linear. 

Figs. 8(b)-10(b) provide directions corresponding to critical speeds. The most important of these 

directions is the solid line because it gives the largest maximum DMF values. Fig. 8(b) shows that 

the other two directions are below the solid line. 

Fig. 9 illustrates 3D V-𝐿̅-DMF plot of 2-storey frame. The points P1, P2 and P3 have values of 

V=54 m/s, 𝐿̅=0.5; V=83 m/s, 𝐿̅=0.5417; and V=38 m/s, 𝐿̅=0.7, respectively. Fig. 9(b) is a two-

dimensional representation of Fig. 9(a). Here the color bar shows DMF. The three directions 

corresponding to the critical speed are shown in this figure. From these directions, the dashed-dotted 

line is above the solid line and the dashed line is below.  

The 3D V-𝐿̅-DMF is plotted for the 3-storey frame, as shown in Fig. 10. The three points selected 

on this figure are as follows: V=51 m/s, 𝐿̅=0.5 at point P1; V=71 m/s, 𝐿̅=0.5417 at point P2; and 

V=38 m/s, 𝐿̅=0.7 at point P3. Fig. 10(b) shows the directions giving critical speeds. It is observed  
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(a) (b) 

Fig. 10 3-storey frame, (a) V-𝐿̅-DMF plot, (b) its 2D projection 

 

  
(a) (b) 

Fig. 11 4-storey frame, (a) V-𝐿̅-DMF plot, (b) its 2D projection 

 

 

that the solid line and dashed-dotted line approaching each other when compared to the case of the 

2-storey frame. 

From Fig. 11(a), the points P1, P2 and P3 for the 4-storey frame are taken as V=51 m/s, 𝐿̅=0.5; 

V=64 m/s, 𝐿̅ =0.5417; and V=47 m/s, 𝐿̅ =0.7, respectively. As a result of the increase of storey 

number of the structure, the difference between the consecutive natural frequencies of the structure 

decreased. Therefore, as seen in Fig. 11(b) the dashed-dotted line and the solid line are getting closer 

to each other. 

 

4.3 Time and frequency response 
 

To show which mode is dominating the dynamic responses of multi-storey frames, the Fourier 

transform of the free response is calculated. The graphs are plotted for the three points indicated in 

Section 4.2 for each frame. The graphs plotted below are the displacements (or frequency) in the 

vertical direction of the point N (see also 1) for the N-storey frame. It is selected due to the maximum 

displacement are expected to occur at this point when the structure is subjected to moving train 

loads. 
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(a) (b) 

Fig. 12 (a) Time history curves of free and forced response at point P1, (b) frequency response 

 

 

 

(a) (b) 

Fig. 13 (a) Time history curves of free and forced response at point P2, (b) frequency response 

 

 

Fig. 12(a) shows the time history graphs for the V and 𝐿̅ values at the point P1 of the i-storey 

frame (i=1,2,3,4). Here, the tf in the dimensionless time axis indicates the time that the load leaves 

the structure. It is clear that the values t/tf greater than 1 illustrate free vibrations. By taking the 

Fourier transform of the free vibration responses, the frequency responses, as shown in Fig. 12(b), 

were obtained. 

In Fig. 12(b), it is seen that the values taken from point P1 for 1-storey frame excite the 2nd mode 

of vibration with the natural frequency of 4.21 Hz. A similar situation can be said to be the 3rd mode 

of the 2-storey frame, the 4th mode of the 3-storey frame and the 5th mode of the 4-storey frame. 

Furthermore, if P1 is considered to be a point on the solid line shown in Figs. 8(b)-11(b), it can be 

concluded that the points taken on the solid line will again excite the same modes. 

Fig. 13(a) depicts displacements against dimensionless time plots for those values taken at point 

P2 of the i-storey frame (i=1,2,3,4). From Fig. 13(b), as in P1, the 2nd mode of the 1-storey frame 

dominates the resonance response. In contrast, the 4th mode of the 2-storey frame, the 5th mode of 

the 3-storey frame, and the 6th mode of the 4-storey frame are excited at this point. Also, this point 

is a typical point taken on the dashed line in Figs. 8(b)-11(b). Note that these dashed lines for the 1-

storey frames are below the solid line, while they are above the solid line for 2-4 storey frames. 

Fig. 14(a) shows the time history and frequency response plots for the values picked at point P3.  
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(a) (b) 

Fig. 14 (a) Time history curves of free and forced response at point P3, (b) frequency response 

 

 

For the 1, 2 and 3-storey frames, just like point P1, the excited modes are the 2nd, 3rd and 4th modes, 

respectively (Fig. 14(b)). However, the resonance response of the 4-storey frame seems to be related 

to the 7th mode of the structure. These modes are effective in the resonance response of the structures 

at a value from any point on the dashed-dotted line in Fig. 11(b). The flexibility of the structure 

increases with the increase in storey number. This means that higher modes may affect the resonance 

response, depending on the mode shape of the structure.  

 

 

5. Conclusions 
 

In this study, it has been investigated which mode shapes are effective in the resonance response 

of a multi-storey frame. The analyses are restricted by the vibrations in the vertical direction under 

the moving load sequence of the structure. The beams and columns forming the structure are 

modelled by Euler-Bernoulli beam theory. The graphs are plotted for the midpoint of the top beam 

on which the load moves. First, natural frequencies and mode shapes of the structure are determined. 

Then, the effect of the velocity of the moving load sequence and the load-span / beam length ratio 

on the DMF is determined by using the 3D V-𝐿̅-DMF plots and its 2D projections. Three typical 

points are selected from 3D graphics. Furthermore, these points are on the three basic directions 

seen in the 2D graph corresponding to the critical speeds. Last, time history and frequency responses 

are obtained at these points. It has been determined which mode is excited in the specified directions. 

The followings are the conclusions made from this study: 

• The resonance response of the multi-storey frame takes place in one of the mode shapes where 

the displacement of the top beam in the vertical direction is significant. 

• Large DMF values are obtained in the first mode where the displacement of the top beam was 

significant. These mode shapes were determined as 2nd mode for the 1-storey frame, 3rd mode for 

the 2-storey frame, 4th mode for the 3-storey frame and 5th mode for the 4-storey frame. This 

leads to result that if the storey number of the structure is N, the effect of N+1th mode on the 

resonance response should be taken into account. 

• The increase in the storey number of the structure has also increased the effects of the higher 

modes on the DMF. For example, the effects of the 5th and 6th modes on dynamic response are 

close to each other in the 4-storey frame. 
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