
 

 

 

 

 

 

 

Coupled Systems Mechanics, Vol. 7, No. 3 (2018) 353-371 

DOI: https://doi.org/10.12989/csm.2018.7.3.353                                                                                            353 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=csm&subpage=8             ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 
 

 
 
 
 

Application of Wavenumber-TD approach for time harmonic 
analysis of concrete arch dam-reservoir systems 

 

Vahid Lotfi
*1 and Gerald Zenz2a 

 
1Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran 

2Institute of Hydraulic Engineering and Water Resources Management,  
Department of Civil Engineering, Graz University of Technology, Graz, Austria 

 
 (Received September 20, 2017, Revised October 30, 2017, Accepted December 19, 2017) 

 
Abstract.  The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for 

two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was 

formulated in the context of pure finite element programming in frequency domain. Later on, a variation of 

the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type 

of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional 

dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation 

(i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially 

described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by 

this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic 

excitation in stream direction. All results for various considered cases are compared against the exact 

response for models with different values of normalized reservoir length and reservoir base/sidewalls 

absorptive conditions. 
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1. Introduction 
 

It is a well-known fact for dam specialists that dynamic analysis of concrete arch dam-reservoir 

systems can be carried out rigorously by FE-(FE-HE) method in the frequency domain. This 

means that the dam is discretized by solid finite elements, while, the reservoir is divided into two 

parts, a near-field region (usually an irregular shape) in the vicinity of the dam and a far-field part 

(assuming uniform channel) which extends to infinity in the upstream direction. The former region 

is discretized by fluid finite elements and the latter part is modeled by a three-dimensional fluid 

hyper-element (Waas 1972, Hall and Chopra 1983, Fok and Chopra 1986, Tan and Chopra 1995, 

Lotfi 2004). It is also understood that employing fluid hyper-elements would lead to the exact 

solution of the problem. However, it is formulated in the frequency domain and its application in 

this field has led to many especial purpose programs which were demanding from programming 
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point of view. 

On the other hand, engineers have often tried to solve this problem in the context of pure finite 

element programming (FE-FE method of analysis). In this approach, an often simplified condition 

is imposed on the truncation boundary or the upstream face of the near-field water domain. Thus, 

the fluid hyper-element is actually excluded from the model. Two of these widely used methods 

are based on Sommerfeld and Sharan (more accurately modified-Sharan condition adjusted for 

three-dimensional cases) truncation boundary conditions (Sommerfeld 1949, Sharan 1987, 

Amanabadi and Lotfi 2017). The main advantage of these conditions is that it can be readily used 

for time domain analysis. Thus, they are also vastly employed in nonlinear seismic analysis of 

concrete dams. 

Of course, there have also been many researches in the last three decades to develop more 

accurate absorbing boundary conditions to be applied for similar fluid-structure or soil-structure 

interaction problems. It should be emphasized that many of these studies are actually limited their 

works to two-dimensional cases. Perfectly matched layer (Berenger 1994, Chew and Weedon 

1994, Basu and Chopra 2003, Jiong et al. 2009, Zhen et al. 2009, Kim and Pasciak 2012, Khazaee 

and Lotfi 2014a, Khazaee and Lotfi 2014b) and, high-order non-reflecting boundary condition 

(Higdon 1986, Givoli and Neta 2003, Hagstrom and Warbuton 2004, Givoli et al. 2006, Hagstrom 

et al. 2008, Rabinovich 2011, Samii and Lotfi 2012) are among the two main popular groups of 

methods which researchers have applied in their attempts. It is emphasized that these techniques 

have become very popular in recent years due to the fact that they could be applied in time domain 

as well as the frequency domain. 

Recently, another technique is also introduced which is referred to as the Wavenumber 

approach (Lotfi and Samii 2012). The method is simply applying an absorbing boundary condition 

on the truncation boundary which is referred to as the Wavenumber condition. It is as simple as 

employing Sommerfeld or Sharan condition on the truncation boundary. Initially, the approach 

was merely limited to the full reflective reservoir base case and horizontal excitation (Lotfi and 

Samii 2012). Subsequently, it was modified for the general base condition (Jafari and Lotfi 2017). 

The Wavenumber approach utilized in these studies were mainly formulated for frequency domain 

analysis of concrete gravity dam-reservoir systems (i.e., two-dimensional models). Therefore, it 

may be designated more accurately as Wavenumber-FD technique. Later on, a variation of 

Wavenumber method was proposed which is referred to as Wavenumber-TD approach (Lotfi and 

Zenz 2017). The approximation to the original technique improved its realm of application and 

allowed it to be carried out in time domain as well as frequency domain. 

Parallel to the above-mentioned studies, it was also shown that Wavenumber-FD approach may be 

applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems 

(Amanabadi and Lotfi 2017). Therefore, as a next step, it is also interesting now to investigate 

application of Wavenumber-TD approach for analysis of concrete arch dams. The method is 

initially described for three-dimensional problems. Subsequently, the response of idealized 

Morrow Point arch dam-reservoir system is obtained by this condition and its special cases (i.e., 

Sommerfeld and Sharan truncation boundary alternatives) for time harmonic excitation in stream 

direction. Six models are investigated which corresponds to different values of normalized 

reservoir length and reservoir base absorptive conditions. In all considered cases, the results are 

compared against the exact response (i.e., obtained by the rigorous FE-(FE-HE) type of analysis) 

to evaluate the effectiveness of the proposed approach (i.e., Wavenumber-TD) in comparison to its 

special cases. 

It should be also emphasized that the present formulation allows one to readily apply it for  
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transient type of analysis (i.e., future study plans). However, it was decided to apply it presently 

for time harmonic excitation for a better evaluation of error estimate and proof of its effectiveness 

independent of any specified earthquake excitation. 

 

 

2. Method of analysis 
 

As mentioned, the analysis technique utilized in this study is based on the FE-FE method, 

which is applicable for a general concrete arch dam-reservoir system. The coupled equations can 

be obtained by considering each region separately and then combine the resulting equations. 

 

2.1 Dam body  
 

Concentrating on the structural part, the dynamic behavior of the dam is described by the well-

known equation of structural dynamics (Zienkiewicz and Taylor 2000) 

s T

g    Mr Cr Kr MJa B P
 

(1) 

where M, C and K in this relation represent the mass, damping and stiffness matrices of the dam 

body. Moreover, r is the vector of nodal relative displacements, M̃ is the same as M matrix except 

that no columns are excluded due to restraints, J is a matrix with each three rows equal to a 3×3 

identity matrix (its columns correspond to a unit cross-canyon, stream and vertical rigid body 

motion), and as
g denotes the vector of ground accelerations. Furthermore, B is a matrix which 

relates vectors of hydrodynamic pressures (i.e. P), and its equivalent nodal forces. It should be also 

emphasized that as
g denotes the vector of ground accelerations adjusted for stream direction 

excitation (i.e., the superscript s refers to the stream type of ground motion) which is expressed as 

below. 

 
Fig. 1 Schematic view of a typical reservoir (i.e., water domain). The near-field reservoir domain Ω, the 

truncation boundary ΓI  and the far-field region D (excluded in the FE-FE type of analysis) 
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s y
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0
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 
 


 
  

a

 

(2) 

 

2.2 Water domain 
 

Assuming water to be linearly compressible and neglecting its viscosity, its small irrotational 

motion (Fig. 1) is governed by the wave equation (Chopra 1967, Chopra, et al. 1980) where p is 

the hydrodynamic pressure and, c is the pressure wave velocity in water. 

2 2 2

2 2 2 2

1
0

p p p
p

x y z c

  
   

  
 (3) in Ω and D 

The boundary conditions for reservoir surface and bottom are as follows 

0p   (4a) on water surface 

g

np
a q p

n



 


 (4b) at reservoir’s bottom/sidewalls 

Herein,   is the water density and n denotes the outward (with respect to fluid region) 

perpendicular direction at the reservoir’s bottom/sidewalls. Moreover, the admittance or damping 

coefficient q utilized in the above equation, may be related to a more meaningful wave reflection 

coefficient 𝜶 (Fenves and Chopra 1985) 

1

1






q c

q c


 

(5) 

which is defined as the ratio of the amplitude of reflected hydrodynamic pressure wave to the 

amplitude of incident pressure wave normal to the reservoir’s bottom/sidewalls. For a fully 

reflective reservoir’s bottom/sidewalls condition, 𝜶 is equal to 1 which leads to q=0.  

One can apply the weighted residual approach to obtain the finite element equation of the fluid 

domain, which may be written as 

e e e e e G P H P R  (6) 

With the following definitions 

T

2

1
d

e

e

c 
 G N N

 

(7a) 

 T T T1
d

e

e

x x y y z z
 

   H N N N N N N

 

(7b) 
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1
( )d

e

e

n

e p




   NR  (7c) 

With N being the vector of element’s shape functions, and Nx, Ny, Nz denote its partial 

derivatives with respect to x, y and z, respectively. It is also worthwhile to emphasize that the 

superscript (e) states that these matrices are related to element level. The directional derivative ∂np 

in relation (7c), can take three forms on different boundaries of the reservoir (Fig. 1): On the 

upstream boundary of the reservoir (ΓI): One can apply different absorbing boundary conditions 

which will be discussed in subsequent sections. 

At the reservoir’s bottom/sidewalls (ΓII), one can utilize Eq. (4b) as mentioned previously 

g

n

n p a q p  
 

(8a) 

On the dam-reservoir interface (ΓIII) 

n np u  
 

(8b) 

where ün is the total acceleration of fluid particles normal to the dam-reservoir interface. It is also 

noted that there must be compatibility of acceleration between the fluid and solid particles in that 

direction.  

In general, an element may have all three above-mentioned boundary condition types. Thus, 

one can write Re vector as follows 

I II III

e ee e  R R RR
 

(9) 

Of course, it is possible that some of these boundary condition types are not applied for a 

certain element, which that part should be eliminated for that specific element. It is easily shown 

that one would obtain the following relations by utilizing (8a) and (8b) in (7c), respectively 

III

s

I g II

e ee e eq  B J a LR P
 

(10a) 

IIII II g( )e e ee s  B r J aR
 

(10b) 

With the following definitions 

 
i

T

i s d ; i  II, III
e

T ee


 B Nn N

 
(11a) 

II
II

T1
d

e

ee

 
 L N N

 

(11b) 

Herein, n represents a unit outward normal vector. Moreover, Ns is the matrix of adjacent solid 

element shape functions utilized to interpolate accelerations in cross-canyon, stream and vertical 

directions. It is worthwhile to mention that from practical point of view, the value of non-zero 

solid and fluid shape functions are essentially equal on the common fluid-solid interface.  

Substituting (10a) and (10b) into (9) will result in 
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s

I II g

e e e e e e e eq   R L P B r BR J a
 

(12) 

With the following definition 

II III

e e e B B B
 

(13) 

It should also be noted that the relative acceleration at boundary ΓII is identically equal to zero. 

Subsequently, (12) can be substituted in (6) which yields 

s

II I g( )e e e e e e e e e e eq t    G P L P H P R B r B J a
 

(14) 

Here, 
II

e
L  is a matrix, which corresponds to the absorption of energy at reservoir’s 

bottom/sidewalls. By assembling the element equations and imposing the free surface condition 

(4a), one would obtain the overall FE equation of the fluid domain 

s

II I gq    GP L P HP R Br BJa
 

(15) 

In this equation, RI is obtained by assembling the boundary integrals of Eq. (7c) on ΓI. It should 

be also noted that B̃ is the same as B matrix except that no columns are excluded due to restraints. 

 

2.3 Dam-reservoir system  
 

The necessary equations for both dam and reservoir domains were developed in previous 

sections. Thus, combining the main relations (15) and (1) would result in the FE equations of the 

coupled dam-reservoir system in its initial form for the time domain 

sT
g

s

II g I )(q

          
             

              

C M J aM r r rK B

0 L B J a R

0

B G P P P0 H

0
 (16) 

It is noted from the above equation that vector RI still needs to be defined by some appropriate 

condition. This is related to the truncated boundary ΓI which will be discussed below.  

 
2.4 Modification due to truncation boundary contribution 
 

The effect of truncation boundary condition will be treated in this section. For this purpose, let 

us now assume that this boundary (i.e., ΓI) is parallel to x-z plane (Fig. 1) and consider a harmonic 

plane wave with unit amplitude and frequency ω propagating along a direction which makes 

angles θx, θy and θz with negative x, y and z directions, respectively. This may be written in many 

different forms such as 

i( )x zx k y z t
p e

    
  (17a) 

(i ) (cos ) (cos ) (cos )x y zc x y z ct
p e

         
(17b) 
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With the following relations being valid 

cos yk
c


 

 
(18a) 

cosx x
c


 

 
(18b) 

cosz z
c


 

 
(18c) 

2
2 2

2
;k

c


  

 

2 2 2
x z   

 
(18d) 

It is easily verified that the following condition is appropriate for the truncated boundary based 

on the assumed traveling wave (i.e., Eq. (17a)) 

i 0
p

k p
y


 

  
(19) 

Employing (19) in (7c), it yields 

II (i )  L PR
ee ek

 
(20) 

With the following definition 

I
I

T1
d


 L N N

e

ee

  
(21) 

Assembling 
I

e
R  for all fluid elements adjacent to truncation boundary leads to 

II (i )k R L P
 

(22a) 

or by utilizing (18a), one may alternatively write 

II

i
( cos )y

c


R L P

 

(22b) 

If the analysis is carried out in the frequency domain, cosθy may now be defined in terms of 

first wavenumber as follows (Amanabadi and Lotfi 2017) 

1cos y
c

k



 

(23) 

Although, relation (23) is easily applied in frequency domain, it cannot be directly employed 

for an approach which should be applicable for time domain as well as frequency domain analysis. 

Having this in mind, a suitable form for this aim may now be expressed as 

359



 

 

 

 

 

 

Vahid Lotfi and Gerald Zenz 

2( 1) 2 1

1 1

cos (i ) (i )
m n

j j

y j j

j j

a b    

 

    
 

(24) 

with the help of dimensionless frequency  defined below 

1

rs




 

 

(25) 

In which 
1

rs is the first symmetric natural frequency of the reservoir (i.e., ω1
rs=πc/βsH 

(Amanabadi and Lotfi 2017)). It is reminded that there are analytical solutions for the natural 

frequencies of the reservoir in the 2D case. However, this should be obtained numerically in 

general for three-dimensional cases (Lotfi 2004). It should be also emphasized that the two 

summations employed in (24) interpolate the real and imaginary parts of cosθy by utilizing the 

real and imaginary parts of relation (23), respectively. It is also noted that one may take m, n set 

of terms for interpolation purposes (i.e., m, n are arbitrary numbers). However, let us adopt the 2, 

1 set. That would be 

1 2

1 1 2cos (i ) (i )y a b a      
 

(26) 

This may now be substituted in (22b) to obtain 

1

1 1 2 II ( (i ) (i ) )a b a    R L P
 

(27) 

With the following definitions for the employed factors 

2

1 1 1 2 1
1 1 2

( ) ( )
; ;

rs rsa b a
a b a

c c c

 
  

 

(28) 

Eq. (27) may alternatively be written in time domain as 

1 I 1 1I I 2 I( )a b a    R L P L P L
 

(29a) 

In which 

1  P
 

(29b) 

 Substituting (29a) in (16) and combining it with a third matrix equation obtained through 

multiplying (29b) by a2LI would lead to the FE equations of the coupled dam-reservoir system in 

its final form suitable for time domain analysis 

T

II 1 I 1 I 2 I

1 2 I 1 2 I 1

s

g

s

g

( ) ( )q a b a

a a

          
          

             
                       

 
 

  
 
 

M 0 0 r C 0 0 r K B 0 r

B G 0 P 0 L L 0 P 0 H L L P

0 0 0 0 0 L 0 L 0

M J a

B J a

0
 

(30) 
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This may be simplified in writing by defining few auxiliary matrices. It is expressed as 

sT
g

s

g

           
              

               

r r M J aM C rK B

B G 0 L P0 H B J aP

0 0

P
 

(31) 

Auxiliary matrices with bar signs over them are easily determined by comparing relations (30) 

and (31). Moreover, the following definition for P  vector is utilized 

1

 
  

 

P
P

 

(32) 

It is now apparent that the proposed approach is suitable for transient analysis. However, let us 

simplify this relation for time harmonic analyses, which is the scope of present study. Under these 

circumstances, one may write (31) as follows 

s2 T
g

2 2 2 s

g

(1 2 i)

(i ) )(

 

   
 

         
    

         

M J arM K B

PB G L H B J a
 

(33) 

In this relation, it is assumed that the damping matrix of the dam is of hysteretic type. This 

means 

(2 / ) C K
 

(34) 

It is also noticed that the lower matrix equation of (33) is multiplied by ω–2 in this process to 

obtain a symmetric dynamic stiffness matrix for the dam-reservoir system. 

 

2.5 Different options for defining coefficients āj and b̅j  
 

It was mentioned that a total of three coefficients (i.e., ā1, b̅1 and ā2) are adopted for the present 

study. However, let us first discuss some special cases which are considered as the subset of the 

present approach and consider the general case subsequently.  

Obviously, one may define these coefficients directly. For instance, assuming the first 

coefficient as 1 and taking the other two as 0 would lead to the Sommerfeld B.C. While, selecting 

the first two terms as 1 and the last one as 0 yields the well-known Sharan B.C. as listed in Table 

2.1. 

 

 
Table 2.1 Definitions of required coefficients for two well-known methods 

Truncation B.C. ā1 b̅1 ā2 

Sommerfeld 1 0 0 

Sharan 1 1 0 

 
 

The alternative is to define these coefficients indirectly. In this case, certain normalized 

frequencies are specified which corresponds to the points that matching occurs between the 
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interpolating relation and the actual function. For the present Wavenumber (i.e., Wavenumber-TD) 

condition, this strategy is utilized. In this case, all three coefficients may have non-zero values and 

they are defined through interpolation means by utilizing relations (23) and (24) as mentioned 

above. Therefore, a set of normalized frequencies are employed (i.e., Ω1
R, Ω2

R and I

1 ) for 

interpolating real and imaginary parts of cosθy. For the present study, these normalized frequencies 

are selected as listed in Table 2.2 and the resulting computed coefficients are also provided in that 

Table for two values of 𝜶 (i.e., reservoir bottom/sidewalls reflection coefficient). These are 

employed in the analyses carried out and discussed in subsequent sections. 

 

 
Table 2.2 Definitions of required coefficients for Wavenumber-TD approach 

𝜶 Ω1
R Ω2

R ā1 ā2 
I

1  b̅1 

1.00 0.91 3.0 1.038 0.860 0.91 0.415 

0.85 0.91 3.0 1.017 0.685 0.91 0.451 

 

 

3. Modeling and basic parameters 
 

The introduced methodology is employed to analyze an idealized dam-reservoir system. The 

details about modeling aspects such as discretization, basic parameters and the assumptions 

adopted are summarized in this section. 

 
3.1 Models 

 
An idealized symmetric model of Morrow Point arch dam on rigid foundation is considered.  

The geometry of the dam may be found in the Reference (Hall and Chopra 1983). The dam is 

discretized by 40 isoparametric 20-node solid finite element (Fig. 2(a)). 

As for the water domain, two strategies are adopted (Figs. 2(b) and 2(c)). For the FE-FE 

method of analysis which is our main procedure, only the reservoir near-field is discretized and the 

absorbing boundary condition is employed on the upstream truncation boundary according to 

different alternatives discussed. The length of this near-field region is denoted by L and water 

depth is referred to as H. Three normalized reservoir lengths are considered. These are in particular 

the L/H values of 0.2, 1 and 3 which represent low, moderate and high reservoir lengths (the first 

two cases are shown in Fig. 2(b)). This region is discretized by 80, 200 and 520 isoparametric 20-

node fluid finite elements for three above-mentioned L/H values, respectively.  

For the FE-(FE-HE) method of analysis, the reservoir domain is divided into two regions. The 

near-field region is discretized by fluid finite elements, and the far-field is treated by a fluid hyper-

element (Fig. 2(c)). Of course, it should be emphasized that this option is merely utilized to obtain 

the exact solution (Lotfi 2004). Moreover, it is well-known that the results are not sensitive in this 

case to the length of the reservoir near-field region or L/H value.  
 

3.2 Basic parameters 
 

The dam body is assumed to be homogeneous and isotropic with linearly viscoelastic properties 

for mass concrete. 

362



 

 

 

 

 

 

Application of Wavenumber-TD approach for time harmonic analysis… 

Elastic modulus (Ed) =27.5 GPa 

Poison’s ratio =0.02 

Unit weight =24.8 kN/m3 

Hysteretic damping factor (βd) =0.05 

The impounded water is taken as inviscid and compressible fluid with unit weight equal to 9.81 

kN/m3, and pressure wave velocity c=1440 m/sec.  

 

 

 
(a) Dam body 

 
(b) Water domain for FE-FE models of L/H=0.2 and 1 

 
(c) Water domain for FE-(FE-HE) model (fluid finite elements (L/H=0.2), and the fluid hyper-element) 

Fig. 2 Discretization of dam-reservoir system 
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(a) Sommerfeld (b) Sharan 

 
(c) Wavenumber-TD 

Fig. 3 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=0.2, 𝜶=1) 

 

 

4. Results 
 

It should be emphasized that all results presented herein, are obtained by the FE-FE method 

discussed, under different absorbing conditions applied on the truncation boundary. The only 

exception is for what is referred to as the exact response. That especial case is carried out by the 

FE-(FE-HE) analysis technique (Lotfi 2004).  

The initial part of the study is focused on full reflective reservoir base condition (i.e., α=1). 

Three models are considered with different values of reservoir lengths. These may be referred to as 

low, moderate and high normalized reservoir lengths (i.e., L/H=0.2, 1 and 3). For each model, 

three different truncation boundary absorbing conditions are examined. In particular, these are 

Sommerfeld, Sharan and Wavenumber-TD cases. Subsequently, three other models are evaluated, 

which are similar to the first three models. However, the reservoir base/sidewalls condition is 

absorptive in those models (i.e., α=0.85). 

The transfer function for the radial acceleration at dam crest (i.e., corresponding to θ =0 (Fig. 

2a)) with respect to stream ground acceleration, are presented in Figs. 3-8 for these six models. It 

is noted that response in each case is plotted versus the dimensionless frequency. 
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(a) Sommerfeld (b) Sharan 

 
(c) Wavenumber-TD 

Fig. 4 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=1, 𝜶=1) 

 

  
(a) Sommerfeld (b) Sharan 

Fig. 5 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=3, 𝜶=1) 
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(c) Wavenumber-TD 

Fig. 5 Continued 

 

  

(a) Sommerfeld (b) Sharan 

 
(c) Wavenumber-TD 

Fig. 6 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=0.2, 𝜶=0.85) 
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(a) Sommerfeld (b) Sharan 

 
(c) Wavenumber-TD 

Fig. 7 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=1, 𝜶=0.85) 
 

 

The normalization of excitation frequency is carried out with respect to ω1
S, which is defined as 

the fundamental frequency of the dam on rigid foundation with empty reservoir for a symmetric 

mode. Moreover, it is noticed that all cases are compared with its corresponding exact response.  

Let us first consider the initial three models which relates to the full reflective reservoir 

base/sidewalls condition (i.e., α=1). The responses are plotted in Figs. 3-5. For the low reservoir 

length model (Fig. 3), it is observed that there are significant errors at the fundamental frequency 

of the system for the Sommerfeld and Sharan truncation boundary conditions. While, the 

Wavenumber-TD response is behaving relatively well even under these challenging circumstances 

(i.e., L/H=0.2 and α=1). It is also important to notice that the fundamental natural frequency of the 

system is captured accurately for the Wavenumber-TD case, while this is not the case for the other 

two alternatives. Although, accuracy is slightly improved, similar observations are also valid for 

the moderate reservoir length model (i.e., L/H=1) as what was asserted for the low reservoir length 

(Fig. 4 versus Fig. 3). For the high reservoir length model (i.e., L/H=3), responses for all three  
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(a) Sommerfeld (b) Sharan 

 
(c) Wavenumber-TD 

Fig. 8 Radial acceleration at dam crest due to stream ground motion for different absorbing boundary 

condition alternatives (L/H=3, 𝜶=0.85) 
 

 

truncation boundary alternatives are acceptable (Fig. 5). Of course, the accuracy of the response at 

the fundamental frequency of the system (i.e., precision on magnitude of the first major peak) 

seems to be still highest for Wavenumber-TD alternative and least for the Sommerfeld condition 

case. The other interesting observation for this high reservoir length model is that some kind of 

noise or distortion is noticed in the response of Wavenumber-TD case especially for higher 

frequencies similar to other two alternatives. Something that did not existed on the original 

Wavenumber truncation condition introduced merely for frequency domain analysis which may be 

designated as Wavenumber-FD truncation condition (Lotfi and Samii 2012). This oscillatory 

behavior is originated due to the fact that approximate Wavenumber approach is employed as the 

basis of wavenumber-TD condition. In other words, one is utilizing first wavenumber for the 

whole frequency range, while various wavenumbers were employed for different frequency 

regions in the original Wavenumber approach. Of course, it must be mentioned that one generally 

expects that these oscillatory noise or distortion diminish as the degree of reservoir base/sidewalls 

absorption increases.  

Subsequently, the results for the other three models are presented (Figs. 6-8). For the low 

reservoir length model (Fig. 6), it is observed that there is still significant error at the fundamental 
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frequency of the system for the Sommerfeld truncation boundary condition.  

Moreover, the fundamental natural frequency of the system is not captured accurately for both 

Sommerfeld and Sharan truncation boundary conditions. While, the Wavenumber-TD response is 

behaving very well. This is noticeable for magnitude of the peak at the fundamental frequency of 

the system and the actual occurrence of that natural frequency. As for the moderate reservoir 

length model (Fig. 7), it is observed that there is significant error at the fundamental frequency of 

the system for the Sharan truncation boundary condition. However, response for the Sommerfeld 

alternative has been improved. It may be asserted that there is now mainly error as far as the 

fundamental frequency of the system not the corresponding peak of the response. The 

Wavenumber-TD response is behaving well under these circumstances. In regard to the last model 

results (Fig. 8), it is observed that all three truncation boundary condition alternatives are now 

behaving very well. It is worthwhile to mention that as expected, oscillatory noise or distortion is 

now diminished for all three truncation boundary condition alternatives due to reservoir 

base/sidewalls absorption.  

Finally, percentage of error at the fundamental frequency of the system is also calculated and 

listed in Table 4.1 for all different cases of six considered models for quantitative evaluation of the 

amount of error involved in each case.  

Overall, it may be concluded that Sommerfeld and Sharan truncation boundary conditions 

should not be utilized for models with low and moderate normalized reservoir lengths for both full 

reflective and absorptive reservoir base/sidewalls conditions. In other words, it is merely 

appropriate for high normalized reservoir lengths. Of course, in moderate normalized reservoir 

lengths, this assertion for the absorptive case is not deemed as strong as for the full reflective case, 

especially for the Sommerfeld truncation boundary condition. It should be emphasized that the 

above-mentioned conclusion is based on considering both error at the first major peak of the 

response and the accuracy on capturing correct fundamental natural frequency of the system. 

Furthermore, it is noticed that Wavenumber-TD condition has produced acceptable results 

under all different circumstances as well as the most challenging case of low reservoir length and 

full reflective base condition (i.e., L/H=0.2 and α =1). 

 

 
Table 4.1 Percentage of error at the fundamental frequency of the system for different cases of six 

considered models 

Model 𝜶 L/H Sommerfeld Sharan Wavenumber-TD 

1 

1.00 

0.2 73.1 58.4 11.8 

2 1.0 58.6 35.6 7.1 

3 3.0 9.3 4.9 1.2 

4 

0.85 

0.2 26.4 12.4 7.0 

5 1.0 5.9 22.6 2.3 

6 3.0 1.0 0.3 1.2 

 

 

5. Conclusions 
 

The proposed formulation based on FE-FE procedure for dynamic analysis of concrete arch 

dam-reservoir systems, was described in great details. Moreover, several options were discussed 

for imposing a local type of absorbing condition on the truncation boundary of the water domain. 
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A special purpose finite element program was enhanced for this investigation. Thereafter, the 

response of idealized Morrow Point arch dam was studied due to stream ground motion for 

different alternatives employed as absorbing boundary condition. The main approach which was 

emphasized and proposed in this study is referred to as the Wavenumber-TD approach. It is also 

shown that the other two considered alternatives (i.e., Sommerfeld and Sharan conditions) may be 

considered as special cases of the Wavenumber-TD condition. Overall, the main conclusions 

obtained by the present study can be listed as follows: 

• Sommerfeld and Sharan truncation boundary conditions should not be utilized for models 

with low and moderate normalized reservoir lengths for both full reflective and absorptive 

reservoir base/sidewalls conditions. In other words, it is merely appropriate for high normalized 

reservoir lengths. Of course, in moderate normalized reservoir lengths, this assertion for the 

absorptive case is not deemed as strong as for the full reflective case, especially for the 

Sommerfeld truncation boundary condition. It should be emphasized that the above-mentioned 

conclusion is based on considering both error at the first major peak of the response and the 

accuracy on capturing correct fundamental natural frequency of the system. 

• Wavenumber-TD truncation boundary condition has produced acceptable results under all 

different circumstances as well as the most challenging case of low reservoir length and full 

reflective base/sidewalls condition (i.e., L/H=0.2 and α=1). 

• Finally, it should be emphasized that Wavenumber-TD approach, based on FE-FE method of 

analysis, is extremely efficient in comparison with the well-known  

FE-(FE-HE) method.  This is due to the fact that in general for absorptive reservoir base/sidewalls 

condition (i.e., 1  ), one has to solve an eigenvalue problem for each frequency of excitation in 

the latter technique to define the necessary matrices for 3D fluid hyper-element. While, one is 

dealing with a frequency independent matrix LI in the former case. Of course, the real advantages 

of this technique would be more apparent when one employs Wavenumber-TD condition for 

nonlinear dynamic analysis of concrete dam-reservoir systems which is the plan for future studies. 

It is well-known that 3D fluid hyper-element cannot be utilized for those type of analyses since it 

is formulated in the frequency domain. 
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