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Abstract.  Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been 

applied in various fields over the years and its applications are expected to grow in number with the passage 

of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and 

foundation engineering models especially since the success of each project relies on numerous amounts of 

data. In this study, two applications of AI in the field of geotechnical and foundation engineering are 

presented – spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of 

clay.  SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no 

available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) 

based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the 

calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with 

high efficiency by using lesser computation resources. The results of the study showed that ANN can be a 

valuable, powerful, and practical tool in providing various information that is needed in geotechnical and 

foundation design. 
 

Keywords:  geotechnical and foundation design; artificial intelligence; artificial neural networks; SPT; 

soil profile data; consolidation 

 
1. Introduction 
 

The Standard Penetration Test (SPT) is a well-known field test for subsurface geotechnical 

investigation because of its ability to extract soil samples for further laboratory testing. In many 

instances, the standard penetration test number of blows per foot or SPT-N (blows/30cm) is 
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directly used with widely established correlations to derive numerous parameters for foundation 

design such as optimal dimensioning, load capacity, stress analysis, seismic analysis, and 

settlement of shallow and deep foundations (Kim and Mission 2011, ErzÍn and Gul 2013, Singh 

and Sawant 2014, Ganaie and Sawant 2015, Abbas et al. 2016, López-Chavarría et al. 2017, 

Velázquez-Santillán et al. 2018, López-Chavarría et al. 2019, Mandal and Maity 2019). Due to the 

limited number of SPT borehole investigations at any given particular site, geotechnical engineers 

may often interpolate, extrapolate, or average from nearby existing available borehole locations to 

estimate the unknown subsurface parameters at any other point or location. Recently, Artificial 

Intelligence (AI) has become very popular and has been applied in many engineering problems 

(Chakraverty and Nayak 2012, Sunny et al. 2016, Chore and Magar 2017, Ayat et al. 2018) 

because it allows the modeling of nonlinear processes. In this study, the use of Artificial Neural 

Networks (ANN) for spatial interpolation of SPT-N and soil profile data (Kim et al. 2013) is 

explored, and its various advantages and benefits compared with the other classification and 

estimation methods are also compared. 

Predicting the soil settlement or consolidation of clay is important in the design of foundations 

especially in the analysis of negative skin-friction in piles (Liu et al. 2012, Cao et al. 2014, Kim et 

al. 2018). The typical solution procedure for the prediction of soil settlement and excess pore 

water pressure profile at any specific time during the consolidation process is performed by 

numerical analysis of the 1D consolidation equation proposed by Terzaghi (1943) using the finite 

difference method (FDM) or by manually using tables and design charts. Different methods of 

predicting the consolidation of clay can also be found in the works of Mikasa (1963), Gibson et al. 

(1976), Fox et al. (2014), and Brandenberg (2016). In FDM, solutions are processed incrementally 

at a small time-step up to the final time of interest. However, having a small time-step interval, a 

long consolidation time, and a thick clay layer deposit, usually involves a large number of 

iterations that can consume a lot of computer memory and huge sizes of data file, which can slow 

down the computational process and may take longer computer processing time to finish (Kim et 

al., 1995). It is therefore not possible to directly predict the future conditions of the soil without 

first chronologically solving the current and sequential conditions that lead to the final conditions. 

Hazzard and Yacoub (2008) presented a hybrid computational scheme for the numerical solution 

of 1D consolidation, based on the method described by Booker and Small (1975), to speed up the 

required computational time by increasing the time-step gradually as the solution progresses while 

maintaining the required stability and accuracy. However the suggested method, still suffers from 

the chronological or sequential type of solution in which the needed computational resources such 

as computer memory, output file size, and the processing time accumulates as the solution 

progresses. To predict the one-dimensional consolidation of a homogeneous clay layer under a 

uniform surcharge load with high efficiency and accuracy, the program ANN-1DConsol was 

developed in the MATLAB graphical user interface (GUI). With sufficient training of the ANN 

model and without resorting to a stepwise progressing and sequential solution procedure, the 

method provides reliable and direct estimates of the excess pore pressures and settlement in the 

clay layer at any time during the progress of consolidation using much less computational 

resources compared to FDM. Numerical examples are presented to validate the prediction 

performance and to demonstrate the advantages of the ANN in comparison with the conventional 

finite difference method. 
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2. Different methods of spatial interpolation of standard penetration test (SPT) data 
 

2.1 Nearest borehole method 
 

The nearest borehole method is a similar adaptation of the nearest neighbor algorithm (Cover 

and Hart 1967), which is one of the simplest and most classical non- linear classification 

algorithms. The method classifies objects based on closest training examples in the feature space. 

Any point within an area on a site has a known distance to existing SPT borehole locations. When 

a point is closest to a nearby SPT borehole location, then the area bounded by all these points is 

assumed to have the same SPT- N data and soil profile with the nearest single borehole as shown 

in Fig. 1. 

 

2.2 Linear interpolation and spatial averaging method 
 

Instead of copying the SPT-N and soil profile data from the nearest single borehole, another 

method of estimating the soil SPT-N characteristics of any particular point at a site is to linearly 

interpolate in two (2D) or three (3D) dimensions from nearby boreholes surrounding the point or 

location in question. When more than two or more nearby borehole locations are available, then a 

common approximation is to perform spatial averaging of all the SPT-N data at any specific depth, 

as shown in Fig. 2. 
 

 

 

Fig. 1 Nearest borehole method 

 

 

Fig. 2 Linear interpolation and spatial averaging method 
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2.3 Spatial interpolation by Artificial Neural Network (ANN) 
 

A major drawback of the spatial method using linear interpolation by averaging is its inability 

to properly characterize or classify the soil profile at any unknown site in question, especially 

when dealing with non-numeric data (ex. soil type). The spatial interpolation method using 

Artificial Neural Network (ANN) has all these capabilities to perform soil parameter estimation, 

pattern recognition, classification, and nonlinear fitting. 

ANN is a set of connected input-output units, where each connection has weights and biases 

associated with it. Training and learning is being performed by a feed forward-back propagation 

algorithm: (a) the inputs are fed simultaneously into the input layer, (b) weights and biases are 

initially assigned and the weighted input are fed simultaneously into the hidden layer, (c) the 

hidden layer’s weighted outputs can be input to another hidden layer, (d) the weighted outputs of 

the last hidden layer are inputs to units making up the output layer, (e) predicted output is 

compared with the target and the error is propagated backwards by updating the weights and biases 

to reflect  the  error  of  the  network  classification  until  a  specific  performance  and termination 

criteria is achieved. 

The structure of the ANN network for spatial interpolation of SPT and soil profile data is 

shown in Fig. 3. Input layer consists of the spatial coordinates (X, Y, Z) data and depth of 

groundwater table (W) of the respective existing boreholes. Output layer consists of the SPT-N 

(blows/30 cm) profile and a general soil classification (cohesive or cohesionless) at the respective 

depths Z. 

Where the ANN input and output data are generally on widely different scales, it is necessary 

to normalize them to speed up training and obtain better results, such that they are compatible with 

the range of hidden layer activation functions (ex. -1.0 to 1.0, or 0 to 1.0). The min-max 

normalization method is then used to rescale the input and output data for training by linear 

interpolation within the range from minimum of 0 to maximum of 1.0. Let p be the raw input or 

output data, and given the maximum (pmax) and minimum (pmin) value of p, a normalized data pn 

can be derived as follows, 

𝑝𝑛 =
(𝑝 − 𝑝𝑚𝑎𝑥)

(𝑝𝑚𝑖𝑛 − 𝑝𝑚𝑎𝑥)
 (1) 

 

 

 

Fig. 3 Artificial Neural Network (ANN) method 
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2.4 Application example of ANN for predicting SPT-N and soil profile 
 

Shown in Fig. 4 is an area that is being modeled and studied, which is part of the IRPC-UHV 

project site in Rayong, Thailand (MAA Geotechnics, 2013). The studied site consists of 17 SPT 

boring holes, in which 13 were used for ANN training and the remaining 4 for validation and 

testing. Shown in Fig. 5 is the site classification based on nearest borehole method. Linear 

interpolation and spatial averaging method using nearby boreholes have to be performed at every 

depth interval in order to completely define the whole SPT-N profile at every location. Shown in 

Fig. 6 is an example result of  SPT-N  contours  using  linear  interpolation  method  of  SPT  data  

from  nearby boreholes at depth z = 20.0m. As mentioned, the linear interpolation and spatial 

averaging method, while dealing only with numeric data, lacks the ability to estimate the probable  

classification  of  the  soil  at  every  depth  (since  we  cannot  interpolate  or average between say 

sand and clay). The ANN architecture shown in Fig. 3 is then modeled in MATLAB, in which 

input and output data were normalized for training and simulation. 

Shown in Fig. 7 is a comparison between the measured and predicted SPT-N values and soil 

profiles. Fig. 7 shows that ANN has the ability to classify and estimate the SPT and soil profile at 

any location and depth within the  area  boundary  of  the  trained  network,  in  which  good  

agreement  is  seen  in comparison with measured data and referred results from nearby boreholes. 

A distinct feature of the predicted results by ANN is the ability to generalize or smoothen the SPT-

N profile throughout the depth and thereby removing spatial variations. Results are also compared 

in terms of the soil classification at the respective depths, in which general predictions by ANN, 

either cohesive soil (clay=C) or cohesionless soil (sand=S), showed fair agreement with those from 

field SPT results. When compared with the reliability of soil classification, ANN achieves up to 

about 70-80% of the prediction, and in which in most cases exceeding those results from nearest 

borehole method. 

 

 

 

Fig. 4 Project study area and borehole location 
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Fig. 5 Nearest borehole classification 

 

 

Fig. 6 SPT-N Contour using linear interpolation (at depth=20 m) 

 

  
(a) BH-18 (b) BH-19 

Fig. 7 Comparison of measured and predicted SPT-N and soil profiles 
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(c) BH-21 (d) BH-23 

Fig. 7 Continued 

 

 

3. Prediction of one-dimensional consolidation 
 

3.1 Finite difference solution of the 1D consolidation equation 
 

Terzaghi (1943) derived the one-dimensional consolidation equation for a homogenous layer of 

clay with thickness Hc under a uniformly distributed surcharge load q that is given as, 

𝜕𝑢

𝜕𝑡
= 𝐶𝑣

𝜕2𝑢

𝜕𝑧2
 (2) 

where u is the excess pore water pressure, t is the consolidation time, z is the depth, and Cv is the 

coefficient of consolidation. Eq. (2) is based on the assumption that the coefficient of 

consolidation Cv remains constant during the consolidation process, the effect of self-weight 

consolidation is neglected, the soil profile is fully saturated, and the consolidation settlements are 

small or infinitesimal. The finite difference form of Eq. (2) for numerical analysis in time (t+∆t) is 

written as, 

𝑢𝑧,(𝑡+∆𝑡) = 𝑢𝑧,𝑡 +
𝐶𝑣∆𝑡

∆𝑧2 [𝑢(𝑧+∆𝑧),𝑡 − 2𝑢𝑧,𝑡 + 𝑢(𝑧−∆𝑧),𝑡] (3) 

In Eq. (3), ∆t = time-step and the depth increment ∆z = Hc/n, where n is the number of sublayer 

elements in the finite difference grid. Eq. (3) is applied using the following initial and boundary 

conditions with respect to the excess pore pressure at the depth and time coordinates u(z,t) in 

which: 

u(z,0) = q (initial condition) (4) 

u(0,t) = 0 (at a permeable top surface boundary) (5) 

u(Hc,t) = 0 (at a permeable bottom surface boundary) (6) 
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Fig. 8 Finite difference nodes in the numerical solution of the 1D consolidation equation 

 

 

𝜕𝑢

𝜕𝑧
(𝐻𝑐 , 𝑡) = 0(at an impermeable bottom surface boundary) (7) 

The impermeable boundary condition defined by Eq. (7) means that there can be no flow in the 

perpendicular direction. Eq. (8) is implemented numerically by creating a dummy node in the 

finite difference grid after the bottom surface, which can be expressed in finite difference form as, 

(𝑢𝐻𝑐+∆𝑧
) − (𝑢𝐻𝑐−∆𝑧

)

2∆𝑧
= 0, 𝑜𝑟 (𝑢𝐻𝑐+∆𝑧

) = (𝑢𝐻𝑐−∆𝑧
) (8) 

Eq. (3) implies that if the solution for u has been determined at time t, then the values at time 

(t+∆t) can be calculated by marching the solution downward with depth and forward in time as 

shown in Fig. 8. To ensure that the approximate solution of Eq. (3) converge to the exact solution 

as ∆t and ∆z approaches zero, the following criteria should be satisfied in determining the time and 

depth increments, ∆t and ∆z, respectively (Forsythe and Wasow 1960): 

𝐶𝑣∆𝑡

∆𝑧2
= 𝛽 ≤

1

2
 (9) 

The total settlement S can be calculated using the coefficient of compressibility mv and excess 

pore pressure u by numerically integrating along the depth profile as follows: 

𝑆 = 𝑚𝑣 ∫ (𝑞 − 𝑢)
𝐻𝑐

0

𝑑𝑧 = 𝑚𝑣𝑞𝐻𝑐 −
𝑚𝑣∆𝑧

2
∑(𝑢𝑛 + 𝑢𝑛+1)

𝑛

𝑛=1

 (10) 

 

3.2 Artificial Neural Network (ANN) model for predicting one-dimensional consolidation 
 

Neural networks are composed of simple elements operating in parallel, which are trained to 

perform a particular function by adjusting the values of the connections (weights) between 

elements so that a particular input leads to a specific target output (Demuth et al. 2009). For a 

range of input values for H, Cv, mv, q, and the consolidation time t, and their corresponding outputs 

in terms of the excess pore pressure u, input-target pairs were generated from the numerical results 

using the FDM, which are needed to train the network. To improve training and performance, the 
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original input-output dataset were preprocessed by normalizing the output excess pore pressure u 

profile in terms of the applied surcharge load q, that is, u/q, and  normalizing the actual 

consolidation time t from the input in terms of the time factor Tv defined as, 

𝑇𝑣 =
𝐶𝑣𝑡

𝐻2
 (11) 

where t = actual consolidation time, H = length of the longest drainage path, and in which H = Hc 

for single drainage and H = Hc/2 for double drainage. 

The typical architecture of the ANN model for predicting 1D consolidation is shown in Fig. 9. 

The optimized network architecture of the model has one input layer, one hidden layer with four 

neurons, and 21 neurons in the output layer, which was trained for a performance goal of 10-6. Two 

ANN models were being developed and presented in this study: net1 for consolidation in single 

drainage boundary conditions, and net2 for double drainage conditions. From the various 

combinations of the range of input parameters, a total number of 4,800 samples in each case were 

used for training, which were obtained from the original number of input-output dataset for 

 

 

 

Fig. 9 Typical architecture of the ANN model for 1D consolidation prediction 

 

 

Fig. 10 Problem geometry and program user interface of ANN-1DConsol 
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ANN corresponding to the total number of required iterations to reach the final time factor Tv = 2.0 

and using the criteria β = 0.25. The computer program ANN-1DConsol was then developed by the 

authors and its graphical user interface (GUI) is also shown in Fig. 10. 

 

3.3 Numerical validation of ANN model in predicting 1D consolidation 
 

A 10.0 m thick single layer of homogeneous clay was subjected to an instantaneous uniform 

surcharge load q = 50 kPa (Fig. 10). The consolidation properties are as follows: Cv = 70 m2/year 

and mv = 0.0001 m2/kN. It is desired to determine the development of excess pore pressures and 

settlement during the progress of consolidation for single and double drainage conditions. Using 

finite difference solution, the thickness of the clay layer was subdivided into 20 elements and a 

time step corresponding to a factor β = 0.25 was selected. Results were compared between the 

FDM predictions and that using the ANN models net1 for single drainage and net2 for double 

drainage. Fig. 11 compares the development of the excess pore pressures corresponding to the time 

factors Tv = 0.05, 0.25, 0.50, and 1.0 in which it can be seen that ANN predictions are in good 

agreement with FDM results. Shown in Fig. 12 are the development of settlement in the layer in 

which ANN results are also equivalent to the settlement predictions by FDM. 

 

 

  
(a) One-way drainage (b) Two-way drainage 

Fig. 11 Comparison of predicted excess pore pressure profiles between FDM and ANN 

 

  
(a) (b) 

Fig. 12 Comparison of predicted settlements between FDM and ANN 
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Having validated the accuracy of the ANN for predicting 1D consolidation, whose results are 

comparable with the FDM, the ANN method is advantageous due to its quick speed and high 

efficiency. The FDM and ANN predictions were implemented using the MATLAB program in a 

2.83 GHz quad-core computer with 6 Gb memory. The central processing unit (CPU) time in 

seconds (s) as well as the size of the output file in kilobytes (kb) were compared. Due to the 

sequential nature or the time-marching solution process of the FDM, the CPU time and output file 

sizes or memory requirements increases especially when consolidation results are needed at longer 

consolidation times. In contrast, equivalent and accurate predictions are still being provided by 

ANN in which direct and quick results can be made at any consolidation time of interest. The 

prediction method of 1D consolidation can therefore be reliably made by ANN and can be more 

efficient by about 6 % to 278 % compared to the FDM and thus minimizing the needed 

computational resources. 

 

 

4. Conclusions 
 

The use of  Artificial  Neural  Network  (ANN)  as  applied  in  geotechnical and foundation 

engineering for spatial interpolation of Standard Penetration Test (SPT) data and soil profile 

classification, and prediction of consolidation of a homogeneous clay, has been demonstrated to be 

a promising alternative to conventional and classical methods. Predicted results of SPT-N profile 

by ANN have shown to be in good agreement with measured data, with the ability to generalize 

the soil profile and remove spatial variations. In addition, predicted performance of soil profile 

classification method by ANN is shown to generally exceed the results from the approximate 

nearest borehole classification method. ANN can also provide accurate and direct estimates of the 

excess pore pressures and settlement at any time during consolidation without resorting to the 

stepwise progressing solution procedure. The prediction performance of the ANN has been 

validated by the equivalent results with FDM. Hence, ANN can be used as a direct, accurate, and 

quick tool for spatial interpolation of SPT and soil profile data, excess pore pressures, and soil 

settlement without the need to perform any lengthy manual calculations or using tables and charts. 

In summary, the results of the study showed that ANN can be a valuable, powerful, and practical 

tool in providing various information that is needed in geotechnical and foundation design. 
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