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Abstract.  In solid-liquid two phase flow, the knowledge of how descending solid particles affected by the 

presence of downstream wall is important. This work studies at what interstitial distance the velocity of a 

vertically descending sphere is affected by a downstream wall as a consequence of wall-modified 

hydrodynamic forces through a validated dynamic model. This interstitial distance-the hydrodynamic 

coupling distance δc-is found to decay monotonically with the approach Stokes number St which compares 

the particle inertia to viscous drag characterized by the quasi-steady Stokes’ drag. The scaling relation δc-St-1 

decays monotonically as literature below the value of St equal to 10. However, the faster diminishing rate is 

found above the threshold value from St=10-40. Furthermore, an empirical relation of δc-St shows 

dependence on the drop height which clearly indicates the non-negligible effect of unsteady hydrodynamic 

force components, namely the added mass force and the history force. Finally, we attempt a fitting relation 

which embedded the particle acceleration effect in the dependence of fitting constants on the diameter-scaled 

drop height. 
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1. Introduction 
 

Particle-laden solid-liquid two-phase flows appear in a wide range of industrial applications 

(fluidized bed, slurry transport, pharmaceutical process, suspension filtering) and natural events 

(debris flows, sedimentation, soil liquefaction). Though we have established fair knowledge to 

describe the motion of a continuum fluid and its transport phenomenon, the addition of a second 

phase in discrete form brings new mechanisms for bulk momentum and energy transport. For 

example, when particles possess sufficient inertia to move relative to local fluid motion, they can 

interact with local flow structure and even come into contact, collide and rebound to redistribute 

bulk momentum and energy. Hence, the dynamic process at the constituent size level shall 

characterize the microscopic mechanisms for bulk macroscopic transport process. Extensive works 
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have been reported for how the particle-wall and particle-particle collision process is modified by 

interstitial liquid in terms of a wet coefficient of restitution, ewet, as the ratio of rebound velocity to 

that of the impact. Hence, ewet measures the loss proportion of particle kinetic energy lost to 

viscous dissipation as well as inelastic deformation. Various empirical evidences have shown that 

ewet diminishes monotonically from the dry coefficient of restitution with a dimensionless particle 

Stokes number, Sti=mpUi/6πμa2, that compares particle inertia force to hydrodynamic drag 

characterized by Stokes drag (Joseph 2001, Gondret et al. 2002, Yang and Hunt 2006, Simeonov 

2015). Here, mp is the mass of the solid particle of a characteristic radius a and solid density ρs, Ui 

is particle impact velocity, and μ is liquid viscosity. For a spherical particle, mp=4/3πa3ρs and it is 

common to express Sti=(ρs/ρ)Rei/9 in terms of the solid-to-fluid density ratio, γ=ρs/ρ, and an 

impact Reynolds number, Rei=2aρUi/μ. 

Other than direct collisions, it has been reported that the motion of two non-touching immersed 

solid objects may affect each other through the interstitial liquid. Joseph et al. (2001) conducted 

systematic experiments to measure the velocity of an immersed spherical pendulum when it swung 

towards a vertical flat surface at the pendulum lowest trajectory. Another set of control 

experiments was conducted by removing the target wall while using the same pendulum set up and 

experimental fluid. The velocity-trajectory profiles from the two sets of experiments were 

compared as shown in Fig. 1(a) and pendulum velocity deduction was detected when it moved 

close enough to the wall. Joseph et al. (2001) call this interstitial gap at which the wall has a 

modifying effect on local hydrodynamic force as the critical distance of wall influence, δc, though 

no clear definition has been given. This length scale is then linked to the particle approach Stokes 

number, St, calculated using the instantaneous approach velocity when the sphere moved to 1.5 

diameters from the wall. As we no longer use the particle impact velocity to calculate particle 

Stokes number, the subscript ‘i’ has been removed for distinction. A monotonic decay of δc with St 

was reported over the range of 0≤δc≤a and 9≤St≤68 which phenomenon is later discussed by Izard 

et al. (2014) for how to set the initial condition of an immersed collision model. 

Limiting to the condition when the sphere approached at a constant velocity, Izard et al. (2014) 

consider the lubrication force as the primary hydrodynamic force in which the wall amplifies the 

Stokes’ drag by the inverse of radius-scaled interstitial gap, denoted by δ*=δ/a. A scaling is given 

on the particle motion as mpdu/dt~6πμau/δ* which is further reduced to a dimensionless form St 

du*/dt*~u*/δ* using the approach velocity and the sphere radius a in the scaling analysis (Davis et 

al. 1986, Joseph et al. 2001). Based on this, the authors propose a scaling for the critical distance 

as *

c ~St-1 and claimed agreement to the experimental data by Joseph et al. (2001) as shown in 

Fig. 1(b). Though the monotonic decay of *

c  with St is captured with this scaling argument, it 

may be argued that the experimentally measured *

c  seems to decay slower than St-1 below St~30-

40 but faster above this St. 

Hence, this work is set to further examine this phenomenon with a validated dynamic model 

developed by Yang (2006, 2010). As the pendulum velocity reduction near wall may be 

interpreted as a non-contact coupling of the sphere dynamics to the wall through the action of 

ambient fluid, we prefer to call this phenomenon as hydrodynamic coupling (Yang 2006). A clear 

definition will be introduced to define the hydrodynamic coupling distance based on the approach 

velocity following the original concept of Joseph et al. (2001). As the pendulum swing examined 

by Joseph et al. (2001) is always unsteady unlike the steady approach assumed by Izard et al. 

(2014), we decide to study the vertical descent of a sphere towards a wall as both steady and 

transient dynamics can be developed. The knowledge of hydrodynamic coupling distance provides  
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Hydrodynamic coupling distance between a falling sphere and downstream wall 

 

 

(a) (b) 

Fig. 1(a) Experimental evidence showing how a downstream wall at d=0 modifies the pendulum approach 

velocity. The comparison is made for the velocity-position data for a free swing pendulum (square) and one 

moving towards a wall (triangle), copied from Fig. 9 in Joseph et al. (2001). (b) Coupling distance (hw here 

scaled by the sphere radius R) as a function of approach Stokes number. Comparison of the data from Fig. 

1(a) and the scaling argument by Izard et al. (2014), copied from Fig. 11 in Izard et al. (2014) 

 

 

crucial information for the modeling and simulation of both immersed collision process as it can 

be used to determine the minimum computation domain (Hou et al. 2012, Kempe and Fröhlich 

2012, Li et al. 2011, Wang and Eldredge 2015). The information also complements the existing 

theories of fluid-structure interaction problems as it gives a physical and explicit criterion to 

determine if the existing theories and computation algorithms developed under the infinite fluid 

domain assumption remains valid (Tallec and Mouro 2001, Soares 2012, Ibrahimbegovic et al. 

2016, Lefrançois et al. 2016). In the following, we introduce the dynamic model and how we solve 

and process the numerical data to obtain the desired information and then conclude the work with 

discussions and possible future investigations.  

 

 

2. Dynamic model 
 

Consider a solid sphere of radius a and density ρs that descends towards a horizontal wall from 

an interstitial distance δ at velocity U in an incompressible and viscous liquid of density ρ and 

viscosity μ as sketched in Fig. 2. To describe this motion, Yang (2010) has proposed a model 

based on an experimentally-validated model developed for the immersed pendulum swing 

examined by Joseph et al. (Yang 2006). The model is composed of a sphere trajectory equation 

and an equation of motion as 

* * *( ) ( , ) ( ) ( , )p p f QD AM H

d
U

dt

dU
m m m g F Re F F Re

dt



  


= −


 = − + + +


 
(1a, b) 
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In Eq. (1b), mf =(4π/3)a3ρ is the fluid mass displaced by the sphere volume so that the first term 

on the right hand side of Eq. (1b) is the effective gravity force taking into account of buoyancy 

force. The following terms are the quasi-steady viscous drag, FQD(Re, δ*), and two unsteady 

components-the added mass force, FAM(δ*), and the history force FH(Re, δ*)-as the squeeze flow is 

intrinsically unsteady. The quasi-steady viscous drag is expressed as the Stokes drag multiplied 

with a correction factor C as 

* *( , ) 6 ( , ).QDF Re aUC Re  = −  (2) 

When the sphere is far away from the wall and moves at moderate particle Reynolds number 

Re<800 calculated by a local velocity U(δ*), C(Re, δ*)=1+0.15Re0.687 which corrects Stokes’ drag 

for liquid inertia (Clift, Grace and Weber 1978). When the sphere moves to the vicinity of wall, 

this correction factor is changed to the analytic wall correction factor by Cox and Brenner (1967) 

as 

* * *

*

1 1 1
( ) 1 1 ,

5 4
C ,Re Re log  



  
= − +  

  
 (3) 

when the far-field factor falls below this near-field factor. This factor is derived analytically by 

solving the unsteady Stokes equation for fluid motion between the moving sphere and the wall 

taking into account of liquid inertial with the asymptotic analysis. This wall correction factor 

grows monotonically with diminishing δ* and asymptotes to the lubrication force when δ* 

approaches zero, leaving only the first term of Eq. (3) that recovers the argument by Izard et al. 

(2014). 

 

 

 
Fig. 2 Illustration of the studied problem that a fully immersed sphere in vertical descent towards a 

downstream wall 
 

 

The added mass force can be developed by the potential flow theory in which the flow around 

the approaching solid sphere is constructed by superposing infinitely many image dipoles of 

specific strengths and at specific locations to satisfy the no-penetration boundary condition on both 

solid surfaces (Yang 2010) as 
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*
* * 2

*

1 1 ( )
( ) 1 ( ) ,

2 4

f

AM f

mdU dW
F m W U

dt a d


 


 = − + +   (4) 

where W(δ*) is a wall function of δ* as 

3
* *

* *

* 1 * 1
1 1

( ) 3 ( ),
N N

N N

W
 

  
 

 

+ +
= =

 −
= = 

− 
   (5) 

with * * * 2( 1) ( 1) 1  = + + + −  and * * * 2( 1) ( 1) 1  = + − + − . The first term on the right 

hand side of Eq. (4) is similar to the classic added mass force in the aspect of its dependence on the 

sphere acceleration, dU/dt, and some apparent fluid mass, augmented here by W(δ*) due to the 

infinitely many images. Once the sphere moves closer to the wall, the strength and the location of 

these image dipoles change accordingly to induce variation in the total fluid impulse that in turn 

renders the last term of Eq. (4) involving with dW/dδ*. This component may be interpreted as a 

dynamic pressure force as if we multiply a component ρU2 with a surface projection area πa2. 

For application, a simpler formula for W(δ*) is necessary and Yang has proposed a composite 

formula by integrating a far-field five-term partial sum W5(δ
*) and a near-field Padé 

approximation, P54(δ
*), with a bridge function, B(δ*), as 

( )

( )

( )

5
* * *

5

1

3
* * * *

0

5 *

0* *

56 6 *

0

( ) ( )                for 0.1287

( ) ( ) 1          for 0.0618 0.1287

1
( )    for 0.0618

1

N

j

j

j

j

jj

j

jj

W

W B a

b
P

c

   

   


 



=

=

=

=



 = 




= = +  



+
= 

+









 (6) 

with the expansion coefficients summarized in Table 1. This was developed to ensure that the 

deviation from the 200-term partial sum of Eq. (5) is below 0.4% for all δ*≥0 and this particular 

200-term partial sum deviates from the analytic limiting value at δ*=0 by at most 0.61%. Hence, an 

overall convergence to the infinite series can be confirmed. 
 

 

Table 1 Expansion coefficient for the composite formula for W(δ*) in Eq. (6). 

 j=0 1 2 3 4 5 6 

aj 44.27 -110.95 94.04 -26.80    

bj 0.605605 984.634 5.835E5 1.513E8 1.606E10 4.743E11  

cj 1 1642.3 9.868E5 2.621E8 2.292E10 1.027E12 5.112E12 

 

 

The differentiation of W(δ*) with respect to δ* can be evaluated with term-by-term 

differentiation and a three-term partial sum is used as a far-field approximation when δ*>1 (Yang 

2006). However, the slow convergence of the entry derivatives dϖ/dδ* makes the partial sum 
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approximation unpractical in the near field while the unique structure of the continued fraction in 

ϖ(δ*) is destroyed upon differentiation and hence dW/dδ*≠dP54/dδ*. Hence, a least-square fitting 

formula, with a standard deviation of 9.24×10−4, is sought for the 40-term partial sum to complete 

the final composite formula for δ*≤1, using h*=δ*+1 for a more compact expression, as 

( )( )

( )

( )( )

( )( ) ( )( )

( ) ( )

* *2
3

3 4*
*2 *2 *2 *2 *2

1

* *4 *2

3 4
*2 *2 *4 *2 *2

*2
* *

* *2 *2 *4 *2

4 * 1/2 *1/2

*

3 4 31

128 1 2 1 2 1 4 1

8 8 1
   

2 1 4 1 128 1 2 1

1 2 1
      for 1 2

16 1 16 1

0.241 2.3 10 0.311 6.6 10

N

h hd

d h h h h h

h h h

h h h h h

dW h
h

d h h h h

d

d









 



=

− −

−
= −

− − − −

− +
+ −

− − − −

−
= + − = + 

− −

= −  − + 



( ) ( )

40
2 *

1

2 * 4 * * 1/2 *   9.8 10 2.06 10    for 2

N

log log h



  

−

=

− − −

















+  −  






 (7) 

The last history force FH(Re, δ*) accounts for the temporal delay in the boundary-layer 

development when the relative velocity between a solid surface and its adjacent fluid varies in 

time. Yang considered how a wall-augmented pressure field can result in a faster free stream 

tangential velocity at the sphere surface to propose 

* * 3/2

0
( , , ) 6 ( ) ( , ) ,

t

H

dU
F t Re aH K Re t d

d
    


= − −  (8) 

with H(δ*)=1+W(δ*) that can be computed according to Eq. (6). In Eq. (8), K(Re, t-τ) is a semi-

empirical time kernel developed by Mei and Adrian (1992) for Re<100 as 

( ) ( )

( )

2
1/21/4 23

32
( ) ,

2 0.75 0.105

t U t
K t

a a Re

   




−

   −  − 
− = +    

+     

 (9) 

which follows Basset classic kernel (t-τ)-1/2 at shorter times but decays faster at large times. 

The final equation of motion for a fully immersed solid sphere of mass mp released from an 

initial drop height of H to descend vertically towards a wall can be formulated as 

* * *( , ) ( ) ( , )p G B D AM H

d
U

dt

dU
m F F F Re F F Re

dt



  


= −


 = − + + +


 (10a, b) 

where a rectangular coordinate system is defined from the wall. The initial drop height gives 

δ(0)=H and zero initial velocity gives dδ/dt(0)=0 which leads to mpdU/dt=FG-FB-

1/2mf[1+W(H/a)]dU/dt in Eq. (10b). This set of equations can be made dimensionless using the 
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sphere radius, a, and terminal velocity, UT, as characteristic length and velocity scales into 

*
*

*

* * *
* *2

* 2 * *

*
* * * 3/2 * * *

*0

1 1 ( )
1 1 ( )

2 4

18 18
              ( , ) ( ) ( , )

P P

T

t

T T

d
u

dt

du ag du dW
W u

dt U dt d

du
u C Re H K Re t d

Re Re d



  


  

   



= −


  

 = − − + +    
 


 − − −




 (11a, b) 

with δ*=δ/D, u*=u/UT, and t*=2a/UT, and ReT=2aρUT/μ. If we further divide out the solid-to-liquid 

density ratio γ=ρp/ρ, we may rewrite Eq. (11b) to reveal the dependence on particle Stokes number 

and density ratio as 

* * *
* *2

* 2 * *

*
* * * 3/2 * * *

*0

1 1 1 ( )
1 1 ( )

2 4

2 2
         ( , ) ( ) ( , )

T

t

du ag du dW
W u

dt U dt d

du
u C Re H K Re t d

St St d




   

   


 
 = − − + +   

 

− − −

 (12) 

Eq. (12) clearly demonstrates how particle inertial counteracts buoyancy force and FAM through 

the factor 1/γ while the leading coefficient 1/St in the last two terms also indicates the diminishing 

effect of viscous force components by particle inertia. The set of equations Eq. (11a) and Eq. (12) 

were solved numerically by the fourth-order Runge-Kutta method. 

To provide a reference descent dynamics without wall effect U∞(t) =u*
∞(t)UT, we turned off all 

the wall correction factors while keeping identical fluid and sphere properties and initial 

conditions. For example, first solved the descent dynamics of the same sphere of density 

ρs=2532.4 kg/m3 and diameter D=42 mm in four liquids of different viscosities μ=46.8, 75, 134.4 

and 241.8 cP but identical liquid density ρ=1245 kg/m3 to achieve four descents towards their 

terminal velocities Fig. 3. Though real liquid density should change with its viscosity, the degree 

of variation is much milder and hence we kept it a constant to fix the solid-to-liquid density ratio. 

It is checked that changing density accordingly does not change the results we observe for the 

coupling distance. 
 

 

 
Fig. 3 The velocity profile towards a terminal velocity for a solid sphere of diameter D=42 mm and density 

ρs=2532.4 kg/m3 descending in a fluid of different viscosities μ but identical density ρ=1245 kg/m3 
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We then introduced a target wall at different distances, H, from the release point to simulate the 

descent dynamics, UH(t, δ), and compare it to U∞(t). We define the occurrence of hydrodynamic 

coupling by when UH(t, δ) drops by 5%U∞(t) and the associated interstitial distance as the 

hydrodynamic coupling distance. Two sets of comparison were examined. 

In the first set of comparison, the wall was introduced far enough so that the sphere developed 

its terminal velocity UT before experiencing the wall effect. For the four examined liquid 

viscosities, μ=46.8, 75, 134.4 and 241.8 cP, we chose H=65D, 55D, 45D and 40D, accordingly, 

which height was determined from the descent dynamics without wall 
0

( )
T

H U t dt=   by 

choosing a moment T after U∞(t) had reached UT. A shorter distance is needed when descending in 

a more viscous fluid for its stronger viscous dissipation. 

For example, H=40D was chosen to compute the descend dynamics of a sphere of diameter 

D=42 mm in a liquid of μ=241.8 cP and ρ=1245 kg/m3 as shown in Fig. 4(a). The developed 

terminal velocity agrees to the theoretical value shown by the green dashed line and the sphere 

abrupt deceleration near wall was examined at a finer time resolution in Fig. 4(b). We find the 

sphere velocity dropped below 0.95UT between t=2.260081 s and 2.260082 s with the 

corresponding velocity and gap data denoted by *

, 1 1( , )HU a+ +  and *

, 1 1( , )HU a− − . The diameter-

scaled coupling distance, *

c , can then be interpolated by 

* *
, 1

* *

, 1 , 1

0.95 T H c

H H

U U

U U

 

 

− −

+ − + −

− −
=

− −
 (13) 

to obtain *

c =1.047×10−2. The associated particle approach Stokes number is evaluated with UT to 

give St=38.33. 
 

 

  
(a) (b) 

Fig. 4(a) Comparison of the descending velocity profile of a solid sphere towards wall with the terminal 

velocity (green dashed line) and its 5% reduction (red dashed line). (b) Close examination of the profile near 

wall. Here, we use D=42 mm, ρs=2532.4 kg/m3, μ=241.8 cP and ρ=1245 kg/m3 

 

 

In the second set of comparison, the wall was introduced to a much closer distance at H=1D, 

3D and 5D so that the sphere did not develop its terminal velocity before reaching the wall. Using 
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the same solid sphere and liquid as that employed in the simulation in Fig. 4, the descent velocity 

profiles are compared in Fig. 5(a). The initial segment of U3D(t) and U5D(t) closely follow U∞(t) as 

if there was no downstream target wall while U1D(t) becomes slower that the rest profiles shortly 

after the release-around t=0.01 s as shown in Fig. 5(b)-indicating non-negligible wall effect. If we 

compare U3D(t) to U∞(t) and 0.95U∞(t) in Fig. 5(c), we detected hydrodynamic coupling between 

t=0.31935 s and 0.31936 s so that the associated gap and velocity data were extracted to estimate 
*

c =1.145×10−2 by replacing 0.95UT with 0.95U∞(t) in Eq. (13). The approach particle Stokes 

number was evaluated with the instantaneous U∞(t) and we obtained St=30.11 for this release. 

 

 

  

(a) (b) 

 
(c) 

Fig. 5(a) Comparison of the descending velocity profile of a solid sphere released from different heights 

H=5D, 3D and 1D towards wall to that with no wall (Ufree). (b) Close examination at early time as that 

circled in (a). (c) Descent profile from H=3D and its comparison to Ufree and its 5% reduction in green and 

red lines, respectively, to extract the occurrence of hydrodynamic coupling Here, we use D=42 mm, 

ρs=2532.4 kg/m3, μ=241.8 cP and ρ=1245 kg/m3 

415



 

 

 

 

 

 

Cheng-Chuan Lin, Hung-Tien Huang and Fu-Ling Yang 

By systematically varying μ, H, and two sphere diameters as those summarized in Table 2, we 

obtained a collection of ( *

c , St) for different flow conditions as shown in Fig. 6. We can observe 

the general trend that the coupling distance decreases monotonically with increasing Stokes 

number as the particle possessed greater inertia to overcome the wall-amplified hindering 

hydrodynamic forces. Among these curves, the coupling distance when approaching from constant 

motion at UT serves as the lower bound while the release from the smallest H=1D gives an upper 

envelope. This clearly indicates the significance of the transient hydrodynamic forces and suggests 

an underestimation of the scaling argument by Izard et al. (2014) when only the quasi-steady 

component is considered. The gradual migration of the *

c -St curves from different drop heights H 

reveals the significance of particle acceleration on the hydrodynamic coupling phenomenon.  

When the sphere has travelled a sufficiently long distance to develop large U towards its 

terminal velocity, the two unsteady force components FAM and FH may become comparably 

negligible to FQD due to both a greater U and smaller dU/dt. Hence, the descents from H>3D will 

be governed primarily by how a wall modified FQD in Eq. (12) and shall be related to the same 

near-field correction C(Re, δ*) in Eq. (3). For a release from H<3D, the sphere is still in its early 

acceleration with small U when it moves to the vicinity of the wall and hence the two hindering 

FAM and FH should be considered in the equation of motion in addition to FQD. As more terms in 

Eq. (12) are subject to wall modification, apparent sphere velocity reduction would be detected at a 

shorter travelled distance to give a greater hydrodynamic coupling distance *

c . 

 

 

 
Fig. 6 Coupling distance, scaled by D, to the approach Stokes number for releases from different heights 

(marked as the multiples of D in the legend) and that approach at terminal velocity (the free case in the 

legend). The inset presents the data at the logarithmic scale. Note that the coupling distance δc is scaled by D 

here for the same scaling with the release height 
 
Table 2 Summary of the problem parameters used to generate data in Figs. 6 and 7 

Sphere Fluid 

Diameter D (mm) =16, 25, 34, 42 

Release height H(D)=1, 1.2, 1.5, 1.8, 2, 3, 5; 40-80 

for the cases reaching UT 

Density ρs (kg/m3) =2532.4 

Viscosity μ (cP) =46.8 to 241.8 cP 

Density ρ (kg/m3) =1245 
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Hydrodynamic coupling distance between a falling sphere and downstream wall 

If we compare the calculated *

c -St relation to the prediction by Izard et al. (2014) that *

c ~St-1 

in Fig. 7, fair agreement is found only below a threshold St above which a much faster decay is 

discovered. Such a deviation at St above a threshold value is the same as what we remark for the 

experimental data by Joseph et al. (2001) in Fig. 1(b) and the threshold St is found to be around 

30-40 for their data. From our data, the threshold St seems to decays with the drop height: around 

St=20-30 for H=1D but drops to below St=10 for the limiting case when approaching at the 

terminal velocity (marked as ‘Free’ case).  

To provide a quantitative description with the following composite formula 

* .B CSt

c ASt e − −=  (14) 

As the *

c -St trend varies with the release height H, we embed the height-dependence in these 

coefficients and hence least-square fitting was performed to each group of data from the same H. 

The fitted coefficients are summarized in Table 2 and the variation with H are shown in Fig. 8. All 

the three coefficients decrease with H and may be described by the following least-square fitting 

relations 

2
1

3

( ) ,
H

Y H
H





= +

+
 (15) 

Here, Y=A, B or C and i  (i=1-3) are fitting constants. Clearly, the coefficients B is never unity 

unlike the simple scaling argument by Izard et al. (2014) and a refined model will be pursued in 

the future to take into account of the unsteady hydrodynamic force components. 

 

 

 

Fig. 7 Comparison of the current 
*

c -St data to the simple scaling argument by Izard et al. (2014) as shown 

by the two solid lines with the slope of -1. Note that the coupling distance δc is scaled by D here for the same 

scaling with the release height 
 
Table 3 The value of coefficient A, B and C at different release height H 

H= ∞ 5 3 2 1.8 1.5 1.2 1 

A 0.358 0.347 0.340 0.329 0.324 0.323 0.322 0.323 

B 0.578 0.567 0.556 0.523 0.508 0.496 0.477 0.461 

C 0.060 0.055 0.050 0.046 0.044 0.041 0.037 0.033 
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Fig. 8 The variation of fitted coefficients A, B and C with H. The blue dash lines denote the least-square 

fitting relations of Eq. (15) 
 

 

3. Conclusions 
 

In this work, we study the phenomenon of hydrodynamic coupling using the dynamics of a 

fully-immersed solid sphere in vertical descent towards a horizontal wall predicted by a 

hydrodynamic model. This model incorporates both wall augmentation effect on the quasi-steady 

viscous force FQD, the added mass force FAM, and the history force FH as well as the modification 

on FQD and FH due to liquid inertia. The interstitial gap when the near-wall approach velocity 

dropped 5% from the velocity developed as if there was no downstream wall was used to 

determine a hydrodynamic coupling distance δc. The associated no-wall approach velocity is used 

to estimate an approach Stokes number, St, and used to study how δc varies with St. By 

systematically changing the sphere size, release height, and liquid viscosity, we achieve sphere 

approaches both at its terminal velocity and in acceleration over 6<St<120. A general trend is 

discovered that the diameter-scaled coupling distance, * /c c D = , diminishes monotonically with 

local St but at a rate faster than the literature scaling relation *

c ~St−1 above a threshold value from 

St=10 to 40. Furthermore, the *

c -St relation shows dependence on the drop height to migrate 

gradually from the lower bound with a constant approach at the terminal velocity to an upper 

bound from the smallest drop height. This clearly indicates that the two unsteady force 

components FAM and FH should not be left out in developing a model for *

c  and an additional 

dimensionless parameter that measures the effect of particle acceleration may be useful. As a first 

attempt towards a practical model, we attempt a fitting relation that *

c (St, H*)=A(H*)St-B(H*)e–C(H*)St 

embedding the particle acceleration effect in the dependence of fitting constants on the diameter-

scaled drop height. 
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4. Discussions 
 

Other than developing a refined model for *

c (St, H*), there are a few other issues remain to be 

further investigated. The first is how the correction factor C(Re, δ*) on the quasi-steady viscous 

drag should be switched between a far-field and a near-field correction. The other issue is how the 

history force is modified for the downstream wall as the current factor is developed from the 

boundary layer theory which does not apply in the creeping flow regime. It will require accurate 

numerical simulation or careful experimental measurement to clarify the liquid inertial effect on 

the analytic correction factor in Eq. (3) and the H(δ*) factor in Eq. (8). 
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